/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. *******************************************************************************/ #ifdef __DJGPP__ #include #undef TRUE #endif #include #include #include #include #include #define CLIP16(v) \ if ((v) < -32768) \ (v) = -32768; \ else \ if ((v) > 32767) \ (v) = 32767 #define CLIP16_latch(v,l) \ if ((v) < -32768) \ { (v) = -32768; (l)++; }\ else \ if ((v) > 32767) \ { (v) = 32767; (l)++; } #define CLIP24(v) \ if ((v) < -8388608) \ (v) = -8388608; \ else \ if ((v) > 8388607) \ (v) = 8388607 #define CLIP8(v) \ if ((v) < -128) \ (v) = -128; \ else \ if ((v) > 127) \ (v) = 127 #include "snes9x.h" #include "soundux.h" #include "apu.h" #include "memmap.h" #include "cpuexec.h" extern int32 Echo [24000]; extern int32 DummyEchoBuffer [SOUND_BUFFER_SIZE]; extern int32 MixBuffer [SOUND_BUFFER_SIZE]; extern int32 EchoBuffer [SOUND_BUFFER_SIZE]; extern int32 FilterTaps [8]; static uint8 FilterTapDefinitionBitfield; // In the above, bit I is set if FilterTaps[I] is non-zero. extern unsigned long Z; extern int32 Loop [16]; extern long FilterValues[4][2]; extern int32 NoiseFreq [32]; static int32 noise_gen; #undef ABS #define ABS(a) ((a) < 0 ? -(a) : (a)) #define FIXED_POINT 0x10000UL #define FIXED_POINT_REMAINDER 0xffffUL #define FIXED_POINT_SHIFT 16 #define VOL_DIV8 0x8000 #define VOL_DIV16 0x0080 #define ENVX_SHIFT 24 void DecodeBlockAsm(int8*, int16*, int32*, int32*); void DecodeBlockAsm2(int8*, int16*, int32*, int32*); // F is channel's current frequency and M is the 16-bit modulation waveform // from the previous channel multiplied by the current envelope volume level. #define PITCH_MOD(F,M) ((F) * ((((unsigned long) (M)) + 0x800000) >> 16) >> 7) //#define PITCH_MOD(F,M) ((F) * ((((M) & 0x7fffff) >> 14) + 1) >> 8) #define LAST_SAMPLE 0xffffff #define JUST_PLAYED_LAST_SAMPLE(c) ((c)->sample_pointer >= LAST_SAMPLE) void S9xSetEightBitConsoleSound(bool8 Enabled) { if (Settings.EightBitConsoleSound != Enabled) { Settings.EightBitConsoleSound = Enabled; int i; for (i = 0; i < 8; i++) SoundData.channels[i].needs_decode = TRUE; } } STATIC inline uint8* S9xGetSampleAddress(int sample_number) { uint32 addr = (((APU.DSP[APU_DIR] << 8) + (sample_number << 2)) & 0xffff); return (IAPU.RAM + addr); } void S9xAPUSetEndOfSample(int i, Channel* ch) { ch->state = SOUND_SILENT; ch->mode = MODE_NONE; APU.DSP [APU_ENDX] |= 1 << i; APU.DSP [APU_KON] &= ~(1 << i); APU.DSP [APU_KOFF] &= ~(1 << i); APU.KeyedChannels &= ~(1 << i); } #ifdef __DJGPP END_OF_FUNCTION(S9xAPUSetEndOfSample) #endif void S9xAPUSetEndX(int ch) { APU.DSP [APU_ENDX] |= 1 << ch; } #ifdef __DJGPP END_OF_FUNCTION(S9xAPUSetEndX) #endif void S9xSetEnvRate(Channel* ch, unsigned long rate, int direction, int target) { ch->envx_target = target; if (rate == ~0UL) { ch->direction = 0; rate = 0; } else ch->direction = direction; static int64 steps [] = { // 0, 64, 1238, 1238, 256, 1, 64, 109, 64, 1238 0, (int64) FIXED_POINT * 1000 * 64, (int64) FIXED_POINT * 1000 * 619, (int64) FIXED_POINT * 1000 * 619, (int64) FIXED_POINT * 1000 * 128, (int64) FIXED_POINT * 1000 * 1, (int64) FIXED_POINT * 1000 * 64, (int64) FIXED_POINT * 1000 * 55, (int64) FIXED_POINT * 1000 * 64, (int64) FIXED_POINT * 1000 * 619 }; if (rate == 0 || so.playback_rate == 0) ch->erate = 0; else { ch->erate = (unsigned long) (steps [ch->state] / (rate * so.playback_rate)); } } #ifdef __DJGPP END_OF_FUNCTION(S9xSetEnvRate); #endif void S9xSetEnvelopeRate(int channel, unsigned long rate, int direction, int target) { S9xSetEnvRate(&SoundData.channels [channel], rate, direction, target); } #ifdef __DJGPP END_OF_FUNCTION(S9xSetEnvelopeRate); #endif void S9xSetSoundVolume(int channel, short volume_left, short volume_right) { Channel* ch = &SoundData.channels[channel]; ch->volume_left = volume_left; ch->volume_right = volume_right; ch-> left_vol_level = (ch->envx * volume_left) / 128; ch->right_vol_level = (ch->envx * volume_right) / 128; } void S9xSetMasterVolume(short volume_left, short volume_right) { if (Settings.DisableMasterVolume || SNESGameFixes.EchoOnlyOutput) SoundData.master_volume [0] = SoundData.master_volume [1] = 127; else { SoundData.master_volume [0] = volume_left; SoundData.master_volume [1] = volume_right; } } void S9xSetEchoVolume(short volume_left, short volume_right) { SoundData.echo_volume [0] = volume_left; SoundData.echo_volume [1] = volume_right; } void S9xSetEchoEnable(uint8 byte) { SoundData.echo_channel_enable = byte; if (!SoundData.echo_write_enabled || Settings.DisableSoundEcho) byte = 0; if (byte && !SoundData.echo_enable) { memset(Echo, 0, sizeof(Echo)); memset(Loop, 0, sizeof(Loop)); } SoundData.echo_enable = byte; int i; for (i = 0; i < NUM_CHANNELS; i++) { if (byte & (1 << i)) SoundData.channels [i].echo_buf_ptr = EchoBuffer; else SoundData.channels [i].echo_buf_ptr = DummyEchoBuffer; } } void S9xSetEchoFeedback(int feedback) { CLIP8(feedback); SoundData.echo_feedback = feedback; } void S9xSetEchoDelay(int delay) { SoundData.echo_buffer_size = (512 * delay * so.playback_rate) / 32000; SoundData.echo_buffer_size <<= 1; if (SoundData.echo_buffer_size) SoundData.echo_ptr %= SoundData.echo_buffer_size; else SoundData.echo_ptr = 0; S9xSetEchoEnable(APU.DSP [APU_EON]); } void S9xSetEchoWriteEnable(uint8 byte) { SoundData.echo_write_enabled = byte; S9xSetEchoDelay(APU.DSP [APU_EDL] & 15); } void S9xSetFrequencyModulationEnable(uint8 byte) { SoundData.pitch_mod = byte & ~1; } void S9xSetSoundKeyOff(int channel) { Channel* ch = &SoundData.channels[channel]; if (ch->state != SOUND_SILENT) { ch->state = SOUND_RELEASE; ch->mode = MODE_RELEASE; S9xSetEnvRate(ch, 8, -1, 0); } } void S9xFixSoundAfterSnapshotLoad() { SoundData.echo_write_enabled = !(APU.DSP [APU_FLG] & 0x20); SoundData.echo_channel_enable = APU.DSP [APU_EON]; S9xSetEchoDelay(APU.DSP [APU_EDL] & 0xf); S9xSetEchoFeedback((signed char) APU.DSP [APU_EFB]); S9xSetFilterCoefficient(0, (signed char) APU.DSP [APU_C0]); S9xSetFilterCoefficient(1, (signed char) APU.DSP [APU_C1]); S9xSetFilterCoefficient(2, (signed char) APU.DSP [APU_C2]); S9xSetFilterCoefficient(3, (signed char) APU.DSP [APU_C3]); S9xSetFilterCoefficient(4, (signed char) APU.DSP [APU_C4]); S9xSetFilterCoefficient(5, (signed char) APU.DSP [APU_C5]); S9xSetFilterCoefficient(6, (signed char) APU.DSP [APU_C6]); S9xSetFilterCoefficient(7, (signed char) APU.DSP [APU_C7]); int i; for (i = 0; i < 8; i++) { SoundData.channels[i].needs_decode = TRUE; S9xSetSoundFrequency(i, SoundData.channels[i].hertz); SoundData.channels [i].envxx = SoundData.channels [i].envx << ENVX_SHIFT; SoundData.channels [i].next_sample = 0; SoundData.channels [i].interpolate = 0; SoundData.channels [i].previous [0] = (int32) SoundData.channels [i].previous16 [0]; SoundData.channels [i].previous [1] = (int32) SoundData.channels [i].previous16 [1]; } IAPU.Scanline = 0; } void S9xSetFilterCoefficient(int tap, int value) { FilterTaps [tap & 7] = value; if (value == 0 || (tap == 0 && value == 127)) FilterTapDefinitionBitfield &= ~(1 << (tap & 7)); else FilterTapDefinitionBitfield |= 1 << (tap & 7); } void S9xSetSoundADSR(int channel, int attack_rate, int decay_rate, int sustain_rate, int sustain_level, int release_rate) { Channel* ch = &SoundData.channels[channel]; ch->attack_rate = attack_rate; ch->decay_rate = decay_rate; ch->sustain_rate = sustain_rate; ch->release_rate = release_rate; ch->sustain_level = sustain_level + 1; switch (SoundData.channels[channel].state) { case SOUND_ATTACK: S9xSetEnvRate(ch, attack_rate, 1, 127); break; case SOUND_DECAY: S9xSetEnvRate(ch, decay_rate, -1, (MAX_ENVELOPE_HEIGHT * (sustain_level + 1)) >> 3); break; case SOUND_SUSTAIN: S9xSetEnvRate(ch, sustain_rate, -1, 0); break; } } void S9xSetEnvelopeHeight(int channel, int level) { Channel* ch = &SoundData.channels[channel]; ch->envx = level; ch->envxx = level << ENVX_SHIFT; ch->left_vol_level = (level * ch->volume_left) / 128; ch->right_vol_level = (level * ch->volume_right) / 128; if (ch->envx == 0 && ch->state != SOUND_SILENT && ch->state != SOUND_GAIN) S9xAPUSetEndOfSample(channel, ch); } int S9xGetEnvelopeHeight(int channel) { if ((Settings.SoundEnvelopeHeightReading || SNESGameFixes.SoundEnvelopeHeightReading2) && SoundData.channels[channel].state != SOUND_SILENT && SoundData.channels[channel].state != SOUND_GAIN) return (SoundData.channels[channel].envx); //siren fix from XPP if (SNESGameFixes.SoundEnvelopeHeightReading2 && SoundData.channels[channel].state != SOUND_SILENT) return (SoundData.channels[channel].envx); return (0); } #if 1 void S9xSetSoundSample(int channel, uint16 sample_number) { } #else void S9xSetSoundSample(int channel, uint16 sample_number) { register Channel* ch = &SoundData.channels[channel]; if (ch->state != SOUND_SILENT && sample_number != ch->sample_number) { int keep = ch->state; ch->state = SOUND_SILENT; ch->sample_number = sample_number; ch->loop = FALSE; ch->needs_decode = TRUE; ch->last_block = FALSE; ch->previous [0] = ch->previous[1] = 