summaryrefslogtreecommitdiff
path: root/opl
diff options
context:
space:
mode:
authorSimon Howard2010-08-31 19:26:32 +0000
committerSimon Howard2010-08-31 19:26:32 +0000
commit22fc405736dc4796958de221c07d52432f1b271b (patch)
treec05962aa5e839566ea40dd9b1f4ba3581954af8a /opl
parentf391d85c96afa91a2302c58191ce8d401fdba2e2 (diff)
parent64918568eee62c73cbb87aa1bd68e191f19a4af3 (diff)
downloadchocolate-doom-22fc405736dc4796958de221c07d52432f1b271b.tar.gz
chocolate-doom-22fc405736dc4796958de221c07d52432f1b271b.tar.bz2
chocolate-doom-22fc405736dc4796958de221c07d52432f1b271b.zip
Merge from trunk.
Subversion-branch: /branches/raven-branch Subversion-revision: 1987
Diffstat (limited to 'opl')
-rw-r--r--opl/Makefile.am2
-rw-r--r--opl/dbopl.c1602
-rw-r--r--opl/dbopl.h203
-rw-r--r--opl/fmopl.c1155
-rw-r--r--opl/fmopl.h167
-rw-r--r--opl/opl_sdl.c158
6 files changed, 1914 insertions, 1373 deletions
diff --git a/opl/Makefile.am b/opl/Makefile.am
index d099b875..be1619d8 100644
--- a/opl/Makefile.am
+++ b/opl/Makefile.am
@@ -15,5 +15,5 @@ libopl_a_SOURCES = \
opl_timer.c opl_timer.h \
opl_win32.c \
ioperm_sys.c ioperm_sys.h \
- fmopl.c fmopl.h
+ dbopl.c dbopl.h
diff --git a/opl/dbopl.c b/opl/dbopl.c
new file mode 100644
index 00000000..159cae45
--- /dev/null
+++ b/opl/dbopl.c
@@ -0,0 +1,1602 @@
+/*
+ * Copyright (C) 2002-2010 The DOSBox Team
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+//
+// Chocolate Doom-related discussion:
+//
+// This is the DosBox OPL emulator code (src/hardware/dbopl.cpp) r3635,
+// converted to C. The bulk of the work was done using the minus-minus
+// script in the Chocolate Doom SVN repository, then the result tweaked
+// by hand until working.
+//
+
+
+/*
+ DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
+ Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
+ Except for the table generation it's all integer math
+ Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
+ The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
+ MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
+
+ //TODO Don't delay first operator 1 sample in opl3 mode
+ //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
+ //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
+ //TODO Check if having the same accuracy in all frequency multipliers sounds better or not
+
+ //DUNNO Keyon in 4op, switch to 2op without keyoff.
+*/
+
+/* $Id: dbopl.cpp,v 1.10 2009-06-10 19:54:51 harekiet Exp $ */
+
+
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+//#include "dosbox.h"
+#include "dbopl.h"
+
+
+#define GCC_UNLIKELY(x) x
+
+#define TRUE 1
+#define FALSE 0
+
+#ifndef PI
+#define PI 3.14159265358979323846
+#endif
+
+#define OPLRATE ((double)(14318180.0 / 288.0))
+#define TREMOLO_TABLE 52
+
+//Try to use most precision for frequencies
+//Else try to keep different waves in synch
+//#define WAVE_PRECISION 1
+#ifndef WAVE_PRECISION
+//Wave bits available in the top of the 32bit range
+//Original adlib uses 10.10, we use 10.22
+#define WAVE_BITS 10
+#else
+//Need some extra bits at the top to have room for octaves and frequency multiplier
+//We support to 8 times lower rate
+//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
+#define WAVE_BITS 14
+#endif
+#define WAVE_SH ( 32 - WAVE_BITS )
+#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
+
+//Use the same accuracy as the waves
+#define LFO_SH ( WAVE_SH - 10 )
+//LFO is controlled by our tremolo 256 sample limit
+#define LFO_MAX ( 256 << ( LFO_SH ) )
+
+
+//Maximum amount of attenuation bits
+//Envelope goes to 511, 9 bits
+#if (DBOPL_WAVE == WAVE_TABLEMUL )
+//Uses the value directly
+#define ENV_BITS ( 9 )
+#else
+//Add 3 bits here for more accuracy and would have to be shifted up either way
+#define ENV_BITS ( 9 )
+#endif
+//Limits of the envelope with those bits and when the envelope goes silent
+#define ENV_MIN 0
+#define ENV_EXTRA ( ENV_BITS - 9 )
+#define ENV_MAX ( 511 << ENV_EXTRA )
+#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
+#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
+
+//Attack/decay/release rate counter shift
+#define RATE_SH 24
+#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
+//Has to fit within 16bit lookuptable
+#define MUL_SH 16
+
+//Check some ranges
+#if ENV_EXTRA > 3
+#error Too many envelope bits
+#endif
+
+static inline void Operator__SetState(Operator *self, Bit8u s );
+static inline Bit32u Chip__ForwardNoise(Chip *self);
+
+// C++'s template<> sure is useful sometimes.
