#include "../copyright" #include "snes9x.h" #include "ppu.h" #include "cpuexec.h" #include "sa1.h" static void S9xSA1CharConv2(void); static void S9xSA1DMA(void); static void S9xSA1ReadVariableLengthData(bool inc, bool no_shift); void S9xSA1Init() { SA1.NMIActive = false; SA1.IRQActive = 0; SA1.WaitingForInterrupt = false; SA1.Waiting = false; SA1.Flags = 0; SA1.Executing = false; memset(&Memory.FillRAM [0x2200], 0, 0x200); Memory.FillRAM [0x2200] = 0x20; Memory.FillRAM [0x2220] = 0x00; Memory.FillRAM [0x2221] = 0x01; Memory.FillRAM [0x2222] = 0x02; Memory.FillRAM [0x2223] = 0x03; Memory.FillRAM [0x2228] = 0xff; SA1.op1 = 0; SA1.op2 = 0; SA1.arithmetic_op = 0; SA1.sum = 0; SA1.overflow = false; SA1.S9xOpcodes = NULL; } void S9xSA1Reset() { SA1.Registers.PB = 0; SA1.Registers.PC = Memory.FillRAM [0x2203] | (Memory.FillRAM [0x2204] << 8); SA1.Registers.D.W = 0; SA1.Registers.DB = 0; SA1.Registers.SH = 1; SA1.Registers.SL = 0xFF; SA1.Registers.XH = 0; SA1.Registers.YH = 0; SA1.Registers.P.W = 0; SA1.ShiftedPB = 0; SA1.ShiftedDB = 0; SA1SetFlags(MemoryFlag | IndexFlag | IRQ | Emulation); SA1ClearFlags(Decimal); SA1.WaitingForInterrupt = false; SA1.PC = NULL; SA1.PCBase = NULL; S9xSA1SetPCBase(SA1.Registers.PC); SA1.S9xOpcodes = S9xSA1OpcodesM1X1; S9xSA1UnpackStatus(); S9xSA1FixCycles(); SA1.Executing = true; SA1.BWRAM = Memory.SRAM; Memory.FillRAM [0x2225] = 0; } void S9xSA1SetBWRAMMemMap(uint8_t val) { int32_t c; if (val & 0x80) { for (c = 0; c < 0x400; c += 16) { SA1.Map [c + 6] = SA1.Map [c + 0x806] = (uint8_t*) MAP_BWRAM_BITMAP2; SA1.Map [c + 7] = SA1.Map [c + 0x807] = (uint8_t*) MAP_BWRAM_BITMAP2; SA1.WriteMap [c + 6] = SA1.WriteMap [c + 0x806] = (uint8_t*) MAP_BWRAM_BITMAP2; SA1.WriteMap [c + 7] = SA1.WriteMap [c + 0x807] = (uint8_t*) MAP_BWRAM_BITMAP2; } SA1.BWRAM = Memory.SRAM + (val & 0x7f) * 0x2000 / 4; } else { for (c = 0; c < 0x400; c += 16) { SA1.Map [c + 6] = SA1.Map [c + 0x806] = (uint8_t*) MAP_BWRAM; SA1.Map [c + 7] = SA1.Map [c + 0x807] = (uint8_t*) MAP_BWRAM; SA1.WriteMap [c + 6] = SA1.WriteMap [c + 0x806] = (uint8_t*) MAP_BWRAM; SA1.WriteMap [c + 7] = SA1.WriteMap [c + 0x807] = (uint8_t*) MAP_BWRAM; } SA1.BWRAM = Memory.SRAM + (val & 7) * 0x2000; } } void S9xFixSA1AfterSnapshotLoad() { SA1.ShiftedPB = (uint32_t) SA1.Registers.PB << 16; SA1.ShiftedDB = (uint32_t) SA1.Registers.DB << 16; S9xSA1SetPCBase(SA1.ShiftedPB + SA1.Registers.PC); S9xSA1UnpackStatus(); S9xSA1FixCycles(); SA1.VirtualBitmapFormat = (Memory.FillRAM [0x223f] & 0x80) ? 