#include "../copyright" uint16_t DSP2Op09Word1 = 0; uint16_t DSP2Op09Word2 = 0; bool DSP2Op05HasLen = false; int32_t DSP2Op05Len = 0; bool DSP2Op06HasLen = false; int32_t DSP2Op06Len = 0; uint8_t DSP2Op05Transparent = 0; void DSP2_Op05(void) { uint8_t color; /* Overlay bitmap with transparency. * Input: * * Bitmap 1: i[0] <=> i[size-1] * Bitmap 2: i[size] <=> i[2*size-1] * * Output: * * Bitmap 3: o[0] <=> o[size-1] * * Processing: * * Process all 4-bit pixels (nibbles) in the bitmap * * if ( BM2_pixel == transparent_color ) * pixelout = BM1_pixel * else * pixelout = BM2_pixel * The max size bitmap is limited to 255 because the size parameter is a byte * I think size=0 is an error. The behavior of the chip on size=0 is to * return the last value written to DR if you read DR on Op05 with * size = 0. I don't think it's worth implementing this quirk unless it's * proven necessary. */ int32_t n; uint8_t c1; uint8_t c2; uint8_t* p1 = DSP1.parameters; uint8_t* p2 = &DSP1.parameters[DSP2Op05Len]; uint8_t* p3 = DSP1.output; color = DSP2Op05Transparent & 0x0f; for (n = 0; n < DSP2Op05Len; n++) { c1 = *p1++; c2 = *p2++; *p3++ = (((c2 >> 4) == color) ? c1 & 0xf0 : c2 & 0xf0) | (((c2 & 0x0f) == color) ? c1 & 0x0f : c2 & 0x0f); } } void DSP2_Op01(void) { /* Op01 size is always 32 bytes input and output. * The hardware does strange things if you vary the size. */ int32_t j; uint8_t c0, c1, c2, c3; uint8_t* p1 = DSP1.parameters; uint8_t* p2a = DSP1.output; uint8_t* p2b = &DSP1.output[16]; /* halfway */ /* Process 8 blocks of 4 bytes each */ for (j = 0; j < 8; j++) { c0 = *p1++; c1 = *p1++; c2 = *p1++; c3 = *p1++; *p2a++ = (c0 & 0x10) << 3 | (c0 & 0x01) << 6 | (c1 & 0x10) << 1 | (c1 & 0x01) << 4 | (c2 & 0x10) >> 1 | (c2 & 0x01) << 2 | (c3 & 0x10) >> 3 | (c3 & 0x01); *p2a++ = (c0 & 0x20) << 2 | (c0 & 0x02) << 5 | (c1 & 0x20) | (c1 & 0x02) << 3 | (c2 & 0x20) >> 2 | (c2 & 0x02) << 1 | (c3 & 0x20) >> 4 | (c3 & 0x02) >> 1; *p2b++ = (c0 & 0x40) << 1 | (c0 & 0x04) << 4 | (c1 & 0x40) >> 1 | (c1 & 0x04) << 2 | (c2 & 0x40) >> 3 | (c2 & 0x04) | (c3 & 0x40) >> 5 | (c3 & 0x04) >> 2; *p2b++ = (c0 & 0x80) | (c0 & 0x08) << 3 | (c1 & 0x80) >> 2 | (c1 & 0x08) << 1 | (c2 & 0x80) >> 4 | (c2 & 0x08) >> 1 | (c3 & 0x80) >> 6 | (c3 & 0x08) >> 3; } } void DSP2_Op06(void) { /* Input: * size * bitmap */ int32_t i, j; for (i = 0, j = DSP2Op06Len - 1; i < DSP2Op06Len; i++, j--) DSP1.output[j] = (DSP1.parameters[i] << 4) | (DSP1.parameters[i] >> 4); } bool DSP2Op0DHasLen = false; int32_t DSP2Op0DOutLen = 0; int32_t DSP2Op0DInLen = 0; /* Scale bitmap based on input length out output length */ void DSP2_Op0D(void) { /* (Modified) Overload's algorithm */ int32_t i; for(i = 0 ; i < DSP2Op0DOutLen ; i++) { int32_t j = i << 1; int32_t pixel_offset_low = ((j * DSP2Op0DInLen) / DSP2Op0DOutLen) >> 1; int32_t pixel_offset_high = (((j + 1) * DSP2Op0DInLen) / DSP2Op0DOutLen) >> 1; uint8_t pixel_low = DSP1.parameters[pixel_offset_low] >> 4; uint8_t pixel_high = DSP1.parameters[pixel_offset_high] & 0x0f; DSP1.output[i] = (pixel_low << 4) | pixel_high; } }