+
+static Channel* Channel__BlockTemplate(Channel *self, Chip* chip,
+ Bit32u samples, Bit32s* output,
+ SynthMode mode );
+#define BLOCK_TEMPLATE(mode) \
+ static Channel* Channel__BlockTemplate_ ## mode(Channel *self, Chip* chip, \
+ Bit32u samples, Bit32s* output) \
+ { \
+ return Channel__BlockTemplate(self, chip, samples, output, mode); \
+ }
+
+BLOCK_TEMPLATE(sm2AM)
+BLOCK_TEMPLATE(sm2FM)
+BLOCK_TEMPLATE(sm3AM)
+BLOCK_TEMPLATE(sm3FM)
+BLOCK_TEMPLATE(sm3FMFM)
+BLOCK_TEMPLATE(sm3AMFM)
+BLOCK_TEMPLATE(sm3FMAM)
+BLOCK_TEMPLATE(sm3AMAM)
+BLOCK_TEMPLATE(sm2Percussion)
+BLOCK_TEMPLATE(sm3Percussion)
+
+//How much to substract from the base value for the final attenuation
+static const Bit8u KslCreateTable[16] = {
+ //0 will always be be lower than 7 * 8
+ 64, 32, 24, 19,
+ 16, 12, 11, 10,
+ 8, 6, 5, 4,
+ 3, 2, 1, 0,
+};
+
+#define M(_X_) ((Bit8u)( (_X_) * 2))
+static const Bit8u FreqCreateTable[16] = {
+ M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ),
+ M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15)
+};
+#undef M
+
+//We're not including the highest attack rate, that gets a special value
+static const Bit8u AttackSamplesTable[13] = {
+ 69, 55, 46, 40,
+ 35, 29, 23, 20,
+ 19, 15, 11, 10,
+ 9
+};
+//On a real opl these values take 8 samples to reach and are based upon larger tables
+static const Bit8u EnvelopeIncreaseTable[13] = {
+ 4, 5, 6, 7,
+ 8, 10, 12, 14,
+ 16, 20, 24, 28,
+ 32,
+};
+
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+static Bit16u ExpTable[ 256 ];
+#endif
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+//PI table used by WAVEHANDLER
+static Bit16u SinTable[ 512 ];
+#endif
+
+#if ( DBOPL_WAVE > WAVE_HANDLER )
+//Layout of the waveform table in 512 entry intervals
+//With overlapping waves we reduce the table to half it's size
+
+// | |//\\|____|WAV7|//__|/\ |____|/\/\|
+// |\\//| | |WAV7| | \/| | |
+// |06 |0126|17 |7 |3 |4 |4 5 |5 |
+
+//6 is just 0 shifted and masked
+
+static Bit16s WaveTable[ 8 * 512 ];
+//Distance into WaveTable the wave starts
+static const Bit16u WaveBaseTable[8] = {
+ 0x000, 0x200, 0x200, 0x800,
+ 0xa00, 0xc00, 0x100, 0x400,
+
+};
+//Mask the counter with this
+static const Bit16u WaveMaskTable[8] = {
+ 1023, 1023, 511, 511,
+ 1023, 1023, 512, 1023,
+};
+
+//Where to start the counter on at keyon
+static const Bit16u WaveStartTable[8] = {
+ 512, 0, 0, 0,
+ 0, 512, 512, 256,
+};
+#endif
+
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+static Bit16u MulTable[ 384 ];
+#endif
+
+static Bit8u KslTable[ 8 * 16 ];
+static Bit8u TremoloTable[ TREMOLO_TABLE ];
+//Start of a channel behind the chip struct start
+static Bit16u ChanOffsetTable[32];
+//Start of an operator behind the chip struct start
+static Bit16u OpOffsetTable[64];
+
+//The lower bits are the shift of the operator vibrato value
+//The highest bit is right shifted to generate -1 or 0 for negation
+//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
+static const Bit8s VibratoTable[ 8 ] = {
+ 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
+ 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
+};
+
+//Shift strength for the ksl value determined by ksl strength
+static const Bit8u KslShiftTable[4] = {
+ 31,1,2,0
+};
+
+//Generate a table index and table shift value using input value from a selected rate
+static void EnvelopeSelect( Bit8u val, Bit8u *index, Bit8u *shift ) {
+ if ( val < 13 * 4 ) { //Rate 0 - 12
+ *shift = 12 - ( val >> 2 );
+ *index = val & 3;
+ } else if ( val < 15 * 4 ) { //rate 13 - 14
+ *shift = 0;
+ *index = val - 12 * 4;
+ } else { //rate 15 and up
+ *shift = 0;
+ *index = 12;
+ }
+}
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+/*
+ Generate the different waveforms out of the sine/exponetial table using handlers
+*/
+static inline Bits MakeVolume( Bitu wave, Bitu volume ) {
+ Bitu total = wave + volume;
+ Bitu index = total & 0xff;
+ Bitu sig = ExpTable[ index ];
+ Bitu exp = total >> 8;
+#if 0
+ //Check if we overflow the 31 shift limit
+ if ( exp >= 32 ) {
+ LOG_MSG( "WTF %d %d", total, exp );
+ }
+#endif
+ return (sig >> exp);
+};
+
+static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) {
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) {
+ Bit32u wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) {
+ Bitu wave = SinTable[i & 511];
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) {
+ Bitu wave = SinTable[i & 255];
+ wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) {
+ //Twice as fast
+ i <<= 1;
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) {
+ //Twice as fast
+ i <<= 1;
+ Bitu wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) {
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ return (MakeVolume( 0, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) {
+ //Negative is reversed here
+ Bits neg = (( i >> 9) & 1) - 1;
+ Bitu wave = (i << 3);
+ //When negative the volume also runs backwards
+ wave = ((wave ^ neg) - neg) & 4095;
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+
+static const WaveHandler WaveHandlerTable[8] = {
+ WaveForm0, WaveForm1, WaveForm2, WaveForm3,
+ WaveForm4, WaveForm5, WaveForm6, WaveForm7
+};
+
+#endif
+
+/*
+ Operator
+*/
+
+//We zero out when rate == 0
+static inline void Operator__UpdateAttack(Operator *self, const Chip* chip ) {
+ Bit8u rate = self->reg60 >> 4;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + self->ksr;
+ self->attackAdd = chip->attackRates[ val ];
+ self->rateZero &= ~(1 << ATTACK);
+ } else {
+ self->attackAdd = 0;
+ self->rateZero |= (1 << ATTACK);
+ }
+}
+static inline void Operator__UpdateDecay(Operator *self, const Chip* chip ) {
+ Bit8u rate = self->reg60 & 0xf;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + self->ksr;
+ self->decayAdd = chip->linearRates[ val ];
+ self->rateZero &= ~(1 << DECAY);
+ } else {
+ self->decayAdd = 0;
+ self->rateZero |= (1 << DECAY);
+ }
+}
+static inline void Operator__UpdateRelease(Operator *self, const Chip* chip ) {
+ Bit8u rate = self->reg80 & 0xf;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + self->ksr;
+ self->releaseAdd = chip->linearRates[ val ];
+ self->rateZero &= ~(1 << RELEASE);
+ if ( !(self->reg20 & MASK_SUSTAIN ) ) {
+ self->rateZero &= ~( 1 << SUSTAIN );
+ }
+ } else {
+ self->rateZero |= (1 << RELEASE);
+ self->releaseAdd = 0;
+ if ( !(self->reg20 & MASK_SUSTAIN ) ) {
+ self->rateZero |= ( 1 << SUSTAIN );
+ }
+ }
+}
+
+static inline void Operator__UpdateAttenuation(Operator *self) {
+ Bit8u kslBase = (Bit8u)((self->chanData >> SHIFT_KSLBASE) & 0xff);
+ Bit32u tl = self->reg40 & 0x3f;
+ Bit8u kslShift = KslShiftTable[ self->reg40 >> 6 ];
+ //Make sure the attenuation goes to the right bits
+ self->totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max
+ self->totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
+}
+
+static void Operator__UpdateFrequency(Operator *self) {
+ Bit32u freq = self->chanData & (( 1 << 10 ) - 1);
+ Bit32u block = (self->chanData >> 10) & 0xff;
+#ifdef WAVE_PRECISION
+ block = 7 - block;
+ self->waveAdd = ( freq * self->freqMul ) >> block;
+#else
+ self->waveAdd = ( freq << block ) * self->freqMul;
+#endif
+ if ( self->reg20 & MASK_VIBRATO ) {
+ self->vibStrength = (Bit8u)(freq >> 7);
+
+#ifdef WAVE_PRECISION
+ self->vibrato = ( self->vibStrength * self->freqMul ) >> block;
+#else
+ self->vibrato = ( self->vibStrength << block ) * self->freqMul;
+#endif
+ } else {
+ self->vibStrength = 0;
+ self->vibrato = 0;
+ }
+}
+
+static void Operator__UpdateRates(Operator *self, const Chip* chip ) {
+ //Mame seems to reverse this where enabling ksr actually lowers
+ //the rate, but pdf manuals says otherwise?
