#include "../copyright" #ifndef USE_BLARGG_APU #include #include #include #include #define CLIP16(v) \ if ((v) < -32768) \ (v) = -32768; \ else \ if ((v) > 32767) \ (v) = 32767 #define CLIP8(v) \ if ((v) < -128) \ (v) = -128; \ else if ((v) > 127) \ (v) = 127 #include "snes9x.h" #include "soundux.h" #include "apu.h" #include "memmap.h" #include "cpuexec.h" extern int32_t Echo [24000]; extern int32_t MixBuffer [SOUND_BUFFER_SIZE]; extern int32_t EchoBuffer [SOUND_BUFFER_SIZE]; extern int32_t FilterTaps [8]; static uint8_t FilterTapDefinitionBitfield; /* In the above, bit I is set if FilterTaps[I] is non-zero. */ extern uint32_t Z; extern int32_t Loop [16]; extern int32_t FilterValues[4][2]; extern int32_t NoiseFreq [32]; uint32_t AttackRate [16] = { 4100, 2600, 1500, 1000, 640, 380, 260, 160, 96, 64, 40, 24, 16, 10, 6, 1 }; uint32_t DecayRate [8] = { 1200, 740, 440, 290, 180, 110, 74, 37 }; uint32_t DecreaseRateExp [32] = { 0xFFFFFFFF, 38000, 28000, 24000, 19000, 14000, 12000, 9400, 7100, 5900, 4700, 3500, 2900, 2400, 1800, 1500, 1200, 880, 740, 590, 440, 370, 290, 220, 180, 150, 110, 92, 74, 55, 37, 18 }; uint32_t IncreaseRate [32] = { 0xFFFFFFFF, 4100, 3100, 2600, 2000, 1500, 1300, 1000, 770, 640, 510, 380, 320, 260, 190, 160, 130, 96, 80, 64, 48, 40, 32, 24, 20, 16, 12, 10, 8, 6, 4, 2 }; #define SustainRate DecreaseRateExp /* precalculated env rates for S9xSetEnvRate */ uint32_t AttackERate [16][10]; uint32_t DecayERate [8][10]; uint32_t SustainERate [32][10]; uint32_t IncreaseERate [32][10]; uint32_t DecreaseERateExp[32][10]; uint32_t KeyOffERate [10]; #define FIXED_POINT 0x10000UL #define FIXED_POINT_REMAINDER 0xffffUL #define FIXED_POINT_SHIFT 16 #define VOL_DIV16 0x0080 #define ENVX_SHIFT 24 /* F is channel's current frequency and M is the 16-bit modulation waveform * from the previous channel multiplied by the current envelope volume level. */ #define PITCH_MOD(F,M) ((F) * ((((uint32_t) (M)) + 0x800000) >> 16) >> 7) #define LAST_SAMPLE 0xffffff #define JUST_PLAYED_LAST_SAMPLE(c) ((c)->sample_pointer >= LAST_SAMPLE) static INLINE uint8_t* S9xGetSampleAddress(int32_t sample_number) { uint32_t addr = (((APU.DSP[APU_DIR] << 8) + (sample_number << 2)) & 0xffff); return (IAPU.RAM + addr); } void S9xAPUSetEndOfSample(int32_t i, Channel* ch) { ch->state = SOUND_SILENT; ch->mode = MODE_NONE; APU.DSP [APU_ENDX] |= 1 << i; APU.DSP [APU_KON] &= ~(1 << i); APU.DSP [APU_KOFF] &= ~(1 << i); APU.KeyedChannels &= ~(1 << i); } void S9xAPUSetEndX(int32_t ch) { APU.DSP [APU_ENDX] |= 1 << ch; } void S9xSetEnvRate(Channel* ch, uint32_t rate, int32_t direction, int32_t target, uint32_t mode) { ch->envx_target = target; if (rate == ~((uint32_t) 0u)) { ch->direction = 0; rate = 0; } else ch->direction = direction; if (rate == 0 || so.playback_rate == 0) ch->erate = 0; else { switch (mode >> 28) { case 0: /* Attack */ ch->erate = AttackERate[ch->env_ind_attack][ch->state]; break; case 1: /* Decay */ ch->erate = DecayERate[ch->env_ind_decay][ch->state]; break; case 2: /* Sustain */ ch->erate = SustainERate[ch->env_ind_sustain][ch->state]; break; case 3: /* Increase */ ch->erate = IncreaseERate[mode & 0x1f][ch->state]; break; case 4: /* DecreaseExp */ ch->erate = DecreaseERateExp[mode & 0x1f][ch->state]; break; case 5: /* KeyOff */ ch->erate = KeyOffERate[ch->state]; break; } } } void S9xSetEnvelopeRate(int32_t channel, uint32_t rate, int32_t direction, int32_t target, uint32_t mode) { S9xSetEnvRate(&SoundData.channels [channel], rate, direction, target, mode); } void S9xSetSoundVolume(int32_t channel, int16_t volume_left, int16_t volume_right) { Channel* ch = &SoundData.channels[channel]; ch->volume_left = volume_left; ch->volume_right = volume_right; ch-> left_vol_level = (ch->envx * volume_left) / 128; ch->right_vol_level = (ch->envx * volume_right) / 128; } void S9xSetMasterVolume(int16_t volume_left, int16_t volume_right) { if (Settings.DisableMasterVolume) SoundData.master_volume [0] = SoundData.master_volume [1] = 127; else { SoundData.master_volume [0] = volume_left; SoundData.master_volume [1] = volume_right; } } void S9xSetEchoVolume(int16_t volume_left, int16_t volume_right) { SoundData.echo_volume [0] = volume_left; SoundData.echo_volume [1] = volume_right; } void S9xSetEchoEnable(uint8_t byte) { int32_t i; if (!SoundData.echo_write_enabled || Settings.DisableSoundEcho) byte = 0; if (byte && !SoundData.echo_enable) { memset(Echo, 0, sizeof(Echo)); memset(Loop, 0, sizeof(Loop)); } SoundData.echo_enable = byte; for (i = 0; i < NUM_CHANNELS; i++) { if (byte & (1 << i)) SoundData.channels [i].echo_buf_ptr = EchoBuffer; else SoundData.channels [i].echo_buf_ptr = NULL; } } void S9xSetEchoFeedback(int32_t feedback) { CLIP8(feedback); SoundData.echo_feedback = feedback; } void S9xSetEchoDelay(int32_t delay) { SoundData.echo_buffer_size = (512 * delay * so.playback_rate) / 32040; SoundData.echo_buffer_size <<= 1; if (SoundData.echo_buffer_size) SoundData.echo_ptr %= SoundData.echo_buffer_size; else SoundData.echo_ptr = 0; S9xSetEchoEnable(APU.DSP [APU_EON]); } void S9xSetEchoWriteEnable(uint8_t byte) { SoundData.echo_write_enabled = byte; S9xSetEchoDelay(APU.DSP [APU_EDL] & 15); } void S9xSetFrequencyModulationEnable(uint8_t byte) { SoundData.pitch_mod = byte & 0xFE; } void S9xSetSoundKeyOff(int32_t channel) { Channel* ch = &SoundData.channels[channel]; if (ch->state != SOUND_SILENT) { ch->state = SOUND_RELEASE; ch->mode = MODE_RELEASE; S9xSetEnvRate(ch, 8, -1, 0, 5 << 28); } } void S9xFixSoundAfterSnapshotLoad() { int32_t i; SoundData.echo_write_enabled = !