2 : 4; Memory.BWRAM = Memory.SRAM + (Memory.FillRAM [0x2224] & 7) * 0x2000; S9xSA1SetBWRAMMemMap(Memory.FillRAM [0x2225]); SA1.Waiting = (Memory.FillRAM [0x2200] & 0x60) != 0; SA1.Executing = !SA1.Waiting; } uint8_t S9xSA1GetByte(uint32_t address) { uint8_t* GetAddress = SA1.Map [(address >> MEMMAP_SHIFT) & MEMMAP_MASK]; if (GetAddress >= (uint8_t*) MAP_LAST) return GetAddress[address & 0xffff]; switch ((intptr_t) GetAddress) { case MAP_PPU: return S9xGetSA1(address & 0xffff); case MAP_LOROM_SRAM: case MAP_SA1RAM: return Memory.SRAM[address & 0xffff]; case MAP_BWRAM: return SA1.BWRAM[(address & 0x7fff) - 0x6000]; case MAP_BWRAM_BITMAP: address -= 0x600000; if (SA1.VirtualBitmapFormat == 2) return (Memory.SRAM [(address >> 2) & 0xffff] >> ((address & 3) << 1)) & 3; else return (Memory.SRAM [(address >> 1) & 0xffff] >> ((address & 1) << 2)) & 15; case MAP_BWRAM_BITMAP2: address = (address & 0xffff) - 0x6000; if (SA1.VirtualBitmapFormat == 2) return (SA1.BWRAM [(address >> 2) & 0xffff] >> ((address & 3) << 1)) & 3; else return (SA1.BWRAM [(address >> 1) & 0xffff] >> ((address & 1) << 2)) & 15; default: return OpenBus; } } uint16_t S9xSA1GetWord(uint32_t address) { OpenBus = S9xSA1GetByte(address); return OpenBus | (S9xSA1GetByte(address + 1) << 8); } void S9xSA1SetByte(uint8_t byte, uint32_t address) { uint8_t* SetAddress = SA1.WriteMap [(address >> MEMMAP_SHIFT) & MEMMAP_MASK]; if (SetAddress >= (uint8_t*) MAP_LAST) { SetAddress[address & 0xffff] = byte; return; } switch ((intptr_t) SetAddress) { case MAP_PPU: S9xSetSA1(byte, address & 0xffff); return; case MAP_SA1RAM: case MAP_LOROM_SRAM: Memory.SRAM[address & 0xffff] = byte; return; case MAP_BWRAM: SA1.BWRAM[(address & 0x7fff) - 0x6000] = byte; return; case MAP_BWRAM_BITMAP: address -= 0x600000; if (SA1.VirtualBitmapFormat == 2) { uint8_t* ptr = &Memory.SRAM [(address >> 2) & 0xffff]; *ptr &= ~(3 << ((address & 3) << 1)); *ptr |= (byte & 3) << ((address & 3) << 1); } else { uint8_t* ptr = &Memory.SRAM [(address >> 1) & 0xffff]; *ptr &= ~(15 << ((address & 1) << 2)); *ptr |= (byte & 15) << ((address & 1) << 2); } break; case MAP_BWRAM_BITMAP2: address = (address & 0xffff) - 0x6000; if (SA1.VirtualBitmapFormat == 2) { uint8_t* ptr = &SA1.BWRAM[(address >> 2) & 0xffff]; *ptr &= ~(3 << ((address & 3) << 1)); *ptr |= (byte & 3) << ((address & 3) << 1); } else { uint8_t* ptr = &SA1.BWRAM [(address >> 1) & 0xffff]; *ptr &= ~(15 << ((address & 1) << 2)); *ptr |= (byte & 15) << ((address & 1) << 2); } } } void S9xSA1SetWord(uint16_t Word, uint32_t address) { S9xSA1SetByte((uint8_t) Word, address); S9xSA1SetByte((uint8_t)(Word >> 8), address + 1); } void S9xSA1SetPCBase(uint32_t address) { uint8_t* GetAddress = SA1.Map [(address >> MEMMAP_SHIFT) & MEMMAP_MASK]; if (GetAddress >= (uint8_t*) MAP_LAST) { SA1.PCBase = GetAddress; SA1.PC = GetAddress + (address & 0xffff); return; } switch ((intptr_t) GetAddress) { case MAP_PPU: SA1.PCBase = Memory.FillRAM - 0x2000; break; case MAP_CPU: SA1.PCBase = Memory.FillRAM - 0x4000; break; case MAP_DSP: SA1.PCBase = Memory.FillRAM - 0x6000; break; case MAP_SA1RAM: case MAP_LOROM_SRAM: SA1.PCBase = Memory.SRAM; break; case MAP_BWRAM: SA1.PCBase = SA1.BWRAM - 0x6000; break; case MAP_HIROM_SRAM: SA1.PCBase = Memory.SRAM - 0x6000; break; default: SA1.PCBase = Memory.RAM; break; } SA1.PC = SA1.PCBase + (address & 0xffff); } void S9xSetSA1MemMap(uint32_t which1, uint8_t map) { int32_t c; int32_t i; int32_t start = which1 * 0x100 + 0xc00; int32_t start2 = which1 * 0x200; uint8_t* block; if (which1 >= 2) start2 += 0x400; for (c = 0; c < 0x100; c += 16) { block = &Memory.ROM [(map & 7) * 0x100000 + (c << 12)]; for (i = c; i < c + 16; i++) Memory.Map [start + i] = SA1.Map [start + i] = block; } for (c = 0; c < 0x200; c += 16) { /* Code from Snes9x 1.54.1 - This allows Super Mario World VLDC 9 hack to load. Conversion to int is needed here - map is promoted but which1 is not */ int32_t offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000; block = &Memory.ROM [offset]; for (i = c + 8; i < c + 16; i++) Memory.Map [start2 + i] = SA1.Map [start2 + i] = block; } } uint8_t S9xGetSA1(uint32_t address) { switch (address) { case 0x2300: return (Memory.FillRAM[0x2209] & 0x5f) | (Memory.FillRAM[0x2300] & 0xa0); case 0x2301: return (Memory.FillRAM[0x2200] & 0x0f) | (Memory.FillRAM[0x2301] & 0xf0); case 0x2306: return (uint8_t) SA1.sum; case 0x2307: return (uint8_t) (SA1.sum >> 8); case 0x2308: return (uint8_t) (SA1.sum >> 16); case 0x2309: return (uint8_t) (SA1.sum >> 24); case 0x230a: return (uint8_t) (SA1.sum >> 32); case 0x230b: return SA1.overflow ? 0x80 : 0; case 0x230c: return Memory.FillRAM[0x230c]; case 0x230d: { uint8_t byte = Memory.FillRAM[0x230d]; if (Memory.FillRAM[0x2258] & 0x80) S9xSA1ReadVariableLengthData(true, false); return byte; } case 0x230e: /* version code register */ return 0x01; default: break; } return Memory.FillRAM[address]; } void S9xSetSA1(uint8_t byte, uint32_t address) { if (address < 0x2200 || address > 0x22ff) return; switch (address) { case 0x2200: SA1.Waiting = (byte & 0x60) != 0; if (!