+ Bit8u newKsr = (Bit8u)((self->chanData >> SHIFT_KEYCODE) & 0xff);
+ if ( !( self->reg20 & MASK_KSR ) ) {
+ newKsr >>= 2;
+ }
+ if ( self->ksr == newKsr )
+ return;
+ self->ksr = newKsr;
+ Operator__UpdateAttack( self, chip );
+ Operator__UpdateDecay( self, chip );
+ Operator__UpdateRelease( self, chip );
+}
+
+static inline Bit32s Operator__RateForward(Operator *self, Bit32u add ) {
+ self->rateIndex += add;
+ Bit32s ret = self->rateIndex >> RATE_SH;
+ self->rateIndex = self->rateIndex & RATE_MASK;
+ return ret;
+}
+
+static Bits Operator__TemplateVolume(Operator *self, OperatorState yes) {
+ Bit32s vol = self->volume;
+ Bit32s change;
+ switch ( yes ) {
+ case OFF:
+ return ENV_MAX;
+ case ATTACK:
+ change = Operator__RateForward( self, self->attackAdd );
+ if ( !change )
+ return vol;
+ vol += ( (~vol) * change ) >> 3;
+ if ( vol < ENV_MIN ) {
+ self->volume = ENV_MIN;
+ self->rateIndex = 0;
+ Operator__SetState( self, DECAY );
+ return ENV_MIN;
+ }
+ break;
+ case DECAY:
+ vol += Operator__RateForward( self, self->decayAdd );
+ if ( GCC_UNLIKELY(vol >= self->sustainLevel) ) {
+ //Check if we didn't overshoot max attenuation, then just go off
+ if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+ self->volume = ENV_MAX;
+ Operator__SetState( self, OFF );
+ return ENV_MAX;
+ }
+ //Continue as sustain
+ self->rateIndex = 0;
+ Operator__SetState( self, SUSTAIN );
+ }
+ break;
+ case SUSTAIN:
+ if ( self->reg20 & MASK_SUSTAIN ) {
+ return vol;
+ }
+ //In sustain phase, but not sustaining, do regular release
+ case RELEASE:
+ vol += Operator__RateForward( self, self->releaseAdd );;
+ if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+ self->volume = ENV_MAX;
+ Operator__SetState( self, OFF );
+ return ENV_MAX;
+ }
+ break;
+ }
+ self->volume = vol;
+ return vol;
+}
+
+#define TEMPLATE_VOLUME(mode) \
+ static Bits Operator__TemplateVolume ## mode(Operator *self) \
+ { \
+ return Operator__TemplateVolume(self, mode); \
+ }
+
+TEMPLATE_VOLUME(OFF)
+TEMPLATE_VOLUME(RELEASE)
+TEMPLATE_VOLUME(SUSTAIN)
+TEMPLATE_VOLUME(ATTACK)
+TEMPLATE_VOLUME(DECAY)
+
+static const VolumeHandler VolumeHandlerTable[5] = {
+ &Operator__TemplateVolumeOFF,
+ &Operator__TemplateVolumeRELEASE,
+ &Operator__TemplateVolumeSUSTAIN,
+ &Operator__TemplateVolumeDECAY,
+ &Operator__TemplateVolumeATTACK,
+};
+
+static inline Bitu Operator__ForwardVolume(Operator *self) {
+ return self->currentLevel + (self->volHandler)(self);
+}
+
+
+static inline Bitu Operator__ForwardWave(Operator *self) {
+ self->waveIndex += self->waveCurrent;
+ return self->waveIndex >> WAVE_SH;
+}
+
+static void Operator__Write20(Operator *self, const Chip* chip, Bit8u val ) {
+ Bit8u change = (self->reg20 ^ val );
+ if ( !change )
+ return;
+ self->reg20 = val;
+ //Shift the tremolo bit over the entire register, saved a branch, YES!