0; uint8* dir = S9xGetSampleAddress(sample_number); ch->block_pointer = READ_WORD(dir); ch->sample_pointer = 0; ch->state = keep; } } #endif void S9xSetSoundFrequency(int channel, int hertz) { if (so.playback_rate) { if (SoundData.channels[channel].type == SOUND_NOISE) hertz = NoiseFreq [APU.DSP [APU_FLG] & 0x1f]; SoundData.channels[channel].frequency = (int) (((int64) hertz * FIXED_POINT) / so.playback_rate); if (Settings.FixFrequency) { SoundData.channels[channel].frequency = (unsigned long)(SoundData.channels[channel].frequency * 49 / 50); } } } void S9xSetSoundHertz(int channel, int hertz) { SoundData.channels[channel].hertz = hertz; S9xSetSoundFrequency(channel, hertz); } void S9xSetSoundType(int channel, int type_of_sound) { SoundData.channels[channel].type = type_of_sound; } bool8 S9xSetSoundMute(bool8 mute) { bool8 old = so.mute_sound; so.mute_sound = mute; return (old); } void AltDecodeBlock(Channel* ch) { if (ch->block_pointer >= 0x10000 - 9) { ch->last_block = TRUE; ch->loop = FALSE; ch->block = ch->decoded; memset((void*) ch->decoded, 0, sizeof(int16) * 16); return; } signed char* compressed = (signed char*) &IAPU.RAM [ch->block_pointer]; unsigned char filter = *compressed; if ((ch->last_block = filter & 1)) ch->loop = (filter & 2) != 0; #if (defined (USE_X86_ASM) && (defined (__i386__) || defined (__i486__) ||\ defined (__i586__) || defined (__WIN32__) || defined (__DJGPP))) int16* raw = ch->block = ch->decoded; if (Settings.AltSampleDecode == 1) DecodeBlockAsm(compressed, raw, &ch->previous [0], &ch->previous [1]); else DecodeBlockAsm2(compressed, raw, &ch->previous [0], &ch->previous [1]); #else int32 out; unsigned char shift; signed char sample1, sample2; unsigned int i; compressed++; signed short* raw = ch->block = ch->decoded; int32 prev0 = ch->previous [0]; int32 prev1 = ch->previous [1]; shift = filter >> 4; switch ((filter >> 2) & 3) { case 0: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; sample2 >>= 4; sample1 >>= 4; *raw++ = ((int32) sample1 << shift); *raw++ = ((int32) sample2 << shift); } prev1 = *(raw - 2); prev0 = *(raw - 1); break; case 1: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; sample2 >>= 4; sample1 >>= 4; prev0 = (int16) prev0; *raw++ = prev1 = ((int32) sample1 << shift) + prev0 - (prev0 >> 4); prev1 = (int16) prev1; *raw++ = prev0 = ((int32) sample2 << shift) + prev1 - (prev1 >> 4); } break; case 2: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; sample2 >>= 4; sample1 >>= 4; out = (sample1 << shift) - prev1 + (prev1 >> 4); prev1 = (int16) prev0; prev0 &= ~3; *raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 5) - (prev0 >> 4); out = (sample2 << shift) - prev1 + (prev1 >> 4); prev1 = (int16) prev0; prev0 &= ~3; *raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 5) - (prev0 >> 4); } break; case 3: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; sample2 >>= 4; sample1 >>= 4; out = (sample1 << shift); out = out - prev1 + (prev1 >> 3) + (prev1 >> 4); prev1 = (int16) prev0; prev0 &= ~3; *raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 3) - (prev0 >> 4) - (prev1 >> 6); out = (sample2 << shift); out = out - prev1 + (prev1 >> 3) + (prev1 >> 4); prev1 = (int16) prev0; prev0 &= ~3; *raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 3) - (prev0 >> 4) - (prev1 >> 6); } break; } ch->previous [0] = prev0; ch->previous [1] = prev1; #endif ch->block_pointer += 9; } void AltDecodeBlock2(Channel* ch) { int32 out; unsigned char filter; unsigned char shift; signed char sample1, sample2; unsigned char i; if (ch->block_pointer > 0x10000 - 9) { ch->last_block = TRUE; ch->loop = FALSE; ch->block = ch->decoded; memset((void*) ch->decoded, 0, sizeof(int16) * 16); return; } signed char* compressed = (signed char*) &IAPU.RAM [ch->block_pointer]; filter = *compressed; if ((ch->last_block = filter & 1)) ch->loop = (filter & 2) != 0; compressed++; signed short* raw = ch->block = ch->decoded; shift = filter >> 4; int32 prev0 = ch->previous [0]; int32 prev1 = ch->previous [1]; if (shift > 12) shift -= 4; switch ((filter >> 2) & 3) { case 0: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; //Sample 2 = Bottom Nibble, Sign Extended. sample2 >>= 4; //Sample 1 = Top Nibble, shifted down and Sign Extended. sample1 >>= 4; out = (int32)(sample1 << shift); prev1 = prev0; prev0 = out; CLIP16(out); *raw++ = (int16)out; out = (int32)(sample2 << shift); prev1 = prev0; prev0 = out; CLIP16(out); *raw++ = (int16)out; } break; case 