#include "../copyright" uint16_t DSP2Op09Word1 = 0; uint16_t DSP2Op09Word2 = 0; bool DSP2Op05HasLen = false; int DSP2Op05Len = 0; bool DSP2Op06HasLen = false; int DSP2Op06Len = 0; uint8_t DSP2Op05Transparent = 0; void DSP2_Op05() { uint8_t color; // Overlay bitmap with transparency. // Input: // // Bitmap 1: i[0] <=> i[size-1] // Bitmap 2: i[size] <=> i[2*size-1] // // Output: // // Bitmap 3: o[0] <=> o[size-1] // // Processing: // // Process all 4-bit pixels (nibbles) in the bitmap // // if ( BM2_pixel == transparent_color ) // pixelout = BM1_pixel // else // pixelout = BM2_pixel // The max size bitmap is limited to 255 because the size parameter is a byte // I think size=0 is an error. The behavior of the chip on size=0 is to // return the last value written to DR if you read DR on Op05 with // size = 0. I don't think it's worth implementing this quirk unless it's // proven necessary. int n; unsigned char c1; unsigned char c2; unsigned char* p1 = DSP1.parameters; unsigned char* p2 = &DSP1.parameters[DSP2Op05Len]; unsigned char* p3 = DSP1.output; color = DSP2Op05Transparent & 0x0f; for (n = 0; n < DSP2Op05Len; n++) { c1 = *p1++; c2 = *p2++; *p3++ = (((c2 >> 4) == color) ? c1 & 0xf0 : c2 & 0xf0) | (((c2 & 0x0f) == color) ? c1 & 0x0f : c2 & 0x0f); } } void DSP2_Op01() { // Op01 size is always 32 bytes input and output. // The hardware does strange things if you vary the size. int j; unsigned char c0, c1, c2, c3; unsigned char* p1 = DSP1.parameters; unsigned char* p2a = DSP1.output; unsigned char* p2b = &DSP1.output[16]; // halfway // Process 8 blocks of 4 bytes each for (j = 0; j < 8; j++) { c0 = *p1++; c1 = *p1++; c2 = *p1++; c3 = *p1++; *p2a++ = (c0 & 0x10) << 3 | (c0 & 0x01) << 6 | (c1 & 0x10) << 1 | (c1 & 0x01) << 4 | (c2 & 0x10) >> 1 | (c2 & 0x01) << 2 | (c3 & 0x10) >> 3 | (c3 & 0x01); *p2a++ = (c0 & 0x20) << 2 | (c0 & 0x02) << 5 | (c1 & 0x20) | (c1 & 0x02) << 3 | (c2 & 0x20) >> 2 | (c2 & 0x02) << 1 | (c3 & 0x20) >> 4 | (c3 & 0x02) >> 1; *p2b++ = (c0 & 0x40) << 1 | (c0 & 0x04) << 4 | (c1 & 0x40) >> 1 | (c1 & 0x04) << 2 | (c2 & 0x40) >> 3 | (c2 & 0x04) | (c3 & 0x40) >> 5 | (c3 & 0x04) >> 2; *p2b++ = (c0 & 0x80) | (c0 & 0x08) << 3 | (c1 & 0x80) >> 2 | (c1 & 0x08) << 1 | (c2 & 0x80) >> 4 | (c2 & 0x08) >> 1 | (c3 & 0x80) >> 6 | (c3 & 0x08) >> 3; } return; } void DSP2_Op06() { // Input: // size // bitmap int i, j; for (i = 0, j = DSP2Op06Len - 1; i < DSP2Op06Len; i++, j--) DSP1.output[j] = (DSP1.parameters[i] << 4) | (DSP1.parameters[i] >> 4); } bool DSP2Op0DHasLen = false; int DSP2Op0DOutLen = 0; int DSP2Op0DInLen = 0; #ifndef DSP2_BIT_ACCURRATE_CODE // Scale bitmap based on input length out output length void DSP2_Op0D() { // (Modified) Overload's algorithm - use this unless doing hardware testing int i; for(i = 0 ; i < DSP2Op0DOutLen ; i++) { int j = i << 1; int pixel_offset_low = ((j * DSP2Op0DInLen) / DSP2Op0DOutLen) >> 1; int pixel_offset_high = (((j + 1) * DSP2Op0DInLen) / DSP2Op0DOutLen) >> 1; uint8_t pixel_low = DSP1.parameters[pixel_offset_low] >> 4; uint8_t pixel_high = DSP1.parameters[pixel_offset_high] & 0x0f; DSP1.output[i] = (pixel_low << 4) | pixel_high; } } #else void DSP2_Op0D() { // Bit accurate hardware algorithm - uses fixed point math // This should match the DSP2 Op0D output exactly // I wouldn't recommend using this unless you're doing hardware debug. // In some situations it has small visual artifacts that // are not readily apparent on a TV screen but show up clearly // on a monitor. Use Overload's scaling instead. // This is for hardware verification testing. // // One note: the HW can do odd byte scaling but since we divide // by two to get the count of bytes this won't work well for // odd byte scaling (in any of the current algorithm implementations). // So far I haven't seen Dungeon Master use it. // If it does we can adjust the parameters and code to work with it uint32_t multiplier; // Any size int >= 32-bits uint32_t pixloc; // match size of multiplier int i, j; uint8_t pixelarray[512]; if (DSP2Op0DInLen <= DSP2Op0DOutLen) multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1 else multiplier = (DSP2Op0DInLen << 17) / ((DSP2Op0DOutLen << 1) + 1); pixloc = 0; for (i = 0; i < DSP2Op0DOutLen * 2; i++) { j = pixloc >> 16; if (j & 1) pixelarray[i] = DSP1.parameters[j >> 1] & 0x0f; else pixelarray[i] = (DSP1.parameters[j >> 1] & 0xf0) >> 4; pixloc += multiplier; } for (i = 0; i < DSP2Op0DOutLen; i++) DSP1.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1]; } #endif