+ self->tremoloMask = (Bit8s)(val) >> 7;
+ self->tremoloMask &= ~(( 1 << ENV_EXTRA ) -1);
+ //Update specific features based on changes
+ if ( change & MASK_KSR ) {
+ Operator__UpdateRates( self, chip );
+ }
+ //With sustain enable the volume doesn't change
+ if ( self->reg20 & MASK_SUSTAIN || ( !self->releaseAdd ) ) {
+ self->rateZero |= ( 1 << SUSTAIN );
+ } else {
+ self->rateZero &= ~( 1 << SUSTAIN );
+ }
+ //Frequency multiplier or vibrato changed
+ if ( change & (0xf | MASK_VIBRATO) ) {
+ self->freqMul = chip->freqMul[ val & 0xf ];
+ Operator__UpdateFrequency(self);
+ }
+}
+
+static void Operator__Write40(Operator *self, const Chip *chip, Bit8u val ) {
+ if (!(self->reg40 ^ val ))
+ return;
+ self->reg40 = val;
+ Operator__UpdateAttenuation( self );
+}
+
+static void Operator__Write60(Operator *self, const Chip* chip, Bit8u val ) {
+ Bit8u change = self->reg60 ^ val;
+ self->reg60 = val;
+ if ( change & 0x0f ) {
+ Operator__UpdateDecay( self, chip );
+ }
+ if ( change & 0xf0 ) {
+ Operator__UpdateAttack( self, chip );
+ }
+}
+
+static void Operator__Write80(Operator *self, const Chip* chip, Bit8u val ) {
+ Bit8u change = (self->reg80 ^ val );
+ if ( !change )
+ return;
+ self->reg80 = val;
+ Bit8u sustain = val >> 4;
+ //Turn 0xf into 0x1f
+ sustain |= ( sustain + 1) & 0x10;
+ self->sustainLevel = sustain << ( ENV_BITS - 5 );
+ if ( change & 0x0f ) {
+ Operator__UpdateRelease( self, chip );
+ }
+}
+
+static void Operator__WriteE0(Operator *self, const Chip* chip, Bit8u val ) {
+ if ( !(self->regE0 ^ val) )
+ return;
+ //in opl3 mode you can always selet 7 waveforms regardless of waveformselect
+ Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) );
+ self->regE0 = val;
+#if( DBOPL_WAVE == WAVE_HANDLER )
+ self->waveHandler = WaveHandlerTable[ waveForm ];
+#else
+ self->waveBase = WaveTable + WaveBaseTable[ waveForm ];
+ self->waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
+ self->waveMask = WaveMaskTable[ waveForm ];
+#endif
+}
+
+static inline void Operator__SetState(Operator *self, Bit8u s ) {
+ self->state = s;
+ self->volHandler = VolumeHandlerTable[ s ];
+}
+
+static inline int Operator__Silent(Operator *self) {
+ if ( !ENV_SILENT( self->totalLevel + self->volume ) )
+ return FALSE;
+ if ( !(self->rateZero & ( 1 << self->state ) ) )
+ return FALSE;
+ return TRUE;
+}
+
+static inline void Operator__Prepare(Operator *self, const Chip* chip ) {
+ self->currentLevel = self->totalLevel + (chip->tremoloValue & self->tremoloMask);
+ self->waveCurrent = self->waveAdd;
+ if ( self->vibStrength >> chip->vibratoShift ) {
+ Bit32s add = self->vibrato >> chip->vibratoShift;
+ //Sign extend over the shift value
+ Bit32s neg = chip->vibratoSign;
+ //Negate the add with -1 or 0
+ add = ( add ^ neg ) - neg;
+ self->waveCurrent += add;
+ }
+}
+
+static void Operator__KeyOn(Operator *self, Bit8u mask ) {
+ if ( !self->keyOn ) {
+ //Restart the frequency generator
+#if( DBOPL_WAVE > WAVE_HANDLER )
+ self->waveIndex = self->waveStart;
+#else
+ self->waveIndex = 0;
+#endif
+ self->rateIndex = 0;
+ Operator__SetState( self, ATTACK );
+ }
+ self->keyOn |= mask;
+}
+
+static void Operator__KeyOff(Operator *self, Bit8u mask ) {
+ self->keyOn &= ~mask;
+ if ( !self->keyOn ) {
+ if ( self->state != OFF ) {
+ Operator__SetState( self, RELEASE );
+ }
+ }
+}
+
+static inline Bits Operator__GetWave(Operator *self, Bitu index, Bitu vol ) {
+#if( DBOPL_WAVE == WAVE_HANDLER )
+ return self->waveHandler( index, vol << ( 3 - ENV_EXTRA ) );
+#elif( DBOPL_WAVE == WAVE_TABLEMUL )
+ return(self->waveBase[ index & self->waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
+#elif( DBOPL_WAVE == WAVE_TABLELOG )
+ Bit32s wave = self->waveBase[ index & self->waveMask ];
+ Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA );
+ Bit32s sig = ExpTable[ total & 0xff ];
+ Bit32u exp = total >> 8;
+ Bit32s neg = wave >> 16;
+ return((sig ^ neg) - neg) >> exp;
+#else
+#error "No valid wave routine"
+#endif
+}
+
+static inline Bits Operator__GetSample(Operator *self, Bits modulation ) {
+ Bitu vol = Operator__ForwardVolume(self);
+ if ( ENV_SILENT( vol ) ) {
+ //Simply forward the wave
+ self->waveIndex += self->waveCurrent;
+ return 0;
+ } else {
+ Bitu index = Operator__ForwardWave(self);
+ index += modulation;
+ return Operator__GetWave( self, index, vol );
+ }
+}
+
+static void Operator__Operator(Operator *self) {
+ self->chanData = 0;
+ self->freqMul = 0;
+ self->waveIndex = 0;
+ self->waveAdd = 0;
+ self->waveCurrent = 0;
+ self->keyOn = 0;
+ self->ksr = 0;
+ self->reg20 = 0;
+ self->reg40 = 0;
+ self->reg60 = 0;
+ self->reg80 = 0;
+ self->regE0 = 0;
+ Operator__SetState( self, OFF );
+ self->rateZero = (1 << OFF);
+ self->sustainLevel = ENV_MAX;
+ self->currentLevel = ENV_MAX;
+ self->totalLevel = ENV_MAX;
+ self->volume = ENV_MAX;
+ self->releaseAdd = 0;
+}
+
+/*
+ Channel
+*/
+
+static void Channel__Channel(Channel *self) {
+ Operator__Operator(&self->op[0]);
+ Operator__Operator(&self->op[1]);
+ self->old[0] = self->old[1] = 0;
+ self->chanData = 0;
+ self->regB0 = 0;
+ self->regC0 = 0;
+ self->maskLeft = -1;
+ self->maskRight = -1;
+ self->feedback = 31;
+ self->fourMask = 0;
+ self->synthHandler = Channel__BlockTemplate_sm2FM;
+};
+
+static inline Operator* Channel__Op( Channel *self, Bitu index ) {
+ return &( ( self + (index >> 1) )->op[ index & 1 ]);
+}
+
+static void Channel__SetChanData(Channel *self, const Chip* chip, Bit32u data ) {
+ Bit32u change = self->chanData ^ data;
+ self->chanData = data;
+ Channel__Op( self, 0 )->chanData = data;
+ Channel__Op( self, 1 )->chanData = data;
+ //Since a frequency update triggered this, always update frequency
+ Operator__UpdateFrequency(Channel__Op( self, 0 ));
+ Operator__UpdateFrequency(Channel__Op( self, 1 ));
+ if ( change & ( 0xff << SHIFT_KSLBASE ) ) {
+ Operator__UpdateAttenuation(Channel__Op( self, 0 ));