(byte & 0x80) && (Memory.FillRAM[0x2200] & 0x20)) S9xSA1Reset(); if (byte & 0x80) { Memory.FillRAM[0x2301] |= 0x80; if (Memory.FillRAM[0x220a] & 0x80) { Memory.FillRAM[0x220b] &= ~0x80; SA1.Flags |= IRQ_PENDING_FLAG; SA1.IRQActive |= SNES_IRQ_SOURCE; SA1.Executing = !SA1.Waiting && SA1.S9xOpcodes; } } if (byte & 0x10) { Memory.FillRAM[0x2301] |= 0x10; if (Memory.FillRAM[0x220a] & 0x10) Memory.FillRAM[0x220b] &= ~0x10; } break; case 0x2201: if (((byte ^ Memory.FillRAM[0x2201]) & 0x80) && (Memory.FillRAM[0x2300] & byte & 0x80)) { Memory.FillRAM[0x2202] &= ~0x80; S9xSetIRQ(SA1_IRQ_SOURCE); } if (((byte ^ Memory.FillRAM[0x2201]) & 0x20) && (Memory.FillRAM[0x2300] & byte & 0x20)) { Memory.FillRAM[0x2202] &= ~0x20; S9xSetIRQ(SA1_DMA_IRQ_SOURCE); } break; case 0x2202: if (byte & 0x80) { Memory.FillRAM [0x2300] &= ~0x80; S9xClearIRQ(SA1_IRQ_SOURCE); } if (byte & 0x20) { Memory.FillRAM [0x2300] &= ~0x20; S9xClearIRQ(SA1_DMA_IRQ_SOURCE); } break; case 0x2209: if (byte & 0x80) { Memory.FillRAM[0x2300] |= 0x80; if (Memory.FillRAM[0x2201] & 0x80) { Memory.FillRAM[0x2202] &= ~0x80; S9xSetIRQ(SA1_IRQ_SOURCE); } } break; case 0x220a: if (((byte ^ Memory.FillRAM[0x220a]) & 0x80) && (Memory.FillRAM[0x2301] & byte & 0x80)) { Memory.FillRAM[0x220b] &= ~0x80; SA1.Flags |= IRQ_PENDING_FLAG; SA1.IRQActive |= SNES_IRQ_SOURCE; } if (((byte ^ Memory.FillRAM[0x220a]) & 0x40) && (Memory.FillRAM[0x2301] & byte & 0x40)) { Memory.FillRAM[0x220b] &= ~0x40; SA1.Flags |= IRQ_PENDING_FLAG; SA1.IRQActive |= TIMER_IRQ_SOURCE; } if (((byte ^ Memory.FillRAM[0x220a]) & 0x20) && (Memory.FillRAM[0x2301] & byte & 0x20)) { Memory.FillRAM[0x220b] &= ~0x20; SA1.Flags |= IRQ_PENDING_FLAG; SA1.IRQActive |= DMA_IRQ_SOURCE; } if (((byte ^ Memory.FillRAM[0x220a]) & 0x10) && (Memory.FillRAM[0x2301] & byte & 0x10)) Memory.FillRAM[0x220b] &= ~0x10; break; case 0x220b: if (byte & 0x80) { SA1.IRQActive &= ~SNES_IRQ_SOURCE; Memory.FillRAM [0x2301] &= ~0x80; } if (byte & 0x40) { SA1.IRQActive &= ~TIMER_IRQ_SOURCE; Memory.FillRAM [0x2301] &= ~0x40; } if (byte & 0x20) { SA1.IRQActive &= ~DMA_IRQ_SOURCE; Memory.FillRAM [0x2301] &= ~0x20; } if (byte & 0x10) Memory.FillRAM [0x2301] &= ~0x10; if (!SA1.IRQActive) SA1.Flags &= ~IRQ_PENDING_FLAG; break; case 0x2220: case 0x2221: case 0x2222: case 0x2223: S9xSetSA1MemMap(address - 0x2220, byte); break; case 0x2224: Memory.BWRAM = Memory.SRAM + (byte & 7) * 0x2000; break; case 0x2225: if (byte != Memory.FillRAM [address]) S9xSA1SetBWRAMMemMap(byte); break; case 0x2231: if (byte & 0x80) SA1.in_char_dma = 0; break; case 0x2236: /* DMA destination start address (LH) */ Memory.FillRAM[address] = byte; if ((Memory.FillRAM[0x2230] & 0xa4) == 0x80) /* Normal DMA to I-RAM */ S9xSA1DMA(); /* Normal DMA to I-RAM */ else if ((Memory.FillRAM[0x2230] & 0xb0) == 0xb0) { SA1.in_char_dma = 1; Memory.FillRAM[0x2300] |= 0x20; if (Memory.FillRAM[0x2201] & 0x20) { Memory.FillRAM[0x2202] &= ~0x20; S9xSetIRQ(SA1_DMA_IRQ_SOURCE); } } break; case 0x2237: Memory.FillRAM [address] = byte; if ((Memory.FillRAM [0x2230] & 0xa4) == 0x84) S9xSA1DMA(); /* Normal DMA to BW-RAM */ break; case 0x223f: SA1.VirtualBitmapFormat = (byte & 0x80) ? 