(APU.DSP [APU_FLG] & 0x20); S9xSetEchoDelay(APU.DSP [APU_EDL] & 0xf); S9xSetEchoFeedback((int8_t) APU.DSP [APU_EFB]); S9xSetFilterCoefficient(0, (int8_t) APU.DSP [APU_C0]); S9xSetFilterCoefficient(1, (int8_t) APU.DSP [APU_C1]); S9xSetFilterCoefficient(2, (int8_t) APU.DSP [APU_C2]); S9xSetFilterCoefficient(3, (int8_t) APU.DSP [APU_C3]); S9xSetFilterCoefficient(4, (int8_t) APU.DSP [APU_C4]); S9xSetFilterCoefficient(5, (int8_t) APU.DSP [APU_C5]); S9xSetFilterCoefficient(6, (int8_t) APU.DSP [APU_C6]); S9xSetFilterCoefficient(7, (int8_t) APU.DSP [APU_C7]); for (i = 0; i < 8; i++) { SoundData.channels[i].needs_decode = true; S9xSetSoundFrequency(i, SoundData.channels[i].hertz); SoundData.channels [i].envxx = SoundData.channels [i].envx << ENVX_SHIFT; } } void S9xSetFilterCoefficient(int32_t tap, int32_t value) { FilterTaps [tap & 7] = value; if (value == 0 || (tap == 0 && value == 127)) FilterTapDefinitionBitfield &= ~(1 << (tap & 7)); else FilterTapDefinitionBitfield |= 1 << (tap & 7); } void S9xSetSoundADSR(int32_t channel, int32_t attack_ind, int32_t decay_ind, int32_t sustain_ind, int32_t sustain_level, int32_t release_rate) { Channel *ch; int32_t attack_rate = AttackRate [attack_ind]; int32_t decay_rate = DecayRate [decay_ind]; int32_t sustain_rate = SustainRate [sustain_ind]; /* Hack for ROMs that use a very short attack rate, key on a channel, then switch to decay mode. e.g. Final Fantasy II. */ if(attack_rate == 1) attack_rate = 0; ch = &SoundData.channels[channel]; ch->env_ind_attack = attack_ind; ch->env_ind_decay = decay_ind; ch->env_ind_sustain = sustain_ind; ch->attack_rate = attack_rate; ch->decay_rate = decay_rate; ch->sustain_rate = sustain_rate; ch->release_rate = release_rate; ch->sustain_level = sustain_level + 1; switch (SoundData.channels[channel].state) { case SOUND_ATTACK: S9xSetEnvRate(ch, attack_rate, 1, 127, 0); break; case SOUND_DECAY: S9xSetEnvRate(ch, decay_rate, -1, (MAX_ENVELOPE_HEIGHT * (sustain_level + 1)) >> 3, 1 << 28); break; case SOUND_SUSTAIN: S9xSetEnvRate(ch, sustain_rate, -1, 0, 2 << 28); break; } } void S9xSetEnvelopeHeight(int32_t channel, int32_t level) { Channel* ch = &SoundData.channels[channel]; ch->envx = level; ch->envxx = level << ENVX_SHIFT; ch->left_vol_level = (level * ch->volume_left) / 128; ch->right_vol_level = (level * ch->volume_right) / 128; if (ch->envx == 0 && ch->state != SOUND_SILENT && ch->state != SOUND_GAIN) S9xAPUSetEndOfSample(channel, ch); } void S9xSetSoundFrequency(int32_t channel, int32_t hertz) /* hertz [0~64K<<1] */ { if (SoundData.channels[channel].type == SOUND_NOISE) hertz = NoiseFreq [APU.DSP [APU_FLG] & 0x1f]; SoundData.channels[channel].frequency = (hertz * so.freqbase) >> 11; } void S9xSetSoundHertz(int32_t channel, int32_t hertz) { SoundData.channels[channel].hertz = hertz; S9xSetSoundFrequency(channel, hertz); } void S9xSetSoundType(int32_t channel, int32_t type_of_sound) { SoundData.channels[channel].type = type_of_sound; } void DecodeBlock(Channel* ch) { int32_t out; uint8_t filter; uint8_t shift; int8_t sample1, sample2; int8_t *compressed; int16_t *raw; uint32_t i; int32_t prev0, prev1; if (ch->block_pointer > 0x10000 - 9) { ch->last_block = true; ch->loop = false; ch->block = ch->decoded; return; } compressed = (int8_t*) &IAPU.RAM [ch->block_pointer]; filter = *compressed; if ((ch->last_block = (bool) (filter & 1))) ch->loop = (bool) (filter & 2); raw = ch->block = ch->decoded; compressed++; prev0 = ch->previous [0]; prev1 = ch->previous [1]; shift = filter >> 4; switch ((filter >> 2) & 3) { case 0: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; sample2 >>= 4; sample1 >>= 4; *raw++ = ((int32_t) sample1 << shift); *raw++ = ((int32_t) sample2 << shift); } prev1 = raw[-2]; prev0 = raw[-1]; break; case 1: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; sample2 >>= 4; sample1 >>= 4; prev0 = (int16_t) prev0; *raw++ = prev1 = ((int32_t) sample1 << shift) + prev0 - (prev0 >> 4); prev1 = (int16_t) prev1; *raw++ = prev0 = ((int32_t) sample2 << shift) + prev1 - (prev1 >> 4); } break; case 2: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; sample2 >>= 4; sample1 >>= 4; out = (sample1 << shift) - prev1 + (prev1 >> 4); prev1 = (int16_t) prev0; prev0 &= ~3; *raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 5) - (prev0 >> 4); out = (sample2 << shift) - prev1 + (prev1 >> 4); prev1 = (int16_t) prev0; prev0 &= ~3; *raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 5) - (prev0 >> 4); } break; case 3: for (i = 8; i != 0; i--) { sample1 = *compressed++; sample2 = sample1 << 4; sample2 >>= 4; sample1 >>= 4; out = (sample1 << shift); out = out - prev1 + (prev1 >> 3) + (prev1 >> 4); prev1 = (int16_t) prev0; prev0 &= ~3; *raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 3) - (prev0 >> 4) - (prev1 >> 6); out = (sample2 << shift); out = out - prev1 + (prev1 >> 3) + (prev1 >> 4); prev1 = (int16_t) prev0; prev0 &= ~3; *raw++ = prev0 = out + (prev0 << 1) - (prev0 >> 3) - (prev0 >> 4) - (prev1 >> 6); } break; } ch->previous [0] = prev0; ch->previous [1] = prev1; ch->block_pointer += 9; } static INLINE void MixStereo(int32_t sample_count) { static int32_t wave[SOUND_BUFFER_SIZE]; int32_t pitch_mod = SoundData.pitch_mod & ~APU.DSP[APU_NON]; uint32_t J; for (J = 0; J < NUM_CHANNELS; J++) { uint32_t I; int32_t VL, VR; uint32_t freq0; uint8_t mod; Channel* ch = &SoundData.channels[J]; if (ch->state == SOUND_SILENT) continue; freq0 = ch->frequency; mod = pitch_mod & (1 << J); if (ch->needs_decode) { DecodeBlock(ch); ch->needs_decode = false; ch->sample = ch->block[0]; ch->sample_pointer = freq0 >> FIXED_POINT_SHIFT; if (ch->sample_pointer == 0) ch->sample_pointer = 1; if (ch->sample_pointer > SOUND_DECODE_LENGTH) ch->sample_pointer = SOUND_DECODE_LENGTH - 1; ch->next_sample = ch->block[ch->sample_pointer]; ch->interpolate = 0; if (Settings.InterpolatedSound && freq0 < FIXED_POINT && !mod) ch->interpolate = ((ch->next_sample - ch->sample) * (int32_t) freq0) / (int32_t) FIXED_POINT; } VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; for (I = 0; I < (uint32_t) sample_count; I += 2) { uint32_t freq = freq0; if (mod) freq = PITCH_MOD(freq, wave [I / 2]); ch->env_error += ch->erate; if (ch->env_error >= FIXED_POINT) { uint32_t step = ch->env_error >> FIXED_POINT_SHIFT; switch (ch->state) { case SOUND_ATTACK: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_DECAY; if (ch->sustain_level != 8) { S9xSetEnvRate(ch, ch->decay_rate, -1, (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3, 1 << 28); break; } ch->state = SOUND_SUSTAIN; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0, 2 << 28); } break; case SOUND_DECAY: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= ch->envx_target) { if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } ch->state = SOUND_SUSTAIN; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0, 2 << 28); } break; case SOUND_SUSTAIN: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_RELEASE: while (ch->env_error >= FIXED_POINT) { ch->envxx -= (MAX_ENVELOPE_HEIGHT << ENVX_SHIFT) / 256; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_INCREASE_LINEAR: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_GAIN; ch->mode = MODE_GAIN; S9xSetEnvRate(ch, 0, -1, 0, 0); } break; case SOUND_INCREASE_BENT_LINE: if (ch->envx >= (MAX_ENVELOPE_HEIGHT * 3) / 4) { while (ch->env_error >= FIXED_POINT) { ch->envxx += (MAX_ENVELOPE_HEIGHT << ENVX_SHIFT) / 256; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; } else { ch->env_error &= FIXED_POINT_REMAINDER; ch->envx += step << 1; ch->envxx = ch->envx << ENVX_SHIFT; } if (ch->envx >= 126) { ch->envx = 127; ch->envxx = 127 << ENVX_SHIFT; ch->state = SOUND_GAIN; ch->mode = MODE_GAIN; S9xSetEnvRate(ch, 0, -1, 0, 0); } break; case SOUND_DECREASE_LINEAR: ch->env_error &= FIXED_POINT_REMAINDER; ch->envx -= step << 1; ch->envxx = ch->envx << ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_DECREASE_EXPONENTIAL: while (ch->env_error >= FIXED_POINT) { ch->envxx = (ch->envxx >> 8) * 255; ch->env_error -= FIXED_POINT; } ch->envx = ch->envxx >> ENVX_SHIFT; if (ch->envx <= 0) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } break; case SOUND_GAIN: S9xSetEnvRate(ch, 0, -1, 0, 0); break; } ch-> left_vol_level = (ch->envx * ch->volume_left) / 128; ch->right_vol_level = (ch->envx * ch->volume_right) / 128; VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } ch->count += freq; if (ch->count >= FIXED_POINT) { VL = ch->count >> FIXED_POINT_SHIFT; ch->sample_pointer += VL; ch->count &= FIXED_POINT_REMAINDER; ch->sample = ch->next_sample; if (ch->sample_pointer >= SOUND_DECODE_LENGTH) { if (JUST_PLAYED_LAST_SAMPLE(ch)) { S9xAPUSetEndOfSample(J, ch); goto stereo_exit; } do { ch->sample_pointer -= SOUND_DECODE_LENGTH; if (ch->last_block) { if (!ch->loop) { ch->sample_pointer = LAST_SAMPLE; ch->next_sample = ch->sample; break; } else { uint8_t *dir; S9xAPUSetEndX(J); ch->last_block = false; dir = S9xGetSampleAddress(ch->sample_number); ch->block_pointer = READ_WORD(dir + 2); } } DecodeBlock(ch); } while (ch->sample_pointer >= SOUND_DECODE_LENGTH); if (!JUST_PLAYED_LAST_SAMPLE(ch)) ch->next_sample = ch->block [ch->sample_pointer]; } else ch->next_sample = ch->block [ch->sample_pointer]; if (ch->type == SOUND_SAMPLE) { if (Settings.InterpolatedSound && freq < FIXED_POINT && !mod) { ch->interpolate = ((ch->next_sample - ch->sample) * (int32_t) freq) / (int32_t) FIXED_POINT; ch->sample = (int16_t)(ch->sample + (((ch->next_sample - ch->sample) * (int32_t)(ch->count)) / (int32_t) FIXED_POINT)); } else ch->interpolate = 0; } else { /* Snes9x 1.53's SPC_DSP.cpp, by blargg */ int32_t feedback = (so.noise_gen << 13) ^ (so.noise_gen << 14); so.noise_gen = (feedback & 0x4000) ^ (so.noise_gen >> 1); ch->sample = (so.noise_gen << 17) >> 17; ch->interpolate = 0; } VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } else { if (ch->interpolate) { int32_t s = (int32_t) ch->sample + ch->interpolate; CLIP16(s); ch->sample = (int16_t) s; VL = (ch->sample * ch-> left_vol_level) / 128; VR = (ch->sample * ch->right_vol_level) / 128; } } if (pitch_mod & (1 << (J + 1))) wave [I / 2] = ch->sample * ch->envx; MixBuffer [I ] += VL; MixBuffer [I + 1] += VR; if (!ch->echo_buf_ptr) continue; ch->echo_buf_ptr [I ] += VL; ch->echo_buf_ptr [I + 1] += VR; } stereo_exit:; } } void S9xMixSamples(int16_t* buffer, int32_t sample_count) { int32_t J; int32_t I; if (SoundData.echo_enable) memset(EchoBuffer, 0, sample_count * sizeof(EchoBuffer [0])); memset(MixBuffer, 0, sample_count * sizeof(MixBuffer [0])); MixStereo(sample_count); /* Mix and convert waveforms */ if (SoundData.echo_enable && SoundData.echo_buffer_size) { /* 16-bit stereo sound with echo enabled ... */ if (FilterTapDefinitionBitfield == 0) { /* ... but no filter defined. */ for (J = 0; J < sample_count; J++) { int32_t E = Echo [SoundData.echo_ptr]; Echo[SoundData.echo_ptr++] = (E * SoundData.echo_feedback) / 128 + EchoBuffer [J]; if (SoundData.echo_ptr >= SoundData.echo_buffer_size) SoundData.echo_ptr = 0; I = (MixBuffer[J] * SoundData.master_volume [J & 1] + E * SoundData.echo_volume [J & 1]) / VOL_DIV16; CLIP16(I); buffer[J] = I; } } else { /* ... with filter defined. */ for (J = 0; J < sample_count; J++) { int32_t E; Loop [(Z - 0) & 15] = Echo [SoundData.echo_ptr]; E = Loop [(Z - 0) & 15] * FilterTaps [0]; if (FilterTapDefinitionBitfield & 0x02) E += Loop [(Z - 2) & 15] * FilterTaps [1]; if (FilterTapDefinitionBitfield & 0x04) E += Loop [(Z - 4) & 15] * FilterTaps [2]; if (FilterTapDefinitionBitfield & 0x08) E += Loop [(Z - 6) & 15] * FilterTaps [3]; if (FilterTapDefinitionBitfield & 0x10) E += Loop [(Z - 8) & 15] * FilterTaps [4]; if (FilterTapDefinitionBitfield & 0x20) E += Loop [(Z - 10) & 15] * FilterTaps [5]; if (FilterTapDefinitionBitfield & 0x40) E += Loop [(Z - 12) & 15] * FilterTaps [6]; if (FilterTapDefinitionBitfield & 0x80) E += Loop [(Z - 14) & 15] * FilterTaps [7]; E /= 128; Z++; Echo[SoundData.echo_ptr++] = (E * SoundData.echo_feedback) / 128 + EchoBuffer[J]; if (SoundData.echo_ptr >= SoundData.echo_buffer_size) SoundData.echo_ptr = 0; I = (MixBuffer[J] * SoundData.master_volume [J & 1] + E * SoundData.echo_volume [J & 1]) / VOL_DIV16; CLIP16(I); buffer[J] = I; } } } else { /* 16-bit mono or stereo sound, no echo */ for (J = 0; J < sample_count; J++) { I = (MixBuffer[J] * SoundData.master_volume [J & 1]) / VOL_DIV16; CLIP16(I); buffer[J] = I; } } } void S9xResetSound(bool full) { int32_t i; for (i = 0; i < 8; i++) { SoundData.channels[i].state = SOUND_SILENT; SoundData.channels[i].mode = MODE_NONE; SoundData.channels[i].type = SOUND_SAMPLE; SoundData.channels[i].volume_left = 0; SoundData.channels[i].volume_right = 0; SoundData.channels[i].hertz = 0; SoundData.channels[i].count = 0; SoundData.channels[i].loop = false; SoundData.channels[i].envx_target = 0; SoundData.channels[i].env_error = 0; SoundData.channels[i].erate = 0; SoundData.channels[i].envx = 0; SoundData.channels[i].envxx = 0; SoundData.channels[i].left_vol_level = 0; SoundData.channels[i].right_vol_level = 0; SoundData.channels[i].direction = 0; SoundData.channels[i].attack_rate = 0; SoundData.channels[i].decay_rate = 0; SoundData.channels[i].sustain_rate = 0; SoundData.channels[i].release_rate = 0; SoundData.channels[i].sustain_level = 0; /* notaz */ SoundData.channels[i].env_ind_attack = 0; SoundData.channels[i].env_ind_decay = 0; SoundData.channels[i].env_ind_sustain = 0; SoundData.echo_ptr = 0; SoundData.echo_feedback = 0; SoundData.echo_buffer_size = 1; } FilterTaps [0] = 127; FilterTaps [1] = 0; FilterTaps [2] = 0; FilterTaps [3] = 0; FilterTaps [4] = 0; FilterTaps [5] = 0; FilterTaps [6] = 0; FilterTaps [7] = 0; FilterTapDefinitionBitfield = 0; so.noise_gen = 1; if (full) { SoundData.echo_enable = 0; SoundData.echo_write_enabled = 0; SoundData.pitch_mod = 0; SoundData.master_volume[0] = 0; SoundData.master_volume[1] = 0; SoundData.echo_volume[0] = 0; SoundData.echo_volume[1] = 0; SoundData.noise_hertz = 0; } SoundData.master_volume [0] = SoundData.master_volume [1] = 127; so.mute_sound = true; } void S9xSetPlaybackRate(uint32_t playback_rate) { int32_t i; so.playback_rate = playback_rate; if (playback_rate) { static int32_t steps [] = { 0, 64, 619, 619, 128, 1, 64, 55, 64, 619 }; int32_t i, u; /* notaz: calculate a value (let's call it freqbase) to simplify channel freq calculations later. */ so.freqbase = (FIXED_POINT << 11) / (playback_rate * 33 / 32); /* now precalculate env rates for S9xSetEnvRate */ for (u = 0 ; u < 10 ; u++) { int64_t fp1000su = ((int64_t) FIXED_POINT * 1000 * steps[u]); for (i = 0 ; i < 16 ; i++) AttackERate[i][u] = (uint32_t) (fp1000su / (AttackRate[i] * playback_rate)); for (i = 0 ; i < 8 ; i++) DecayERate[i][u] = (uint32_t) (fp1000su / (DecayRate[i] * playback_rate)); for (i = 0 ; i < 32 ; i++) { SustainERate[i][u] = (uint32_t) (fp1000su / (SustainRate[i] * playback_rate)); IncreaseERate[i][u] = (uint32_t) (fp1000su / (IncreaseRate[i] * playback_rate)); DecreaseERateExp[i][u] = (uint32_t) (fp1000su / (DecreaseRateExp[i] / 2 * playback_rate)); } KeyOffERate[u] = (uint32_t) (fp1000su / (8 * playback_rate)); } } S9xSetEchoDelay(APU.DSP [APU_EDL] & 0xf); for (i = 0; i < 8; i++) S9xSetSoundFrequency(i, SoundData.channels [i].hertz); } bool S9xInitSound() { so.playback_rate = 0; S9xResetSound(true); return true; } bool S9xSetSoundMode(int32_t channel, int32_t mode) { Channel* ch = &SoundData.channels[channel]; switch (mode) { case MODE_RELEASE: if (ch->mode != MODE_NONE) { ch->mode = MODE_RELEASE; return true; } break; case MODE_DECREASE_LINEAR: case MODE_DECREASE_EXPONENTIAL: case MODE_GAIN: case MODE_INCREASE_LINEAR: case MODE_INCREASE_BENT_LINE: if (ch->mode != MODE_RELEASE) { ch->mode = mode; if (ch->state != SOUND_SILENT) ch->state = mode; return true; } break; case MODE_ADSR: if (ch->mode == MODE_NONE || ch->mode == MODE_ADSR) { ch->mode = mode; return true; } } return false; } void S9xPlaySample(int32_t channel) { uint8_t *dir; Channel* ch = &SoundData.channels[channel]; ch->state = SOUND_SILENT; ch->mode = MODE_NONE; ch->envx = 0; ch->envxx = 0; S9xFixEnvelope(channel, APU.DSP [APU_GAIN + (channel << 4)], APU.DSP [APU_ADSR1 + (channel << 4)], APU.DSP [APU_ADSR2 + (channel << 4)]); ch->sample_number = APU.DSP [APU_SRCN + channel * 0x10]; if (APU.DSP [APU_NON] & (1 << channel)) ch->type = SOUND_NOISE; else ch->type = SOUND_SAMPLE; S9xSetSoundFrequency(channel, ch->hertz); ch->loop = false; ch->needs_decode = true; ch->last_block = false; ch->previous [0] = ch->previous[1] = 0; dir = S9xGetSampleAddress(ch->sample_number); ch->block_pointer = READ_WORD(dir); ch->sample_pointer = 0; ch->env_error = 0; ch->next_sample = 0; ch->interpolate = 0; switch (ch->mode) { case MODE_ADSR: if (ch->attack_rate == 0) { if (ch->decay_rate == 0 || ch->sustain_level == 8) { ch->state = SOUND_SUSTAIN; ch->envx = (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3; S9xSetEnvRate(ch, ch->sustain_rate, -1, 0, 2 << 28); } else { ch->state = SOUND_DECAY; ch->envx = MAX_ENVELOPE_HEIGHT; S9xSetEnvRate(ch, ch->decay_rate, -1, (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3, 1 << 28); } ch-> left_vol_level = (ch->envx * ch->volume_left) / 128; ch->right_vol_level = (ch->envx * ch->volume_right) / 128; } else { ch->state = SOUND_ATTACK; ch->envx = 0; ch->left_vol_level = 0; ch->right_vol_level = 0; S9xSetEnvRate(ch, ch->attack_rate, 1, MAX_ENVELOPE_HEIGHT, 0); } ch->envxx = ch->envx << ENVX_SHIFT; break; case MODE_GAIN: ch->state = SOUND_GAIN; break; case MODE_INCREASE_LINEAR: ch->state = SOUND_INCREASE_LINEAR; break; case MODE_INCREASE_BENT_LINE: ch->state = SOUND_INCREASE_BENT_LINE; break; case MODE_DECREASE_LINEAR: ch->state = SOUND_DECREASE_LINEAR; break; case MODE_DECREASE_EXPONENTIAL: ch->state = SOUND_DECREASE_EXPONENTIAL; break; default: break; } S9xFixEnvelope(channel, APU.DSP [APU_GAIN + (channel << 4)], APU.DSP [APU_ADSR1 + (channel << 4)], APU.DSP [APU_ADSR2 + (channel << 4)]); } #endif