+ Operator__UpdateAttenuation(Channel__Op( self, 1 ));
+ }
+ if ( change & ( 0xff << SHIFT_KEYCODE ) ) {
+ Operator__UpdateRates(Channel__Op( self, 0 ), chip);
+ Operator__UpdateRates(Channel__Op( self, 1 ), chip);
+ }
+}
+
+static void Channel__UpdateFrequency(Channel *self, const Chip* chip, Bit8u fourOp ) {
+ //Extrace the frequency bits
+ Bit32u data = self->chanData & 0xffff;
+ Bit32u kslBase = KslTable[ data >> 6 ];
+ Bit32u keyCode = ( data & 0x1c00) >> 9;
+ if ( chip->reg08 & 0x40 ) {
+ keyCode |= ( data & 0x100)>>8; /* notesel == 1 */
+ } else {
+ keyCode |= ( data & 0x200)>>9; /* notesel == 0 */
+ }
+ //Add the keycode and ksl into the highest bits of chanData
+ data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE );
+ Channel__SetChanData( self + 0, chip, data );
+ if ( fourOp & 0x3f ) {
+ Channel__SetChanData( self + 1, chip, data );
+ }
+}
+
+static void Channel__WriteA0(Channel *self, const Chip* chip, Bit8u val ) {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask;
+ //Don't handle writes to silent fourop channels
+ if ( fourOp > 0x80 )
+ return;
+ Bit32u change = (self->chanData ^ val ) & 0xff;
+ if ( change ) {
+ self->chanData ^= change;
+ Channel__UpdateFrequency( self, chip, fourOp );
+ }
+}
+
+static void Channel__WriteB0(Channel *self, const Chip* chip, Bit8u val ) {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask;
+ //Don't handle writes to silent fourop channels
+ if ( fourOp > 0x80 )
+ return;
+ Bitu change = (self->chanData ^ ( val << 8 ) ) & 0x1f00;
+ if ( change ) {
+ self->chanData ^= change;
+ Channel__UpdateFrequency( self, chip, fourOp );
+ }
+ //Check for a change in the keyon/off state
+ if ( !(( val ^ self->regB0) & 0x20))
+ return;
+ self->regB0 = val;
+ if ( val & 0x20 ) {
+ Operator__KeyOn( Channel__Op(self, 0), 0x1 );
+ Operator__KeyOn( Channel__Op(self, 1), 0x1 );
+ if ( fourOp & 0x3f ) {
+ Operator__KeyOn( Channel__Op(self + 1, 0), 1 );
+ Operator__KeyOn( Channel__Op(self + 1, 1), 1 );
+ }
+ } else {
+ Operator__KeyOff( Channel__Op(self, 0), 0x1 );
+ Operator__KeyOff( Channel__Op(self, 1), 0x1 );
+ if ( fourOp & 0x3f ) {
+ Operator__KeyOff( Channel__Op(self + 1, 0), 1 );
+ Operator__KeyOff( Channel__Op(self + 1, 1), 1 );
+ }
+ }
+}
+
+static void Channel__WriteC0(Channel *self, const Chip* chip, Bit8u val ) {
+ Bit8u change = val ^ self->regC0;
+ if ( !change )
+ return;
+ self->regC0 = val;
+ self->feedback = ( val >> 1 ) & 7;
+ if ( self->feedback ) {
+ //We shift the input to the right 10 bit wave index value
+ self->feedback = 9 - self->feedback;
+ } else {
+ self->feedback = 31;
+ }
+ //Select the new synth mode
+ if ( chip->opl3Active ) {
+ //4-op mode enabled for this channel
+ if ( (chip->reg104 & self->fourMask) & 0x3f ) {
+ Channel* chan0, *chan1;
+ //Check if it's the 2nd channel in a 4-op
+ if ( !(self->fourMask & 0x80 ) ) {
+ chan0 = self;
+ chan1 = self + 1;
+ } else {
+ chan0 = self - 1;
+ chan1 = self;
+ }
+
+ Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 );
+ switch ( synth ) {
+ case 0:
+ chan0->synthHandler = Channel__BlockTemplate_sm3FMFM;
+ break;
+ case 1:
+ chan0->synthHandler = Channel__BlockTemplate_sm3AMFM;
+ break;
+ case 2:
+ chan0->synthHandler = Channel__BlockTemplate_sm3FMAM ;
+ break;
+ case 3:
+ chan0->synthHandler = Channel__BlockTemplate_sm3AMAM ;
+ break;
+ }
+ //Disable updating percussion channels
+ } else if ((self->fourMask & 0x40) && ( chip->regBD & 0x20) ) {
+
+ //Regular dual op, am or fm
+ } else if ( val & 1 ) {
+ self->synthHandler = Channel__BlockTemplate_sm3AM;
+ } else {
+ self->synthHandler = Channel__BlockTemplate_sm3FM;
+ }
+ self->maskLeft = ( val & 0x10 ) ? -1 : 0;
+ self->maskRight = ( val & 0x20 ) ? -1 : 0;
+ //opl2 active
+ } else {
+ //Disable updating percussion channels
+ if ( (self->fourMask & 0x40) && ( chip->regBD & 0x20 ) ) {
+
+ //Regular dual op, am or fm
+ } else if ( val & 1 ) {
+ self->synthHandler = Channel__BlockTemplate_sm2AM;
+ } else {
+ self->synthHandler = Channel__BlockTemplate_sm2FM;
+ }
+ }
+}
+
+static void Channel__ResetC0(Channel *self, const Chip* chip ) {
+ Bit8u val = self->regC0;
+ self->regC0 ^= 0xff;
+ Channel__WriteC0( self, chip, val );
+};
+
+static inline void Channel__GeneratePercussion(Channel *self, Chip* chip,
+ Bit32s* output, int opl3Mode ) {
+ Channel* chan = self;
+
+ //BassDrum
+ Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback;
+ self->old[0] = self->old[1];
+ self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod );
+
+ //When bassdrum is in AM mode first operator is ignoed
+ if ( chan->regC0 & 1 ) {
+ mod = 0;
+ } else {
+ mod = self->old[0];
+ }
+ Bit32s sample = Operator__GetSample( Channel__Op(self, 1), mod );
+
+ //Precalculate stuff used by other outputs
+ Bit32u noiseBit = Chip__ForwardNoise(chip) & 0x1;
+ Bit32u c2 = Operator__ForwardWave(Channel__Op(self, 2));
+ Bit32u c5 = Operator__ForwardWave(Channel__Op(self, 5));
+ Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00;
+
+ //Hi-Hat
+ Bit32u hhVol = Operator__ForwardVolume(Channel__Op(self, 2));
+ if ( !ENV_SILENT( hhVol ) ) {
+ Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 )));
+ sample += Operator__GetWave( Channel__Op(self, 2), hhIndex, hhVol );
+ }
+ //Snare Drum
+ Bit32u sdVol = Operator__ForwardVolume( Channel__Op(self, 3) );
+ if ( !ENV_SILENT( sdVol ) ) {
+ Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 );
+ sample += Operator__GetWave( Channel__Op(self, 3), sdIndex, sdVol );
+ }
+ //Tom-tom
+ sample += Operator__GetSample( Channel__Op(self, 4), 0 );
+
+ //Top-Cymbal
+ Bit32u tcVol = Operator__ForwardVolume(Channel__Op(self, 5));
+ if ( !ENV_SILENT( tcVol ) ) {
+ Bit32u tcIndex = (1 + phaseBit) << 8;
+ sample += Operator__GetWave( Channel__Op(self, 5), tcIndex, tcVol );
+ }
+ sample <<= 1;
+ if ( opl3Mode ) {
+ output[0] += sample;
+ output[1] += sample;
+ } else {