1: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; //Sample 2 = Bottom Nibble, Sign Extended. sample2 >>= 4; //Sample 1 = Top Nibble, shifted down and Sign Extended. sample1 >>= 4; out = (int32)(sample1 << shift); out += (int32)((double)prev0 * 15 / 16); prev1 = prev0; prev0 = out; CLIP16(out); *raw++ = (int16)out; out = (int32)(sample2 << shift); out += (int32)((double)prev0 * 15 / 16); prev1 = prev0; prev0 = out; CLIP16(out); *raw++ = (int16)out; } break; case 2: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; //Sample 2 = Bottom Nibble, Sign Extended. sample2 >>= 4; //Sample 1 = Top Nibble, shifted down and Sign Extended. sample1 >>= 4; out = ((sample1 << shift) * 256 + (prev0 & ~0x2) * 488 - prev1 * 240) >> 8; prev1 = prev0; prev0 = (int16)out; *raw++ = (int16)out; out = ((sample2 << shift) * 256 + (prev0 & ~0x2) * 488 - prev1 * 240) >> 8; prev1 = prev0; prev0 = (int16)out; *raw++ = (int16)out; } break; case 3: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; //Sample 2 = Bottom Nibble, Sign Extended. sample2 >>= 4; //Sample 1 = Top Nibble, shifted down and Sign Extended. sample1 >>= 4; out = (int32)(sample1 << shift); out += (int32)((double)prev0 * 115 / 64 - (double)prev1 * 13 / 16); prev1 = prev0; prev0 = out; CLIP16(out); *raw++ = (int16)out; out = (int32)(sample2 << shift); out += (int32)((double)prev0 * 115 / 64 - (double)prev1 * 13 / 16); prev1 = prev0; prev0 = out; CLIP16(out); *raw++ = (int16)out; } break; } ch->previous [0] = prev0; ch->previous [1] = prev1; ch->block_pointer += 9; } void DecodeBlock(Channel* ch) { int32 out; unsigned char filter; unsigned char shift; signed char sample1, sample2; unsigned char i; bool invalid_header; if (Settings.AltSampleDecode) { if (Settings.AltSampleDecode < 3) AltDecodeBlock(ch); else AltDecodeBlock2(ch); return; } if (ch->block_pointer > 0x10000 - 9) { ch->last_block = TRUE; ch->loop = FALSE; ch->block = ch->decoded; return; } if (Settings.EightBitConsoleSound) { signed char* compressed = (signed char*) &IAPU.RAM [ch->block_pointer]; filter = *compressed; if ((ch->last_block = filter & 1)) ch->loop = (filter & 2) != 0; int16 interim[16]; uint8 interim_byte = 0; compressed++; signed short* raw = ch->block = ch->decoded; // Seperate out the header parts used for decoding shift = filter >> 4; // Header validity check: if range(shift) is over 12, ignore // all bits of the data for that block except for the sign bit of each invalid_header = (shift >= 0xD); filter = filter & 0x0c; int32 prev0 = ch->previous [0]; int32 prev1 = ch->previous [1]; int16 amplitude = 0; for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; //Sample 2 = Bottom Nibble, Sign Extended. sample2 >>= 4; //Sample 1 = Top Nibble, shifted down and Sign Extended. sample1 >>= 4; if (invalid_header) { sample1 >>= 3; sample2 >>= 3; } int nybblesmp; for (nybblesmp = 0; nybblesmp < 2; nybblesmp++) { out = (((nybblesmp) ? sample2 : sample1) << shift); out >>= 1; switch (filter) { case 0x00: // Method0 - [Smp] break; case 0x04: // Method1 - [Delta]+[Smp-1](15/16) out += (prev0 >> 1) + ((-prev0) >> 5); break; case 0x08: // Method2 - [Delta]+[Smp-1](61/32)-[Smp-2](15/16) out += (prev0) + ((-(prev0 + (prev0 >> 1))) >> 5) - (prev1 >> 1) + (prev1 >> 5); break; default: // Method3 - [Delta]+[Smp-1](115/64)-[Smp-2](13/16) out += (prev0) + ((-(prev0 + (prev0 << 2) + (prev0 << 3))) >> 7) - (prev1 >> 1) + ((prev1 + (prev1 >> 1)) >> 4); break; } CLIP16(out); int16 result = (signed short)(out << 1); if (abs(result) > amplitude) amplitude = abs(result); interim[interim_byte++] = out; prev1 = (signed short)prev0; prev0 = (signed short)(out << 1); } } ch->previous [0] = prev0; ch->previous [1] = prev1; int32 total_deviation_from_previous = 0; for (i = 1; i < 16; i++) total_deviation_from_previous += abs(interim[i] - interim[i - 1]); if (total_deviation_from_previous >= (int32) amplitude * 4) { /* Looks like noise. Generate noise. */ for (i = 0; i < 16; i++) { int feedback = (noise_gen << 13) ^ (noise_gen << 14); noise_gen = (feedback & 0x4000) ^ (noise_gen >> 1); ch->decoded[i] = (noise_gen << 17) >> 17; } } else if (interim[0] < interim[1] && interim[1] < interim[2] && interim[2] < interim[3] && interim[4] > interim[5] && interim[5] > interim[6] && interim[6] > interim[7] && interim[7] > interim[8] && interim[8] > interim[9] && interim[9] > interim[10] && interim[10] > interim[11] && interim[12] < interim[13] && interim[13] < interim[14] && interim[14] < interim[15]) { /* Looks like a sine or triangle wave. Make