/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) (c) Copyright 2014 - 2016 Daniel De Matteis. (UNDER NO CIRCUMSTANCE WILL COMMERCIAL RIGHTS EVER BE APPROPRIATED TO ANY PARTY) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. *******************************************************************************/ #ifndef USE_BLARGG_APU #include #include #include #include #include #define CLIP16(v) \ if ((v) < -32768) \ (v) = -32768; \ else \ if ((v) > 32767) \ (v) = 32767 #define CLIP16_latch(v,l) \ if ((v) < -32768) \ { (v) = -32768; (l)++; }\ else \ if ((v) > 32767) \ { (v) = 32767; (l)++; } #define CLIP24(v) \ if ((v) < -8388608) \ (v) = -8388608; \ else \ if ((v) > 8388607) \ (v) = 8388607 #define CLIP8(v) \ if ((v) < -128) \ (v) = -128; \ else \ if ((v) > 127) \ (v) = 127 #include "snes9x.h" #include "soundux.h" #include "apu.h" #include "memmap.h" #include "cpuexec.h" extern int32_t Echo [24000]; extern int32_t DummyEchoBuffer [SOUND_BUFFER_SIZE]; extern int32_t MixBuffer [SOUND_BUFFER_SIZE]; extern int32_t EchoBuffer [SOUND_BUFFER_SIZE]; extern int32_t FilterTaps [8]; static uint8_t FilterTapDefinitionBitfield; // In the above, bit I is set if FilterTaps[I] is non-zero. extern uint32_t Z; extern int32_t Loop [16]; extern long FilterValues[4][2]; extern int32_t NoiseFreq [32]; static int32_t noise_gen; #undef ABS #define ABS(a) ((a) < 0 ? -(a) : (a)) #define FIXED_POINT 0x10000UL #define FIXED_POINT_REMAINDER 0xffffUL #define FIXED_POINT_SHIFT 16 #define VOL_DIV8 0x8000 #define VOL_DIV16 0x0080 #define ENVX_SHIFT 24 void DecodeBlockAsm(int8_t*, int16_t*, int32_t*, int32_t*); void DecodeBlockAsm2(int8_t*, int16_t*, int32_t*, int32_t*); // F is channel's current frequency and M is the 16-bit modulation waveform // from the previous channel multiplied by the current envelope volume level. #define PITCH_MOD(F,M) ((F) * ((((uint32_t) (M)) + 0x800000) >> 16) >> 7) //#define PITCH_MOD(F,M) ((F) * ((((M) & 0x7fffff) >> 14) + 1) >> 8) #define LAST_SAMPLE 0xffffff #define JUST_PLAYED_LAST_SAMPLE(c) ((c)->sample_pointer >= LAST_SAMPLE) void S9xSetEightBitConsoleSound(bool Enabled) { if (Settings.EightBitConsoleSound != Enabled) { Settings.EightBitConsoleSound = Enabled; int i; for (i = 0; i < 8; i++) SoundData.channels[i].needs_decode = true; } } static inline uint8_t* S9xGetSampleAddress(int sample_number) { uint32_t addr = (((APU.DSP[APU_DIR] << 8) + (sample_number << 2)) & 0xffff); return (IAPU.RAM + addr); } void S9xAPUSetEndOfSample(int i, Channel* ch) { ch->state = SOUND_SILENT; ch->mode = MODE_NONE; APU.DSP [APU_ENDX] |= 1 << i; APU.DSP [APU_KON] &= ~(1 << i); APU.DSP [APU_KOFF] &= ~(1 << i); APU.KeyedChannels &= ~(1 << i); } void S9xAPUSetEndX(int ch) { APU.DSP [APU_ENDX] |= 1 << ch; } void S9xSetEnvRate(Channel* ch, uint32_t rate, int direction, int target) { ch->envx_target = target; if (rate == ~0UL) { ch->direction = 0; rate = 0; } else ch->direction = direction; static int64_t steps [] = { // 0, 64, 1238, 1238, 256, 1, 64, 109, 64, 1238 0, (int64_t) FIXED_POINT * 1000 * 64, (int64_t) FIXED_POINT * 1000 * 619, (int64_t) FIXED_POINT * 1000 * 619, (int64_t) FIXED_POINT * 1000 * 128, (int64_t) FIXED_POINT * 1000 * 1, (int64_t) FIXED_POINT * 1000 * 64, (int64_t) FIXED_POINT * 1000 * 55, (int64_t) FIXED_POINT * 1000 * 64, (int64_t) FIXED_POINT * 1000 * 619 }; if (rate == 0 || so.playback_rate == 0) ch->erate = 0; else { ch->erate = (uint32_t) (steps [ch->state] / (rate * so.playback_rate)); } } void S9xSetEnvelopeRate(int channel, uint32_t rate, int direction, int target) { S9xSetEnvRate(&SoundData.channels [channel], rate, direction, target); } void S9xSetSoundVolume(int channel, int16_t volume_left, int16_t volume_right) { Channel* ch = &SoundData.channels[channel]; ch->volume_left = volume_left; ch->volume_right = volume_right; ch-> left_vol_level = (ch->envx * volume_left) / 128; ch->right_vol_level = (ch->envx * volume_right) / 128; } void S9xSetMasterVolume(int16_t volume_left, int16_t volume_right) { if (Settings.DisableMasterVolume || SNESGameFixes.EchoOnlyOutput) SoundData.master_volume [0] = SoundData.master_volume [1] = 127; else { SoundData.master_volume [0] = volume_left; SoundData.master_volume [1] = volume_right; } } void S9xSetEchoVolume(int16_t volume_left, int16_t volume_right) { SoundData.echo_volume [0] = volume_left; SoundData.echo_volume [1] = volume_right; } void S9xSetEchoEnable(uint8_t byte) { SoundData.echo_channel_enable = byte; if (!SoundData.echo_write_enabled || Settings.DisableSoundEcho) byte = 0; if (byte && !SoundData.echo_enable) { memset(Echo, 0, sizeof(Echo)); memset(Loop, 0, sizeof(Loop)); } SoundData.echo_enable = byte; int i; for (i = 0; i < NUM_CHANNELS; i++) { if (byte & (1 << i)) SoundData.channels [i].echo_buf_ptr = EchoBuffer; else SoundData.channels [i].echo_buf_ptr = DummyEchoBuffer; } } void S9xSetEchoFeedback(int feedback) { CLIP8(feedback); SoundData.echo_feedback = feedback; } void S9xSetEchoDelay(int delay) { SoundData.echo_buffer_size = (512 * delay * so.playback_rate) / 32000; SoundData.echo_buffer_size <<= 1; if (SoundData.echo_buffer_size) SoundData.echo_ptr %= SoundData.echo_buffer_size; else SoundData.echo_ptr = 0; S9xSetEchoEnable(APU.DSP [APU_EON]); } void S9xSetEchoWriteEnable(uint8_t byte) { SoundData.echo_write_enabled = byte; S9xSetEchoDelay(APU.DSP [APU_EDL] & 15); } void S9xSetFrequencyModulationEnable(uint8_t byte) { SoundData.pitch_mod = byte & ~1; } void S9xSetSoundKeyOff(int channel) { Channel* ch = &SoundData.channels[channel]; if (ch->state != SOUND_SILENT) { ch->state = SOUND_RELEASE; ch->mode = MODE_RELEASE; S9xSetEnvRate(ch, 8, -1, 0); } } void S9xFixSoundAfterSnapshotLoad() { SoundData.echo_write_enabled = !(APU.DSP [APU_FLG] & 0x20); SoundData.echo_channel_enable = APU.DSP [APU_EON]; S9xSetEchoDelay(APU.DSP [APU_EDL] & 0xf); S9xSetEchoFeedback((signed char) APU.DSP [APU_EFB]); S9xSetFilterCoefficient(0, (signed char) APU.DSP [APU_C0]); S9xSetFilterCoefficient(1, (signed char) APU.DSP [APU_C1]); S9xSetFilterCoefficient(2, (signed char) APU.DSP [APU_C2]); S9xSetFilterCoefficient(3, (signed char) APU.DSP [APU_C3]); S9xSetFilterCoefficient(4, (signed char) APU.DSP [APU_C4]); S9xSetFilterCoefficient(5, (signed char) APU.DSP [APU_C5]); S9xSetFilterCoefficient(6, (signed char) APU.DSP [APU_C6]); S9xSetFilterCoefficient(7, (signed char) APU.DSP [APU_C7]); int i; for (i = 0; i < 8; i++) { SoundData.channels[i].needs_decode = true; S9xSetSoundFrequency(i, SoundData.channels[i].hertz); SoundData.channels [i].envxx = SoundData.channels [i].envx << ENVX_SHIFT; SoundData.channels [i].next_sample = 0; SoundData.channels [i].interpolate = 0; SoundData.channels [i].previous [0] = (int32_t) SoundData.channels [i].previous16 [0]; SoundData.channels [i].previous [1] = (int32_t) SoundData.channels [i].previous16 [1]; } IAPU.Scanline = 0; } void S9xSetFilterCoefficient(int tap, int value) { FilterTaps [tap & 7] = value; if (value == 0 || (tap == 0 && value == 127)) FilterTapDefinitionBitfield &= ~(1 << (tap & 7)); else FilterTapDefinitionBitfield |= 1 << (tap & 7); } void S9xSetSoundADSR(int channel, int attack_rate, int decay_rate, int sustain_rate, int sustain_level, int release_rate) { Channel* ch = &SoundData.channels[channel]; ch->attack_rate = attack_rate; ch->decay_rate = decay_rate; ch->sustain_rate = sustain_rate; ch->release_rate = release_rate; ch->sustain_level = sustain_level + 1; switch (SoundData.channels[channel].state) { case SOUND_ATTACK: S9xSetEnvRate(ch, attack_rate, 1, 127); break; case SOUND_DECAY: S9xSetEnvRate(ch, decay_rate, -1, (MAX_ENVELOPE_HEIGHT * (sustain_level + 1)) >> 3); break; case SOUND_SUSTAIN: S9xSetEnvRate(ch, sustain_rate, -1, 0); break; } } void S9xSetEnvelopeHeight(int channel, int level) { Channel* ch = &SoundData.channels[channel]; ch->envx = level; ch->envxx = level << ENVX_SHIFT; ch->left_vol_level = (level * ch->volume_left) / 128; ch->right_vol_level = (level * ch->volume_right) / 128; if (ch->envx == 0 && ch->state != SOUND_SILENT && ch->state != SOUND_GAIN) S9xAPUSetEndOfSample(channel, ch); } int S9xGetEnvelopeHeight(int channel) { if ((Settings.SoundEnvelopeHeightReading || SNESGameFixes.SoundEnvelopeHeightReading2) && SoundData.channels[channel].state != SOUND_SILENT && SoundData.channels[channel].state != SOUND_GAIN) return (SoundData.channels[channel].envx); //siren fix from XPP if (SNESGameFixes.SoundEnvelopeHeightReading2 && SoundData.channels[channel].state != SOUND_SILENT) return (SoundData.channels[channel].envx); return (0); } #if 1 void S9xSetSoundSample(int channel, uint16_t sample_number) { } #else void S9xSetSoundSample(int channel, uint16_t sample_number) { register Channel* ch = &SoundData.channels[channel]; if (ch->state != SOUND_SILENT && sample_number != ch->sample_number) { int keep = ch->state; ch->state = SOUND_SILENT; ch->sample_number = sample_number; ch->loop = false; ch->needs_decode = true; ch->last_block = false; ch->previous [0] = ch->previous[1] = 0; uint8_t* dir = S9xGetSampleAddress(sample_number); ch->block_pointer = READ_WORD(dir); ch->sample_pointer = 0; ch->state = keep; } } #endif void S9xSetSoundFrequency(int channel, int hertz) { if (so.playback_rate) { if (SoundData.channels[channel].type == SOUND_NOISE) hertz = NoiseFreq [APU.DSP [APU_FLG] & 0x1f]; SoundData.channels[channel].frequency = (int) (((int64_t) hertz * FIXED_POINT) / so.playback_rate); } } void S9xSetSoundHertz(int channel, int hertz) { SoundData.channels[channel].hertz = hertz; S9xSetSoundFrequency(channel, hertz); } void S9xSetSoundType(int channel, int type_of_sound) { SoundData.channels[channel].type = type_of_sound; } void DecodeBlock(Channel* ch) { int32_t out; unsigned char filter; unsigned char shift; signed char sample1, sample2; unsigned char i; bool invalid_header; if (ch->block_pointer > 0x10000 - 9) { ch->last_block = true; ch->loop = false; ch->block = ch->decoded; return; } if (Settings.EightBitConsoleSound) { signed char* compressed = (signed char*) &IAPU.RAM [ch->block_pointer]; filter = *compressed; if ((ch->last_block = filter & 1)) ch->loop = (filter & 2) != 0; int16_t interim[16]; uint8_t interim_byte = 0; compressed++; int16_t* raw = ch->block = ch->decoded; // Seperate out the header parts used for decoding shift = filter >> 4; // Header validity check: if range(shift) is over 12, ignore // all bits of the data for that block except for the sign bit of each invalid_header = (shift >= 0xD); filter = filter & 0x0c; int32_t prev0 = ch->previous [0]; int32_t prev1 = ch->previous [1]; int16_t amplitude = 0; for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; //Sample 2 = Bottom Nibble, Sign Extended. sample2 >>= 4; //Sample 1 = Top Nibble, shifted down and Sign Extended. sample1 >>= 4; if (invalid_header) { sample1 >>= 3; sample2 >>= 3; } int nybblesmp; for (nybblesmp = 0; nybblesmp < 2; nybblesmp++) { out = (((nybblesmp) ? sample2 : sample1) << shift); out >>= 1; switch (filter) { case 0x00: // Method0 - [Smp] break; case 0x04: // Method1 - [Delta]+[Smp-1](15/16) out += (prev0 >> 1) + ((-prev0) >> 5); break; case 0x08: // Method2 - [Delta]+[Smp-1](61/32)-[Smp-2](15/16) out += (prev0) + ((-(prev0 + (prev0 >> 1))) >> 5) - (prev1 >> 1) + (prev1 >> 5); break; default: // Method3 - [Delta]+[Smp-1](115/64)-[Smp-2](13/16) out += (prev0) + ((-(prev0 + (prev0 << 2) + (prev0 << 3))) >> 7) - (prev1 >> 1) + ((prev1 + (prev1 >> 1)) >> 4); break; } CLIP16(out); int16_t result = (int16_t)(out << 1); if (abs(result) > amplitude) amplitude = abs(result); interim[interim_byte++] = out; prev1 = (int16_t)prev0; prev0 = (int16_t)(out << 1); } } ch->previous [0] = prev0; ch->previous [1] = prev1; int32_t total_deviation_from_previous = 0; for (i = 1; i < 16; i++) total_deviation_from_previous += abs(interim[i] - interim[i - 1]); if (total_deviation_from_previous >= (int32_t) amplitude * 4) { /* Looks like noise. Generate noise. */ for (i = 0; i < 16; i++) { int feedback = (noise_gen << 13) ^ (noise_gen << 14); noise_gen = (feedback & 0x4000) ^ (noise_gen >> 1); ch->decoded[i] = (noise_gen << 17) >> 17; } } else if (interim[0] < interim[1] && interim[1] < interim[2] && interim[2] < interim[3] && interim[4] > interim[5] && interim[5] > interim[6] && interim[6] > interim[7] && interim[7] > interim[8] && interim[8] > interim[9] && interim[9] > interim[10] && interim[10] > interim[11] && interim[12] < interim[13] && interim[13] < interim[14] && interim[14] < interim[15]) { /* Looks like a sine or triangle wave. Make it a * triangle wave with an amplitude equivalent to that * of the highest amplitude sample of the block. */ ch->decoded[0] = ch->decoded[8] = 0; ch->decoded[1] = ch->decoded[7] = amplitude / 4; ch->decoded[2] = ch->decoded[6] = amplitude / 2; ch->decoded[3] = ch->decoded[5] = amplitude * 3 / 4; ch->decoded[4] = amplitude; ch->decoded[9] = ch->decoded[15] = -(amplitude / 4); ch->decoded[10] = ch->decoded[14] = -(amplitude / 2); ch->decoded[11] = ch->decoded[13] = -(amplitude * 3 / 4); ch->decoded[12] = -amplitude; } else if (interim[0] > interim[1] && interim[1] > interim[2] && interim[2] > interim[3] && interim[4] < interim[5] && interim[5] < interim[6] && interim[6] < interim[7] && interim[7] < interim[8] && interim[8] < interim[9] && interim[9] < interim[10] && interim[10] < interim[11] && interim[12] > interim[13] && interim[13] > interim[14] && interim[14] > interim[15]) { /* Inverted triangle wave. */ ch->decoded[0] = ch->decoded[8] = 0; ch->decoded[1] = ch->decoded[7] = -(amplitude / 4); ch->decoded[2] = ch->decoded[6] = -(amplitude / 2); ch->decoded[3] = ch->decoded[5] = -(amplitude * 3 / 4); ch->decoded[4] = -amplitude; ch->decoded[9] = ch->decoded[15] = amplitude / 4; ch->decoded[10] = ch->decoded[14] = amplitude / 2; ch->decoded[11] = ch->decoded[13] = amplitude * 3 / 4; ch->decoded[12] = amplitude; } else if (interim[0] < interim[1] && interim[1] < interim[2] && interim[2] < interim[3] && interim[3] < interim[4] && interim[4] < interim[5] && interim[5] < interim[6] && interim[6] < interim[7] && interim[8] > interim[9] && interim[9] > interim[10] && interim[10] > interim[11] && interim[11] > interim[12] && interim[12] > interim[13] && interim[13] > interim[14] && interim[14] > interim[15]) { /* Looks like a V wave. Make it a half-triangle wave * with an amplitude equivalent to that * of the highest amplitude sample of the block. */ ch->decoded[0] = 0; ch->decoded[1] = ch->decoded[15] = amplitude / 8; ch->decoded[2] = ch->decoded[14] = amplitude / 4; ch->decoded[3] = ch->decoded[13] = amplitude * 3 / 8; ch->decoded[4] = ch->decoded[12] = amplitude / 2; ch->decoded[5] = ch->decoded[11] = amplitude * 5 / 8; ch->decoded[6] = ch->decoded[10] = amplitude * 3 / 4; ch->decoded[7] = ch->decoded[9] = amplitude * 7 / 8; ch->decoded[8] = amplitude; } else if (interim[0] > interim[1] && interim[1] > interim[2] && interim[2] > interim[3] && interim[3] > interim[4] && interim[4] > interim[5] && interim[5] > interim[6] && interim[6] > interim[7] && interim[8] < interim[9] && interim[9] < interim[10] && interim[10] < interim[11] && interim[11] < interim[12] && interim[12] < interim[13] && interim[13] < interim[14] && interim[14] < interim[15]) { /* Inverted V wave. */ ch->decoded[0] = 0; ch->decoded[1] = ch->decoded[15] = -(amplitude / 8); ch->decoded[2] = ch->decoded[14] = -(amplitude / 4); ch->decoded[3] = ch->decoded[13] = -(amplitude * 3 / 8); ch->decoded[4] = ch->decoded[12] = -(amplitude / 2); ch->decoded[5] = ch->decoded[11] = -(amplitude * 5 / 8); ch->decoded[6] = ch->decoded[10] = -(amplitude * 3 / 4); ch->decoded[7] = ch->decoded[9] = -(amplitude * 7 / 8); ch->decoded[8] = -amplitude; } else { // Make it a square wave with an amplitude equivalent to that // of the highest amplitude sample of the block. // But actually put half of the amplitude, because // square waves are just loud. for (i = 0; i < 8; i++) ch->decoded[i] = amplitude / 2; for (i = 8; i < 16; i++) ch->decoded[i] = -(amplitude / 2); } } else { signed char* compressed = (signed char*) &IAPU.RAM [ch->block_pointer]; filter = *compressed; if ((ch->last_block = filter & 1)) ch->loop = (filter & 2) != 0; compressed++; int16_t* raw = ch->block = ch->decoded; // Seperate out the header parts used for decoding shift = filter >> 4; // Header validity check: if range(shift) is over 12, ignore // all bits of the data for that block except for the sign bit of each invalid_header = (shift >= 0xD); filter = filter & 0x0c; int32_t prev0 = ch->previous [0]; int32_t prev1 = ch->previous [1]; for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; //Sample 2 = Bottom Nibble, Sign Extended. sample2 >>= 4; //Sample 1 = Top Nibble, shifted down and Sign Extended. sample1 >>= 4; if (invalid_header) { sample1 >>= 3; sample2 >>= 3; } int nybblesmp; for (nybblesmp = 0; nybblesmp < 2; nybblesmp++) { out = (((nybblesmp) ? sample2 : sample1) << shift); out >>= 1; switch (filter) { case 0x00: // Method0 - [Smp] break; case 0x04: // Method1 - [Delta]+[Smp-1](15/16) out += (prev0 >> 1) + ((-prev0) >> 5); break; case 0x08: // Method2 - [Delta]+[Smp-1](61/32)-[Smp-2](15/16) out += (prev0) + ((-(prev0 + (prev0 >> 1))) >> 5) - (prev1 >> 1) + (prev1 >> 5); break; default: // Method3 - [Delta]+[Smp-1](115/64)-[Smp-2](13/16) out += (prev0) + ((-(prev0 + (prev0 << 2) + (prev0 << 3))) >> 7) - (prev1 >> 1) + ((prev1 + (prev1 >> 1)) >> 4); break; } CLIP16(out); *raw++ = (int16_t)(out << 1); prev1 = (int16_t)prev0; prev0 = (int16_t)(out << 1); } } ch->previous [0] = prev0; ch->previous [1] = prev1; } ch->block_pointer += 9; } static inline void MixStereo(int sample_count) { static int32_t wave[SOUND_BUFFER_SIZE]; int pitch_mod = SoundData.pitch_mod & ~APU.DSP[APU_NON]; uint32_t J; for (J = 0; J < NUM_CHANNELS; J++) { Channel* ch = &SoundData.channels[J]; if (ch->state == SOUND_SILENT || !(so.sound_switch & (1 << J))) continue; int32_t VL, VR; uint32_t freq0 = ch->frequency; bool mod = pitch_mod & (1 << J); if (ch->needs_decode) { DecodeBlock(ch); ch->needs_decode = false; ch->sample = ch->block[0]; ch->sample_pointer = freq0 >> FIXED_POINT_SHIFT; if (ch->sample_pointer == 0) ch->sample_pointer = 1; if (ch->sample_pointer > SOUND_DECODE_LENGTH) ch->sample_pointer = SOUND_DECODE_LENGTH - 1; ch->next_sample = ch->block[ch->sample_pointer]; ch->interpolate = 0; if (Settings.InterpolatedSound && freq0 < FIXED_POINT && !mod) ch->interpolate = ((ch->next_sample - ch->sample) * (long) freq0) / (long) FIXED_POINT; } VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; uint32_t I; for (I = 0; I < (uint32_t) sample_count; I += 