+ output[0] += sample;
+ }
+}
+
+Channel* Channel__BlockTemplate(Channel *self, Chip* chip,
+ Bit32u samples, Bit32s* output,
+ SynthMode mode ) {
+ Bitu i;
+
+ switch( mode ) {
+ case sm2AM:
+ case sm3AM:
+ if ( Operator__Silent(Channel__Op(self, 0))
+ && Operator__Silent(Channel__Op(self, 1))) {
+ self->old[0] = self->old[1] = 0;
+ return(self + 1);
+ }
+ break;
+ case sm2FM:
+ case sm3FM:
+ if ( Operator__Silent(Channel__Op(self, 1))) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 1);
+ }
+ break;
+ case sm3FMFM:
+ if ( Operator__Silent(Channel__Op(self, 3))) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 2);
+ }
+ break;
+ case sm3AMFM:
+ if ( Operator__Silent( Channel__Op(self, 0) )
+ && Operator__Silent( Channel__Op(self, 3) )) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 2);
+ }
+ break;
+ case sm3FMAM:
+ if ( Operator__Silent( Channel__Op(self, 1))
+ && Operator__Silent( Channel__Op(self, 3))) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 2);
+ }
+ break;
+ case sm3AMAM:
+ if ( Operator__Silent( Channel__Op(self, 0) )
+ && Operator__Silent( Channel__Op(self, 2) )
+ && Operator__Silent( Channel__Op(self, 3) )) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 2);
+ }
+ break;
+
+ default:
+ abort();
+ }
+ //Init the operators with the the current vibrato and tremolo values
+ Operator__Prepare( Channel__Op( self, 0 ), chip );
+ Operator__Prepare( Channel__Op( self, 1 ), chip );
+ if ( mode > sm4Start ) {
+ Operator__Prepare( Channel__Op( self, 2 ), chip );
+ Operator__Prepare( Channel__Op( self, 3 ), chip );
+ }
+ if ( mode > sm6Start ) {
+ Operator__Prepare( Channel__Op( self, 4 ), chip );
+ Operator__Prepare( Channel__Op( self, 5 ), chip );
+ }
+ for ( i = 0; i < samples; i++ ) {
+ //Early out for percussion handlers
+ if ( mode == sm2Percussion ) {
+ Channel__GeneratePercussion( self, chip, output + i, FALSE );
+ continue; //Prevent some unitialized value bitching
+ } else if ( mode == sm3Percussion ) {
+ Channel__GeneratePercussion( self, chip, output + i * 2, TRUE );
+ continue; //Prevent some unitialized value bitching
+ }
+
+ //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
+ Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback;
+ self->old[0] = self->old[1];
+ self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod );
+ Bit32s sample = 0;
+ Bit32s out0 = self->old[0];
+ if ( mode == sm2AM || mode == sm3AM ) {
+ sample = out0 + Operator__GetSample( Channel__Op(self, 1), 0 );
+ } else if ( mode == sm2FM || mode == sm3FM ) {
+ sample = Operator__GetSample( Channel__Op(self, 1), out0 );
+ } else if ( mode == sm3FMFM ) {
+ Bits next = Operator__GetSample( Channel__Op(self, 1), out0 );
+ next = Operator__GetSample( Channel__Op(self, 2), next );
+ sample = Operator__GetSample( Channel__Op(self, 3), next );
+ } else if ( mode == sm3AMFM ) {
+ sample = out0;
+ Bits next = Operator__GetSample( Channel__Op(self, 1), 0 );
+ next = Operator__GetSample( Channel__Op(self, 2), next );
+ sample += Operator__GetSample( Channel__Op(self, 3), next );
+ } else if ( mode == sm3FMAM ) {
+ sample = Operator__GetSample( Channel__Op(self, 1), out0 );
+ Bits next = Operator__GetSample( Channel__Op(self, 2), 0 );
+ sample += Operator__GetSample( Channel__Op(self, 3), next );
+ } else if ( mode == sm3AMAM ) {
+ sample = out0;
+ Bits next = Operator__GetSample( Channel__Op(self, 1), 0 );
+ sample += Operator__GetSample( Channel__Op(self, 2), next );
+ sample += Operator__GetSample( Channel__Op(self, 3), 0 );
+ }
+ switch( mode ) {
+ case sm2AM:
+ case sm2FM:
+ output[ i ] += sample;
+ break;
+ case sm3AM:
+ case sm3FM:
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ output[ i * 2 + 0 ] += sample & self->maskLeft;
+ output[ i * 2 + 1 ] += sample & self->maskRight;
+ break;
+ default:
+ abort();
+ }
+ }
+ switch( mode ) {
+ case sm2AM:
+ case sm2FM:
+ case sm3AM:
+ case sm3FM:
+ return ( self + 1 );
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ return ( self + 2 );
+ case sm2Percussion:
+ case sm3Percussion:
+ return( self + 3 );
+ default:
+ abort();
+ }
+ return 0;
+}
+
+/*
+ Chip
+*/
+
+void Chip__Chip(Chip *self) {
+ int i;
+
+ for (i=0; i<18; ++i) {
+ Channel__Channel(&self->chan[i]);
+ }
+
+ self->reg08 = 0;
+ self->reg04 = 0;
+ self->regBD = 0;
+ self->reg104 = 0;
+ self->opl3Active = 0;
+}
+
+static inline Bit32u Chip__ForwardNoise(Chip *self) {
+ self->noiseCounter += self->noiseAdd;
+ Bitu count = self->noiseCounter >> LFO_SH;
+ self->noiseCounter &= WAVE_MASK;
+ for ( ; count > 0; --count ) {
+ //Noise calculation from mame
+ self->noiseValue ^= ( 0x800302 ) & ( 0 - (self->noiseValue & 1 ) );
+ self->noiseValue >>= 1;
+ }
+ return self->noiseValue;
+}
+
+static inline Bit32u Chip__ForwardLFO(Chip *self, Bit32u samples ) {
+ //Current vibrato value, runs 4x slower than tremolo
+ self->vibratoSign = ( VibratoTable[ self->vibratoIndex >> 2] ) >> 7;
+ self->vibratoShift = ( VibratoTable[ self->vibratoIndex >> 2] & 7) + self->vibratoStrength;
+ self->tremoloValue = TremoloTable[ self->tremoloIndex ] >> self->tremoloStrength;
+
+ //Check hom many samples there can be done before the value changes
+ Bit32u todo = LFO_MAX - self->lfoCounter;
+ Bit32u count = (todo + self->lfoAdd - 1) / self->lfoAdd;
+ if ( count > samples ) {
+ count = samples;
+ self->lfoCounter += count * self->lfoAdd;
+ } else {
+ self->lfoCounter += count * self->lfoAdd;
+ self->lfoCounter &= (LFO_MAX - 1);
+ //Maximum of 7 vibrato value * 4
+ self->vibratoIndex = ( self->vibratoIndex + 1 ) & 31;
+ //Clip tremolo to the the table size
+ if ( self->tremoloIndex + 1 < TREMOLO_TABLE )
+ ++self->tremoloIndex;
+ else
+ self->tremoloIndex = 0;
+ }
+ return count;
+}
+
+
+static void Chip__WriteBD(Chip *self, Bit8u val ) {
+ Bit8u change = self->regBD ^ val;
+ if ( !change )
+ return;
+ self->regBD = val;
+ //TODO could do this with shift and xor?