it a * triangle wave with an amplitude equivalent to that * of the highest amplitude sample of the block. */ ch->decoded[0] = ch->decoded[8] = 0; ch->decoded[1] = ch->decoded[7] = amplitude / 4; ch->decoded[2] = ch->decoded[6] = amplitude / 2; ch->decoded[3] = ch->decoded[5] = amplitude * 3 / 4; ch->decoded[4] = amplitude; ch->decoded[9] = ch->decoded[15] = -(amplitude / 4); ch->decoded[10] = ch->decoded[14] = -(amplitude / 2); ch->decoded[11] = ch->decoded[13] = -(amplitude * 3 / 4); ch->decoded[12] = -amplitude; } else if (interim[0] > interim[1] && interim[1] > interim[2] && interim[2] > interim[3] && interim[4] < interim[5] && interim[5] < interim[6] && interim[6] < interim[7] && interim[7] < interim[8] && interim[8] < interim[9] && interim[9] < interim[10] && interim[10] < interim[11] && interim[12] > interim[13] && interim[13] > interim[14] && interim[14] > interim[15]) { /* Inverted triangle wave. */ ch->decoded[0] = ch->decoded[8] = 0; ch->decoded[1] = ch->decoded[7] = -(amplitude / 4); ch->decoded[2] = ch->decoded[6] = -(amplitude / 2); ch->decoded[3] = ch->decoded[5] = -(amplitude * 3 / 4); ch->decoded[4] = -amplitude; ch->decoded[9] = ch->decoded[15] = amplitude / 4; ch->decoded[10] = ch->decoded[14] = amplitude / 2; ch->decoded[11] = ch->decoded[13] = amplitude * 3 / 4; ch->decoded[12] = amplitude; } else if (interim[0] < interim[1] && interim[1] < interim[2] && interim[2] < interim[3] && interim[3] < interim[4] && interim[4] < interim[5] && interim[5] < interim[6] && interim[6] < interim[7] && interim[8] > interim[9] && interim[9] > interim[10] && interim[10] > interim[11] && interim[11] > interim[12] && interim[12] > interim[13] && interim[13] > interim[14] && interim[14] > interim[15]) { /* Looks like a V wave. Make it a half-triangle wave * with an amplitude equivalent to that * of the highest amplitude sample of the block. */ ch->decoded[0] = 0; ch->decoded[1] = ch->decoded[15] = amplitude / 8; ch->decoded[2] = ch->decoded[14] = amplitude / 4; ch->decoded[3] = ch->decoded[13] = amplitude * 3 / 8; ch->decoded[4] = ch->decoded[12] = amplitude / 2; ch->decoded[5] = ch->decoded[11] = amplitude * 5 / 8; ch->decoded[6] = ch->decoded[10] = amplitude * 3 / 4; ch->decoded[7] = ch->decoded[9] = amplitude * 7 / 8; ch->decoded[8] = amplitude; } else if (interim[0] > interim[1] && interim[1] > interim[2] && interim[2] > interim[3] && interim[3] > interim[4] && interim[4] > interim[5] && interim[5] > interim[6] && interim[6] > interim[7] && interim[8] < interim[9] && interim[9] < interim[10] && interim[10] < interim[11] && interim[11] < interim[12] && interim[12] < interim[13] && interim[13] < interim[14] && interim[14] < interim[15]) { /* Inverted V wave. */ ch->decoded[0] = 0; ch->decoded[1] = ch->decoded[15] = -(amplitude / 8); ch->decoded[2] = ch->decoded[14] = -(amplitude / 4); ch->decoded[3] = ch->decoded[13] = -(amplitude * 3 / 8); ch->decoded[4] = ch->decoded[12] = -(amplitude / 2); ch->decoded[5] = ch->decoded[11] = -(amplitude * 5 / 8); ch->decoded[6] = ch->decoded[10] = -(amplitude * 3 / 4); ch->decoded[7] = ch->decoded[9] = -(amplitude * 7 / 8); ch->decoded[8] = -amplitude; } else { // Make it a square wave with an amplitude equivalent to that // of the highest amplitude sample of the block. // But actually put half of the amplitude, because // square waves are just loud. for (i = 0; i < 8; i++) ch->decoded[i] = amplitude / 2; for (i = 8; i < 16; i++) ch->decoded[i] = -(amplitude / 2); } } else { signed char* compressed = (signed char*) &IAPU.RAM [ch->block_pointer]; filter = *compressed; if ((ch->last_block = filter & 1)) ch->loop = (filter & 2) != 0; compressed++; signed short* raw = ch->block = ch->decoded; // Seperate out the header parts used for decoding shift = filter >> 4; // Header validity check: if range(shift) is over 12, ignore // all bits of the data for that block except for the sign bit of each invalid_header = (shift >= 0xD); filter = filter & 0x0c; int32 prev0 = ch->previous [0]; int32 prev1 = ch->previous [1]; for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; //Sample 2 = Bottom Nibble, Sign Extended. sample2 >>= 4; //Sample 1 = Top Nibble, shifted down and Sign Extended. sample1 >>= 4; if (invalid_header) { sample1 >>= 3; sample2 >>= 3; } int nybblesmp; for (nybblesmp = 0; nybblesmp < 2; nybblesmp++) { out = (((nybblesmp) ? sample2 : sample1) << shift); out >>= 1; switch (filter) { case 0x00: // Method0 - [Smp] break; case 0x04: // Method1 - [Delta]+[Smp-1](15/16) out += (prev0 >> 1) + ((-prev0) >> 5); break; case 0x08: // Method2 - [Delta]+[Smp-1](61/32)-[Smp-2](15/16) out += (prev0) + ((-(prev0 + (prev0 >> 1))) >> 5) - (prev1 >> 1) + (prev1 >> 5); break; default: // Method3 - [Delta]+[Smp-1](115/64)-[Smp-2](13/16) out += (prev0) + ((-(prev0 + (prev0 << 2) + (prev0 << 3))) >> 7) - (prev1 >> 1) + ((prev1 + (prev1 >> 1)) >> 4); break; } CLIP16(out); *raw++ = (signed short)(out << 1); prev1 = (signed short)prev0; prev0 = (signed short)(out << 1); } } ch->previous [0] = prev0; ch->previous [1] = prev1; } ch->block_pointer += 9; } static inline void MixStereo(int sample_count) { static int32 wave[SOUND_BUFFER_SIZE]; int pitch_mod = SoundData.pitch_mod & ~APU.DSP[APU_NON]; uint32 J; for (J = 0; J < NUM_CHANNELS; J++) { Channel* ch = &SoundData.channels[J]; if (ch->state == SOUND_SILENT || !(so.sound_switch & (1 << J))) continue; int32 VL, VR; unsigned long freq0 = ch->frequency; // freq0 = (unsigned long) ((double) freq0 * 0.985);//uncommented by jonathan gevaryahu, as it is necessary for most cards in linux freq0 = freq0 * 985 / 1000; bool8 mod = pitch_mod & (1 << J); if (ch->needs_decode) { DecodeBlock(ch); ch->needs_decode = FALSE; ch->sample = ch->block[0]; ch->sample_pointer = freq0 >> FIXED_POINT_SHIFT; if (ch->sample_pointer == 0) ch->sample_pointer = 1; if (ch->sample_pointer > SOUND_DECODE_LENGTH) ch->sample_pointer = SOUND_DECODE_LENGTH - 1; ch->next_sample = ch->block[ch->sample_pointer]; ch->interpolate = 0; if (Settings.InterpolatedSound && freq0 < FIXED_POINT && !mod) ch->interpolate = ((ch->next_sample - ch->sample) * (long) freq0) / (long) FIXED_POINT; } VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; uint32 I; for (I = 0; I < (uint32) sample_count; I += 2) { unsigned long freq = freq0; if (mod) freq = PITCH_MOD(freq, wave [I / 2]); ch->env_error += ch->erate; if (ch->env_error >= FIXED_POINT) { uint32 step = ch->env_error >> FIXED_POINT_SHIFT; switch (ch->state) { case SOUND_ATTACK: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_DECAY; if (ch->sustain_level != 8) { S9xSetEnvRate(ch, ch->decay_rate, -1, (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3); break; } ch->state = SOUND_SUSTAIN; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0); } break; case SOUND_DECAY: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= ch->envx_target) { if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } ch->state = SOUND_SUSTAIN; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0); } break; case SOUND_SUSTAIN: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_RELEASE: while (ch->env_error >= FIXED_POINT) { ch->envxx -= (MAX_ENVELOPE_HEIGHT << ENVX_SHIFT) / 256; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_INCREASE_LINEAR: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_GAIN; ch->mode = MODE_GAIN; S9xSetEnvRate(ch, 0, -1, 0); } break; case SOUND_INCREASE_BENT_LINE: if (ch->envx >= (MAX_ENVELOPE_HEIGHT * 3) / 4) { while (ch->env_error >= FIXED_POINT) { ch->envxx += (MAX_ENVELOPE_HEIGHT << ENVX_SHIFT) / 256; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; } else { ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; } if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_GAIN; ch->mode = MODE_GAIN; S9xSetEnvRate(ch, 0, -1, 0); } break; case SOUND_DECREASE_LINEAR: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx -= step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_DECREASE_EXPONENTIAL: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_GAIN: S9xSetEnvRate(ch, 0, -1, 0); break; } ch-> left_vol_level = (ch->envx * ch->volume_left) / 128; ch->right_vol_level = (ch->envx * ch->volume_right) / 128; VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } ch->count += freq; if (ch->count >= FIXED_POINT) { VL = ch->count >> FIXED_POINT_SHIFT; ch->sample_pointer += VL; ch->count &= FIXED_POINT_REMAINDER; ch->sample = ch->next_sample; if (ch->sample_pointer >= SOUND_DECODE_LENGTH) { if (JUST_PLAYED_LAST_SAMPLE(ch)) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } do { ch->sample_pointer -= SOUND_DECODE_LENGTH; if (ch->last_block) { if (!ch->loop) { ch->sample_pointer = LAST_SAMPLE; ch->next_sample = ch->sample; break; } else { S9xAPUSetEndX(J); ch->last_block = FALSE; uint8* dir = S9xGetSampleAddress(ch->sample_number); ch->block_pointer = READ_WORD(dir + 2); } } DecodeBlock(ch); } while (ch->sample_pointer >= SOUND_DECODE_LENGTH); if (!JUST_PLAYED_LAST_SAMPLE(ch)) ch->next_sample = ch->block [ch->sample_pointer]; } else ch->next_sample = ch->block [ch->sample_pointer]; if (ch->type == SOUND_SAMPLE) { if (Settings.InterpolatedSound && freq < FIXED_POINT && !mod) { ch->interpolate = ((ch->next_sample - ch->sample) * (long) freq) / (long) FIXED_POINT; ch->sample = (int16)(ch->sample + (((ch->next_sample - ch->sample) * (long)(ch->count)) / (long) FIXED_POINT)); } else ch->interpolate = 0; } else { // Snes9x 1.53's SPC_DSP.cpp, by blargg int feedback = (noise_gen << 13) ^ (noise_gen << 14); noise_gen = (feedback & 0x4000) ^ (noise_gen >> 1); ch->sample = (noise_gen << 17) >> 17; ch->interpolate = 0; } VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } else { if (ch->interpolate) { int32 s = (int32) ch->sample + ch->interpolate; CLIP16(s); ch->sample = (int16) s; VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } } if (pitch_mod & (1 << (J + 1))) wave [I / 2] = ch->sample * ch->envx; MixBuffer [I ] += VL; MixBuffer [I + 1] += VR; ch->echo_buf_ptr [I ] += VL; ch->echo_buf_ptr [I + 1] += VR; } stereo_exit: ; } } #ifdef __DJGPP END_OF_FUNCTION(MixStereo); #endif #ifdef __sun extern uint8 int2ulaw(int); #endif // For backwards compatibility with older port specific code void S9xMixSamplesO(uint8* buffer, int sample_count, int byte_offset) { S9xMixSamples(buffer + byte_offset, sample_count); } #ifdef __DJGPP END_OF_FUNCTION(S9xMixSamplesO); #endif void S9xMixSamples(uint8* buffer, int sample_count) { int J; int I; if (!so.mute_sound) { if (SoundData.echo_enable) memset(EchoBuffer, 0, sample_count * sizeof(EchoBuffer [0])); memset(MixBuffer, 0, sample_count * sizeof(MixBuffer [0])); MixStereo(sample_count); } /* Mix and convert waveforms */ int byte_count = sample_count << 1; // 16-bit sound if (so.mute_sound) memset(buffer, 0, byte_count); else { if (SoundData.echo_enable && SoundData.echo_buffer_size) { // 16-bit stereo sound with echo enabled ... if (FilterTapDefinitionBitfield == 0) { // ... but no filter defined. for (J = 0; J < sample_count; J++) { int E = Echo [SoundData.echo_ptr]; Echo [SoundData.echo_ptr] = (E * SoundData.echo_feedback) / 128 + EchoBuffer [J]; if ((SoundData.echo_ptr += 1) >= SoundData.echo_buffer_size) SoundData.echo_ptr = 0; I = (MixBuffer [J] * SoundData.master_volume [J & 1] + E * SoundData.echo_volume [J & 1]) / VOL_DIV16; CLIP16(I); ((signed short*) buffer)[J] = I; } } else { // ... with filter defined. for (J = 0; J < sample_count; J++) { int E = Echo [SoundData.echo_ptr]; Loop [(Z - 0) & 15] = E; E = E * FilterTaps [0]; if (FilterTapDefinitionBitfield & 0x02) E += Loop [(Z - 2) & 15] * FilterTaps [1]; if (FilterTapDefinitionBitfield & 0x04) E += Loop [(Z - 4) & 15] * FilterTaps [2]; if (FilterTapDefinitionBitfield & 0x08) E += Loop [(Z - 6) & 15] * FilterTaps [3]; if (FilterTapDefinitionBitfield & 0x10) E += Loop [(Z - 8) & 15] * FilterTaps [4]; if (FilterTapDefinitionBitfield & 0x20) E += Loop [(Z - 10) & 15] * FilterTaps [5]; if (FilterTapDefinitionBitfield & 0x40) E += Loop [(Z - 12) & 15] * FilterTaps [6]; if (FilterTapDefinitionBitfield & 0x80) E += Loop [(Z - 14) & 15] * FilterTaps [7]; E /= 128; Z++; Echo [SoundData.echo_ptr] = (E * SoundData.echo_feedback) / 128 + EchoBuffer [J]; if ((SoundData.echo_ptr += 1) >= SoundData.echo_buffer_size) SoundData.echo_ptr = 0; I = (MixBuffer [J] * SoundData.master_volume [J & 1] + E * SoundData.echo_volume [J & 1]) / VOL_DIV16; CLIP16(I); ((signed short*) buffer)[J] = I; } } } else { // 16-bit mono or stereo sound, no echo for (J = 0; J < sample_count; J++) { I = (MixBuffer [J] * SoundData.master_volume [J & 1]) / VOL_DIV16; CLIP16(I); ((signed short*) buffer)[J] = I; } } } } #ifdef __DJGPP END_OF_FUNCTION(S9xMixSamples); #endif void S9xResetSound(bool8 full) { int i; for (i = 0; i < 8; i++) { SoundData.channels[i].state = SOUND_SILENT; SoundData.channels[i].mode = MODE_NONE; SoundData.channels[i].type = SOUND_SAMPLE; SoundData.channels[i].volume_left = 0; SoundData.channels[i].volume_right = 0; SoundData.channels[i].hertz = 0; SoundData.channels[i].count = 0; SoundData.channels[i].loop = FALSE; SoundData.channels[i].envx_target = 0; SoundData.channels[i].env_error = 0; SoundData.channels[i].erate = 0; SoundData.channels[i].envx = 0; SoundData.channels[i].envxx = 0; SoundData.channels[i].left_vol_level = 0; SoundData.channels[i].right_vol_level = 0; SoundData.channels[i].direction = 0; SoundData.channels[i].attack_rate = 0; SoundData.channels[i].decay_rate = 0; SoundData.channels[i].sustain_rate = 