2) { uint32_t freq = freq0; if (mod) freq = PITCH_MOD(freq, wave [I / 2]); ch->env_error += ch->erate; if (ch->env_error >= FIXED_POINT) { uint32_t step = ch->env_error >> FIXED_POINT_SHIFT; switch (ch->state) { case SOUND_ATTACK: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_DECAY; if (ch->sustain_level != 8) { S9xSetEnvRate(ch, ch->decay_rate, -1, (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3); break; } ch->state = SOUND_SUSTAIN; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0); } break; case SOUND_DECAY: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= ch->envx_target) { if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } ch->state = SOUND_SUSTAIN; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0); } break; case SOUND_SUSTAIN: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_RELEASE: while (ch->env_error >= FIXED_POINT) { ch->envxx -= (MAX_ENVELOPE_HEIGHT << ENVX_SHIFT) / 256; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_INCREASE_LINEAR: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_GAIN; ch->mode = MODE_GAIN; S9xSetEnvRate(ch, 0, -1, 0); } break; case SOUND_INCREASE_BENT_LINE: if (ch->envx >= (MAX_ENVELOPE_HEIGHT * 3) / 4) { while (ch->env_error >= FIXED_POINT) { ch->envxx += (MAX_ENVELOPE_HEIGHT << ENVX_SHIFT) / 256; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; } else { ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; } if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_GAIN; ch->mode = MODE_GAIN; S9xSetEnvRate(ch, 0, -1, 0); } break; case SOUND_DECREASE_LINEAR: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx -= step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_DECREASE_EXPONENTIAL: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_GAIN: S9xSetEnvRate(ch, 0, -1, 0); break; } ch-> left_vol_level = (ch->envx * ch->volume_left) / 128; ch->right_vol_level = (ch->envx * ch->volume_right) / 128; VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } ch->count += freq; if (ch->count >= FIXED_POINT) { VL = ch->count >> FIXED_POINT_SHIFT; ch->sample_pointer += VL; ch->count &= FIXED_POINT_REMAINDER; ch->sample = ch->next_sample; if (ch->sample_pointer >= SOUND_DECODE_LENGTH) { if (JUST_PLAYED_LAST_SAMPLE(ch)) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } do { ch->sample_pointer -= SOUND_DECODE_LENGTH; if (ch->last_block) { if (!ch->loop) { ch->sample_pointer = LAST_SAMPLE; ch->next_sample = ch->sample; break; } else { S9xAPUSetEndX(J); ch->last_block = false; uint8_t* dir = S9xGetSampleAddress(ch->sample_number); ch->block_pointer = READ_WORD(dir + 2); } } DecodeBlock(ch); } while (ch->sample_pointer >= SOUND_DECODE_LENGTH); if (!JUST_PLAYED_LAST_SAMPLE(ch)) ch->next_sample = ch->block [ch->sample_pointer]; } else ch->next_sample = ch->block [ch->sample_pointer]; if (ch->type == SOUND_SAMPLE) { if (Settings.InterpolatedSound && freq < FIXED_POINT && !mod) { ch->interpolate = ((ch->next_sample - ch->sample) * (long) freq) / (long) FIXED_POINT; ch->sample = (int16_t)(ch->sample + (((ch->next_sample - ch->sample) * (long)(ch->count)) / (long) FIXED_POINT)); } else ch->interpolate = 0; } else { // Snes9x 1.53's SPC_DSP.cpp, by blargg int feedback = (noise_gen << 13) ^ (noise_gen << 14); noise_gen = (feedback & 0x4000) ^ (noise_gen >> 1); ch->sample = (noise_gen << 17) >> 17; ch->interpolate = 0; } VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } else { if (ch->interpolate) { int32_t s = (int32_t) ch->sample + ch->interpolate; CLIP16(s); ch->sample = (int16_t) s; VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } } if (pitch_mod & (1 << (J + 1))) wave [I / 2] = ch->sample * ch->envx; MixBuffer [I ] += VL; MixBuffer [I + 1] += VR; ch->echo_buf_ptr [I ] += VL; ch->echo_buf_ptr [I + 1] += VR; } stereo_exit: ; } } // For backwards compatibility with older port specific code void S9xMixSamplesO(uint8_t* buffer, int sample_count, int byte_offset) { S9xMixSamples(buffer + byte_offset, sample_count); } void S9xMixSamples(uint8_t* buffer, int sample_count) { int J; int I; if (SoundData.echo_enable) memset(EchoBuffer, 0, sample_count * sizeof(EchoBuffer [0])); memset(MixBuffer, 0, sample_count * sizeof(MixBuffer [0])); MixStereo(sample_count); /* Mix and convert waveforms */ int byte_count = sample_count << 1; if (SoundData.echo_enable && SoundData.echo_buffer_size) { // 16-bit stereo sound with echo enabled ... if (FilterTapDefinitionBitfield == 0) { // ... but no filter defined. for (J = 0; J < sample_count; J++) { int E = Echo [SoundData.echo_ptr]; Echo [SoundData.echo_ptr] = (E * SoundData.echo_feedback) / 128 + EchoBuffer [J]; if ((SoundData.echo_ptr += 1) >= SoundData.echo_buffer_size) SoundData.echo_ptr = 0; I = (MixBuffer [J] * SoundData.master_volume [J & 1] + E * SoundData.echo_volume [J & 1]) / VOL_DIV16; CLIP16(I); ((int16_t*) buffer)[J] = I; } } else { // ... with filter defined. for (J = 0; J < sample_count; J++) { int E = Echo [SoundData.echo_ptr]; Loop [(Z - 0) & 15] = E; E = E * FilterTaps [0]; if (FilterTapDefinitionBitfield & 0x02) E += Loop [(Z - 2) & 15] * FilterTaps [1]; if (FilterTapDefinitionBitfield & 0x04) E += Loop [(Z - 4) & 15] * FilterTaps [2]; if (FilterTapDefinitionBitfield & 0x08) E += Loop [(Z - 6) & 15] * FilterTaps [3]; if (FilterTapDefinitionBitfield & 0x10) E += Loop [(Z - 8) & 15] * FilterTaps [4]; if (FilterTapDefinitionBitfield & 0x20) E += Loop [(Z - 10) & 15] * FilterTaps [5]; if (FilterTapDefinitionBitfield & 0x40) E += Loop [(Z - 12) & 15] * FilterTaps [6]; if (FilterTapDefinitionBitfield & 0x80) E += Loop [(Z - 14) & 15] * FilterTaps [7]; E /= 128; Z++; Echo [SoundData.echo_ptr] = (E * SoundData.echo_feedback) / 128 + EchoBuffer [J]; if ((SoundData.echo_ptr += 1) >= SoundData.echo_buffer_size) SoundData.echo_ptr = 0; I = (MixBuffer [J] * SoundData.master_volume [J & 1] + E * SoundData.echo_volume [J & 1]) / VOL_DIV16; CLIP16(I); ((int16_t*) buffer)[J] = I; } } } else { // 16-bit mono or stereo sound, no echo for (J = 0; J < sample_count; J++) { I = (MixBuffer [J] * SoundData.master_volume [J & 1]) / VOL_DIV16; CLIP16(I); ((int16_t*) buffer)[J] = I; } } } void S9xResetSound(bool full) { int i; for (i = 0; i < 8; i++) { SoundData.channels[i].state = SOUND_SILENT; SoundData.channels[i].mode = MODE_NONE; SoundData.channels[i].type = SOUND_SAMPLE; SoundData.channels[i].volume_left = 0; SoundData.channels[i].volume_right = 0; SoundData.channels[i].hertz = 0; SoundData.channels[i].count = 0; SoundData.channels[i].loop = false; SoundData.channels[i].envx_target = 0; SoundData.channels[i].env_error = 0; SoundData.channels[i].erate = 0; SoundData.channels[i].envx = 0; SoundData.channels[i].envxx = 0; SoundData.channels[i].left_vol_level = 0; SoundData.channels[i].right_vol_level = 0; SoundData.channels[i].direction = 0; SoundData.channels[i].attack_rate = 0; SoundData.channels[i].decay_rate = 0; SoundData.channels[i].sustain_rate = 0; SoundData.channels[i].release_rate = 0; SoundData.channels[i].sustain_level = 0; SoundData.echo_ptr = 0; SoundData.echo_feedback = 0; SoundData.echo_buffer_size = 1; } FilterTaps [0] = 127; FilterTaps [1] = 0; FilterTaps [2] = 0; FilterTaps [3] = 0; FilterTaps [4] = 0; FilterTaps [5] = 0; FilterTaps [6] = 0; FilterTaps [7] = 0; FilterTapDefinitionBitfield = 0; noise_gen = 1; so.sound_switch = 255; so.samples_mixed_so_far = 0; so.play_position = 0; so.err_counter = 0; if (full) { SoundData.echo_enable = 