+ self->vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
+ self->tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
+ if ( val & 0x20 ) {
+ //Drum was just enabled, make sure channel 6 has the right synth
+ if ( change & 0x20 ) {
+ if ( self->opl3Active ) {
+ self->chan[6].synthHandler
+ = Channel__BlockTemplate_sm3Percussion;
+ } else {
+ self->chan[6].synthHandler
+ = Channel__BlockTemplate_sm2Percussion;
+ }
+ }
+ //Bass Drum
+ if ( val & 0x10 ) {
+ Operator__KeyOn( &self->chan[6].op[0], 0x2 );
+ Operator__KeyOn( &self->chan[6].op[1], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[6].op[0], 0x2 );
+ Operator__KeyOff( &self->chan[6].op[1], 0x2 );
+ }
+ //Hi-Hat
+ if ( val & 0x1 ) {
+ Operator__KeyOn( &self->chan[7].op[0], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[7].op[0], 0x2 );
+ }
+ //Snare
+ if ( val & 0x8 ) {
+ Operator__KeyOn( &self->chan[7].op[1], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[7].op[1], 0x2 );
+ }
+ //Tom-Tom
+ if ( val & 0x4 ) {
+ Operator__KeyOn( &self->chan[8].op[0], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[8].op[0], 0x2 );
+ }
+ //Top Cymbal
+ if ( val & 0x2 ) {
+ Operator__KeyOn( &self->chan[8].op[1], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[8].op[1], 0x2 );
+ }
+ //Toggle keyoffs when we turn off the percussion
+ } else if ( change & 0x20 ) {
+ //Trigger a reset to setup the original synth handler
+ Channel__ResetC0( &self->chan[6], self );
+ Operator__KeyOff( &self->chan[6].op[0], 0x2 );
+ Operator__KeyOff( &self->chan[6].op[1], 0x2 );
+ Operator__KeyOff( &self->chan[7].op[0], 0x2 );
+ Operator__KeyOff( &self->chan[7].op[1], 0x2 );
+ Operator__KeyOff( &self->chan[8].op[0], 0x2 );
+ Operator__KeyOff( &self->chan[8].op[1], 0x2 );
+ }
+}
+
+
+#define REGOP( _FUNC_ ) \
+ index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
+ if ( OpOffsetTable[ index ] ) { \
+ Operator* regOp = (Operator*)( ((char *)self ) + OpOffsetTable[ index ] ); \
+ Operator__ ## _FUNC_ (regOp, self, val); \
+ }
+
+#define REGCHAN( _FUNC_ ) \
+ index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
+ if ( ChanOffsetTable[ index ] ) { \
+ Channel* regChan = (Channel*)( ((char *)self ) + ChanOffsetTable[ index ] ); \
+ Channel__ ## _FUNC_ (regChan, self, val); \
+ }
+
+void Chip__WriteReg(Chip *self, Bit32u reg, Bit8u val ) {
+ Bitu index;
+ switch ( (reg & 0xf0) >> 4 ) {
+ case 0x00 >> 4:
+ if ( reg == 0x01 ) {
+ self->waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0;
+ } else if ( reg == 0x104 ) {
+ //Only detect changes in lowest 6 bits
+ if ( !((self->reg104 ^ val) & 0x3f) )
+ return;
+ //Always keep the highest bit enabled, for checking > 0x80
+ self->reg104 = 0x80 | ( val & 0x3f );
+ } else if ( reg == 0x105 ) {
+ int i;
+
+ //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
+ if ( !((self->opl3Active ^ val) & 1 ) )
+ return;
+ self->opl3Active = ( val & 1 ) ? 0xff : 0;
+ //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
+ for ( i = 0; i < 18;i++ ) {
+ Channel__ResetC0( &self->chan[i], self );
+ }
+ } else if ( reg == 0x08 ) {
+ self->reg08 = val;
+ }
+ case 0x10 >> 4:
+ break;
+ case 0x20 >> 4:
+ case 0x30 >> 4:
+ REGOP( Write20 );
+ break;
+ case 0x40 >> 4:
+ case 0x50 >> 4:
+ REGOP( Write40 );
+ break;
+ case 0x60 >> 4:
+ case 0x70 >> 4:
+ REGOP( Write60 );
+ break;
+ case 0x80 >> 4:
+ case 0x90 >> 4:
+ REGOP( Write80 );
+ break;
+ case 0xa0 >> 4:
+ REGCHAN( WriteA0 );
+ break;
+ case 0xb0 >> 4:
+ if ( reg == 0xbd ) {
+ Chip__WriteBD( self, val );
+ } else {
+ REGCHAN( WriteB0 );
+ }
+ break;
+ case 0xc0 >> 4:
+ REGCHAN( WriteC0 );
+ case 0xd0 >> 4:
+ break;
+ case 0xe0 >> 4:
+ case 0xf0 >> 4:
+ REGOP( WriteE0 );
+ break;
+ }
+}
+
+Bit32u Chip__WriteAddr(Chip *self, Bit32u port, Bit8u val ) {
+ switch ( port & 3 ) {
+ case 0:
+ return val;
+ case 2:
+ if ( self->opl3Active || (val == 0x05) )
+ return 0x100 | val;
+ else
+ return val;
+ }
+ return 0;
+}
+
+void Chip__GenerateBlock2(Chip *self, Bitu total, Bit32s* output ) {
+ while ( total > 0 ) {
+ Channel *ch;
+ int count;
+
+ Bit32u samples = Chip__ForwardLFO( self, total );
+ memset(output, 0, sizeof(Bit32s) * samples);
+ count = 0;
+ for ( ch = self->chan; ch < self->chan + 9; ) {
+ count++;
+ ch = (ch->synthHandler)( ch, self, samples, output );
+ }
+ total -= samples;