2 : 4; break; case 0x224f: Memory.FillRAM [address] = byte; if ((Memory.FillRAM [0x2230] & 0xb0) == 0xa0) { /* Char conversion 2 DMA enabled */ /* memmove converted: Same malloc but constant non-overlapping addresses [Neb] */ memcpy(&Memory.ROM [MAX_ROM_SIZE - 0x10000] + (SA1.in_char_dma << 4), &Memory.FillRAM [0x2240], 16); SA1.in_char_dma = (SA1.in_char_dma + 1) & 7; if ((SA1.in_char_dma & 3) == 0) S9xSA1CharConv2(); } break; case 0x2250: if (byte & 2) SA1.sum = 0; SA1.arithmetic_op = byte & 3; break; case 0x2251: SA1.op1 = (SA1.op1 & 0xff00) | byte; break; case 0x2252: SA1.op1 = (SA1.op1 & 0x00ff) | (byte << 8); break; case 0x2253: SA1.op2 = (SA1.op2 & 0xff00) | byte; break; case 0x2254: SA1.op2 = (SA1.op2 & 0x00ff) | (byte << 8); switch (SA1.arithmetic_op) { case 0: /* multiply */ SA1.sum = (int16_t) SA1.op1 * (int16_t) SA1.op2; SA1.op2 = 0; break; case 1: /* divide */ if (SA1.op2 == 0) SA1.sum = 0; else { int16_t quotient = (int16_t) SA1.op1 / (uint16_t) SA1.op2; uint16_t remainder = (int16_t) SA1.op1 % (uint16_t) SA1.op2; SA1.sum = (remainder << 16) | quotient; } SA1.op1 = 0; SA1.op2 = 0; break; default: /* cumulative sum */ SA1.sum += (int16_t) SA1.op1 * (int16_t) SA1.op2; SA1.overflow = (SA1.sum >= (((uint64_t) 1) << 40)); SA1.sum &= (((uint64_t) 1) << 40) - 1; SA1.op2 = 0; break; } break; case 0x2258: /* Variable bit-field length/auto inc/start. */ Memory.FillRAM[0x2258] = byte; S9xSA1ReadVariableLengthData(true, false); return; case 0x2259: case 0x225a: case 0x225b: /* Variable bit-field start address */ Memory.FillRAM[address] = byte; SA1.variable_bit_pos = 0; S9xSA1ReadVariableLengthData(false, true); return; default: break; } Memory.FillRAM[address] = byte; } static void S9xSA1CharConv2(void) { uint32_t dest = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8); uint32_t offset = (SA1.in_char_dma & 7) ? 0 : 1; int32_t depthX8 = (Memory.FillRAM[0x2231] & 3) == 0 ? 64 : (Memory.FillRAM[0x2231] & 3) == 1 ? 