0; SoundData.channels[i].release_rate = 0; SoundData.channels[i].sustain_level = 0; SoundData.echo_ptr = 0; SoundData.echo_feedback = 0; SoundData.echo_buffer_size = 1; } FilterTaps [0] = 127; FilterTaps [1] = 0; FilterTaps [2] = 0; FilterTaps [3] = 0; FilterTaps [4] = 0; FilterTaps [5] = 0; FilterTaps [6] = 0; FilterTaps [7] = 0; FilterTapDefinitionBitfield = 0; so.mute_sound = TRUE; noise_gen = 1; so.sound_switch = 255; so.samples_mixed_so_far = 0; so.play_position = 0; so.err_counter = 0; if (full) { SoundData.echo_enable = 0; SoundData.echo_write_enabled = 0; SoundData.echo_channel_enable = 0; SoundData.pitch_mod = 0; SoundData.dummy[0] = 0; SoundData.dummy[1] = 0; SoundData.dummy[2] = 0; SoundData.master_volume[0] = 0; SoundData.master_volume[1] = 0; SoundData.echo_volume[0] = 0; SoundData.echo_volume[1] = 0; SoundData.noise_hertz = 0; } SoundData.master_volume [0] = SoundData.master_volume [1] = 127; if (so.playback_rate) so.err_rate = (uint32)(FIXED_POINT * SNES_SCANLINE_TIME / (1.0 / so.playback_rate)); else so.err_rate = 0; } void S9xSetPlaybackRate(uint32 playback_rate) { so.playback_rate = playback_rate; so.err_rate = (uint32)(SNES_SCANLINE_TIME * FIXED_POINT / (1.0 / (double) so.playback_rate)); S9xSetEchoDelay(APU.DSP [APU_EDL] & 0xf); int i; for (i = 0; i < 8; i++) S9xSetSoundFrequency(i, SoundData.channels [i].hertz); } bool8 S9xInitSound(int mode, bool8 stereo, int buffer_size) { so.sound_fd = -1; so.sound_switch = 255; so.playback_rate = 0; so.buffer_size = 0; so.encoded = FALSE; S9xResetSound(TRUE); if (!(mode & 7)) return (1); S9xSetSoundMute(TRUE); if (!S9xOpenSoundDevice(mode, stereo, buffer_size)) { S9xMessage(S9X_ERROR, S9X_SOUND_DEVICE_OPEN_FAILED, "Sound device open failed"); return (0); } return (1); } bool8 S9xSetSoundMode(int channel, int mode) { Channel* ch = &SoundData.channels[channel]; switch (mode) { case MODE_RELEASE: if (ch->mode != MODE_NONE) { ch->mode = MODE_RELEASE; return (TRUE); } break; case MODE_DECREASE_LINEAR: case MODE_DECREASE_EXPONENTIAL: case MODE_GAIN: if (ch->mode != MODE_RELEASE) { ch->mode = mode; if (ch->state != SOUND_SILENT) ch->state = mode; return (TRUE); } break; case MODE_INCREASE_LINEAR: case MODE_INCREASE_BENT_LINE: if (ch->mode != MODE_RELEASE) { ch->mode = mode; if (ch->state != SOUND_SILENT) ch->state = mode; return (TRUE); } break; case MODE_ADSR: if (ch->mode == MODE_NONE || ch->mode == MODE_ADSR) { ch->mode = mode; return (TRUE); } } return (FALSE); } void S9xSetSoundControl(int sound_switch) { so.sound_switch = sound_switch; } void S9xPlaySample(int channel) { Channel* ch = &SoundData.channels[channel]; ch->state = SOUND_SILENT; ch->mode = MODE_NONE; ch->envx = 0; ch->envxx = 0; S9xFixEnvelope(channel, APU.DSP [APU_GAIN + (channel << 4)], APU.DSP [APU_ADSR1 + (channel << 4)], APU.DSP [APU_ADSR2 + (channel << 4)]); ch->sample_number = APU.DSP [APU_SRCN + channel * 0x10]; if (APU.DSP [APU_NON] & (1 << channel)) ch->type = SOUND_NOISE; else ch->type = SOUND_SAMPLE; S9xSetSoundFrequency(channel, ch->hertz); ch->loop = FALSE; ch->needs_decode = TRUE; ch->last_block = FALSE; ch->previous [0] = ch->previous[1] = 0; uint8* dir = S9xGetSampleAddress(ch->sample_number); ch->block_pointer = READ_WORD(dir); ch->sample_pointer = 0; ch->env_error = 0; ch->next_sample = 0; ch->interpolate = 0; switch (ch->mode) { case MODE_ADSR: if (ch->attack_rate == 0) { if (ch->decay_rate == 0 || ch->sustain_level == 8) { ch->state = SOUND_SUSTAIN; ch->envx = (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0); } else { ch->state = SOUND_DECAY; ch->envx = MAX_ENVELOPE_HEIGHT; S9xSetEnvRate(ch, ch->decay_rate, -1, (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3); } ch-> left_vol_level = (ch->envx * ch->volume_left) / 128; ch->right_vol_level = (ch->envx * ch->volume_right) / 128; } else { ch->state = SOUND_ATTACK; ch->envx = 0; ch->left_vol_level = 0; ch->right_vol_level = 0; S9xSetEnvRate(ch, ch->attack_rate, 1, MAX_ENVELOPE_HEIGHT); } ch->envxx = ch->envx << ENVX_SHIFT; break; case MODE_GAIN: ch->state = SOUND_GAIN; break; case MODE_INCREASE_LINEAR: ch->state = SOUND_INCREASE_LINEAR; break; case MODE_INCREASE_BENT_LINE: ch->state = SOUND_INCREASE_BENT_LINE; break; case MODE_DECREASE_LINEAR: ch->state = SOUND_DECREASE_LINEAR; break; case MODE_DECREASE_EXPONENTIAL: ch->state = SOUND_DECREASE_EXPONENTIAL; break; default: break; } S9xFixEnvelope(channel, APU.DSP [APU_GAIN + (channel << 4)], APU.DSP [APU_ADSR1 + (channel << 4)], APU.DSP [APU_ADSR2 + (channel << 4)]); }