0; SoundData.echo_write_enabled = 0; SoundData.echo_channel_enable = 0; SoundData.pitch_mod = 0; SoundData.dummy[0] = 0; SoundData.dummy[1] = 0; SoundData.dummy[2] = 0; SoundData.master_volume[0] = 0; SoundData.master_volume[1] = 0; SoundData.echo_volume[0] = 0; SoundData.echo_volume[1] = 0; SoundData.noise_hertz = 0; } SoundData.master_volume [0] = SoundData.master_volume [1] = 127; if (so.playback_rate) so.err_rate = (uint32_t)(FIXED_POINT * SNES_SCANLINE_TIME / (1.0 / so.playback_rate)); else so.err_rate = 0; } void S9xSetPlaybackRate(uint32_t playback_rate) { so.playback_rate = playback_rate; so.err_rate = (uint32_t)(SNES_SCANLINE_TIME * FIXED_POINT / (1.0 / (double) so.playback_rate)); S9xSetEchoDelay(APU.DSP [APU_EDL] & 0xf); int i; for (i = 0; i < 8; i++) S9xSetSoundFrequency(i, SoundData.channels [i].hertz); } bool S9xInitSound() { so.sound_fd = -1; so.sound_switch = 255; so.playback_rate = 0; so.buffer_size = 0; so.encoded = false; return (1); } bool S9xSetSoundMode(int channel, int mode) { Channel* ch = &SoundData.channels[channel]; switch (mode) { case MODE_RELEASE: if (ch->mode != MODE_NONE) { ch->mode = MODE_RELEASE; return (true); } break; case MODE_DECREASE_LINEAR: case MODE_DECREASE_EXPONENTIAL: case MODE_GAIN: if (ch->mode != MODE_RELEASE) { ch->mode = mode; if (ch->state != SOUND_SILENT) ch->state = mode; return (true); } break; case MODE_INCREASE_LINEAR: case MODE_INCREASE_BENT_LINE: if (ch->mode != MODE_RELEASE) { ch->mode = mode; if (ch->state != SOUND_SILENT) ch->state = mode; return (true); } break; case MODE_ADSR: if (ch->mode == MODE_NONE || ch->mode == MODE_ADSR) { ch->mode = mode; return (true); } } return (false); } void S9xSetSoundControl(int sound_switch) { so.sound_switch = sound_switch; } void S9xPlaySample(int channel) { Channel* ch = &SoundData.channels[channel]; ch->state = SOUND_SILENT; ch->mode = MODE_NONE; ch->envx = 0; ch->envxx = 0; S9xFixEnvelope(channel, APU.DSP [APU_GAIN + (channel << 4)], APU.DSP [APU_ADSR1 + (channel << 4)], APU.DSP [APU_ADSR2 + (channel << 4)]); ch->sample_number = APU.DSP [APU_SRCN + channel * 0x10]; if (APU.DSP [APU_NON] & (1 << channel)) ch->type = SOUND_NOISE; else ch->type = SOUND_SAMPLE; S9xSetSoundFrequency(channel, ch->hertz); ch->loop = false; ch->needs_decode = true; ch->last_block = false; ch->previous [0] = ch->previous[1] = 0; uint8_t* dir = S9xGetSampleAddress(ch->sample_number); ch->block_pointer = READ_WORD(dir); ch->sample_pointer = 0; ch->env_error = 0; ch->next_sample = 0; ch->interpolate = 0; switch (ch->mode) { case MODE_ADSR: if (ch->attack_rate == 0) { if (ch->decay_rate == 0 || ch->sustain_level == 8) { ch->state = SOUND_SUSTAIN; ch->envx = (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0); } else { ch->state = SOUND_DECAY; ch->envx = MAX_ENVELOPE_HEIGHT; S9xSetEnvRate(ch, ch->decay_rate, -1, (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3); } ch-> left_vol_level = (ch->envx * ch->volume_left) / 128; ch->right_vol_level = (ch->envx * ch->volume_right) / 128; } else { ch->state = SOUND_ATTACK; ch->envx = 0; ch->left_vol_level = 0; ch->right_vol_level = 0; S9xSetEnvRate(ch, ch->attack_rate, 1, MAX_ENVELOPE_HEIGHT); } ch->envxx = ch->envx << ENVX_SHIFT; break; case MODE_GAIN: ch->state = SOUND_GAIN; break; case MODE_INCREASE_LINEAR: ch->state = SOUND_INCREASE_LINEAR; break; case MODE_INCREASE_BENT_LINE: ch->state = SOUND_INCREASE_BENT_LINE; break; case MODE_DECREASE_LINEAR: ch->state = SOUND_DECREASE_LINEAR; break; case MODE_DECREASE_EXPONENTIAL: ch->state = SOUND_DECREASE_EXPONENTIAL; break; default: break; } S9xFixEnvelope(channel, APU.DSP [APU_GAIN + (channel << 4)], APU.DSP [APU_ADSR1 + (channel << 4)], APU.DSP [APU_ADSR2 + (channel << 4)]); } #endif