32 : 16; uint8_t* p = &Memory.FillRAM[0x3000] + (dest & 0x7ff) + offset * depthX8; uint8_t* q = &Memory.ROM[MAX_ROM_SIZE - 0x10000] + offset * 64; int l, b; switch(depthX8) { case 16: for (l = 0; l < 8; l++, q += 8) { for (b = 0; b < 8; b++) { uint8_t r = q[b]; p[0] = (p[0] << 1) | ((r >> 0) & 1); p[1] = (p[1] << 1) | ((r >> 1) & 1); } p += 2; } break; case 32: for (l = 0; l < 8; l++, q += 8) { for (b = 0; b < 8; b++) { uint8_t r = q[b]; p[0] = (p[0] << 1) | ((r >> 0) & 1); p[1] = (p[1] << 1) | ((r >> 1) & 1); p[16] = (p[16] << 1) | ((r >> 2) & 1); p[17] = (p[17] << 1) | ((r >> 3) & 1); } p += 2; } break; case 64: for (l = 0; l < 8; l++, q += 8) { for (b = 0; b < 8; b++) { uint8_t r = q[b]; p[0] = (p[0] << 1) | ((r >> 0) & 1); p[1] = (p[1] << 1) | ((r >> 1) & 1); p[16] = (p[16] << 1) | ((r >> 2) & 1); p[17] = (p[17] << 1) | ((r >> 3) & 1); p[32] = (p[32] << 1) | ((r >> 4) & 1); p[33] = (p[33] << 1) | ((r >> 5) & 1); p[48] = (p[48] << 1) | ((r >> 6) & 1); p[49] = (p[49] << 1) | ((r >> 7) & 1); } p += 2; } break; } } static void S9xSA1DMA() { uint32_t src = Memory.FillRAM[0x2232] | (Memory.FillRAM[0x2233] << 8) | (Memory.FillRAM[0x2234] << 16); uint32_t dst = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8) | (Memory.FillRAM[0x2237] << 16); uint32_t len = Memory.FillRAM[0x2238] | (Memory.FillRAM[0x2239] << 8); uint8_t* s; uint8_t* d; switch (Memory.FillRAM [0x2230] & 3) { case 0: /* ROM */ s = SA1.Map [(src >> MEMMAP_SHIFT) & MEMMAP_MASK]; if (s >= (uint8_t*) MAP_LAST) s += (src & 0xffff); else s = Memory.ROM + (src & 0xffff); break; case 1: /* BW-RAM */ src &= Memory.SRAMMask; len &= Memory.SRAMMask; s = Memory.SRAM + src; break; default: src &= 0x3ff; len &= 0x3ff; s = &Memory.FillRAM [0x3000] + src; break; } if (Memory.FillRAM [0x2230] & 4) { dst &= Memory.SRAMMask; len &= Memory.SRAMMask; d = Memory.SRAM + dst; } else { dst &= 0x3ff; len &= 0x3ff; d = &Memory.FillRAM [0x3000] + dst; } /* memmove required: Can overlap arbitrarily [Neb] */ memmove(d, s, len); Memory.FillRAM [0x2301] |= 0x20; if (Memory.FillRAM [0x220a] & 0x20) { SA1.Flags |= IRQ_PENDING_FLAG; SA1.IRQActive |= DMA_IRQ_SOURCE; } } void S9xSA1ReadVariableLengthData(bool inc, bool no_shift) { uint8_t s; uint32_t data; uint32_t addr = Memory.FillRAM[0x2259] | (Memory.FillRAM[0x225a] << 8) | (Memory.FillRAM[0x225b] << 16); uint8_t shift = Memory.FillRAM [0x2258] & 15; if (no_shift) shift = 0; else if (shift == 0) shift = 16; s = shift + SA1.variable_bit_pos; if (s >= 16) { addr += (s >> 4) << 1; s &= 15; } data = S9xSA1GetWord(addr) | (S9xSA1GetWord(addr + 2) << 16); data >>= s; Memory.FillRAM [0x230c] = (uint8_t) data; Memory.FillRAM [0x230d] = (uint8_t)(data >> 8); if (inc) { SA1.variable_bit_pos = (SA1.variable_bit_pos + shift) & 15; Memory.FillRAM [0x2259] = (uint8_t) addr; Memory.FillRAM [0x225a] = (uint8_t)(addr >> 8); Memory.FillRAM [0x225b] = (uint8_t)(addr >> 16); } }