+ output += samples;
+ }
+}
+
+void Chip__GenerateBlock3(Chip *self, Bitu total, Bit32s* output ) {
+ while ( total > 0 ) {
+ int count;
+ Channel *ch;
+
+ Bit32u samples = Chip__ForwardLFO( self, total );
+ memset(output, 0, sizeof(Bit32s) * samples *2);
+ count = 0;
+ for ( ch = self->chan; ch < self->chan + 18; ) {
+ count++;
+ ch = (ch->synthHandler)( ch, self, samples, output );
+ }
+ total -= samples;
+ output += samples * 2;
+ }
+}
+
+void Chip__Setup(Chip *self, Bit32u rate ) {
+ double original = OPLRATE;
+ Bit32u i;
+// double original = rate;
+ double scale = original / (double)rate;
+
+ //Noise counter is run at the same precision as general waves
+ self->noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+ self->noiseCounter = 0;
+ self->noiseValue = 1; //Make sure it triggers the noise xor the first time
+ //The low frequency oscillation counter
+ //Every time his overflows vibrato and tremoloindex are increased
+ self->lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+ self->lfoCounter = 0;
+ self->vibratoIndex = 0;
+ self->tremoloIndex = 0;
+
+ //With higher octave this gets shifted up
+ //-1 since the freqCreateTable = *2
+#ifdef WAVE_PRECISION
+ double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10));
+ for ( i = 0; i < 16; i++ ) {
+ self->freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] );
+ }
+#else
+ Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10)));
+ for ( i = 0; i < 16; i++ ) {
+ self->freqMul[i] = freqScale * FreqCreateTable[ i ];
+ }
+#endif
+
+ //-3 since the real envelope takes 8 steps to reach the single value we supply
+ for ( i = 0; i < 76; i++ ) {
+ Bit8u index, shift;
+ EnvelopeSelect( i, &index, &shift );
+ self->linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 )));
+ }
+ //Generate the best matching attack rate
+ for ( i = 0; i < 62; i++ ) {
+ Bit8u index, shift;
+ EnvelopeSelect( i, &index, &shift );
+ //Original amount of samples the attack would take
+ Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale);
+
+ Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 )));
+ Bit32s bestAdd = guessAdd;
+ Bit32u bestDiff = 1 << 30;
+ Bit32u passes;
+
+ for ( passes = 0; passes < 16; passes ++ ) {
+ Bit32s volume = ENV_MAX;
+ Bit32s samples = 0;
+ Bit32u count = 0;
+ while ( volume > 0 && samples < original * 2 ) {
+ count += guessAdd;
+ Bit32s change = count >> RATE_SH;
+ count &= RATE_MASK;
+ if ( GCC_UNLIKELY(change) ) { // less than 1 %
+ volume += ( ~volume * change ) >> 3;
+ }
+ samples++;
+
+ }
+ Bit32s diff = original - samples;
+ Bit32u lDiff = labs( diff );
+ //Init last on first pass
+ if ( lDiff < bestDiff ) {
+ bestDiff = lDiff;
+ bestAdd = guessAdd;
+ if ( !bestDiff )
+ break;
+ }
+ //Below our target
+ if ( diff < 0 ) {
+ //Better than the last time
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = ((guessAdd * mul) >> 12);
+ guessAdd++;
+ } else if ( diff > 0 ) {
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = (guessAdd * mul) >> 12;
+ guessAdd--;
+ }
+ }
+ self->attackRates[i] = bestAdd;
+ }
+ for ( i = 62; i < 76; i++ ) {
+ //This should provide instant volume maximizing
+ self->attackRates[i] = 8 << RATE_SH;
+ }
+ //Setup the channels with the correct four op flags
+ //Channels are accessed through a table so they appear linear here
+ self->chan[ 0].fourMask = 0x00 | ( 1 << 0 );
+ self->chan[ 1].fourMask = 0x80 | ( 1 << 0 );
+ self->chan[ 2].fourMask = 0x00 | ( 1 << 1 );
+ self->chan[ 3].fourMask = 0x80 | ( 1 << 1 );
+ self->chan[ 4].fourMask = 0x00 | ( 1 << 2 );
+ self->chan[ 5].fourMask = 0x80 | ( 1 << 2 );
+
+ self->chan[ 9].fourMask = 0x00 | ( 1 << 3 );
+ self->chan[10].fourMask = 0x80 | ( 1 << 3 );
+ self->chan[11].fourMask = 0x00 | ( 1 << 4 );
+ self->chan[12].fourMask = 0x80 | ( 1 << 4 );
+ self->chan[13].fourMask = 0x00 | ( 1 << 5 );
+ self->chan[14].fourMask = 0x80 | ( 1 << 5 );
+
+ //mark the percussion channels
+ self->chan[ 6].fourMask = 0x40;
+ self->chan[ 7].fourMask = 0x40;
+ self->chan[ 8].fourMask = 0x40;
+
+ //Clear Everything in opl3 mode
+ Chip__WriteReg( self, 0x105, 0x1 );
+ for ( i = 0; i < 512; i++ ) {
+ if ( i == 0x105 )
+ continue;
+ Chip__WriteReg( self, i, 0xff );
+ Chip__WriteReg( self, i, 0x0 );
+ }
+ Chip__WriteReg( self, 0x105, 0x0 );
+ //Clear everything in opl2 mode
+ for ( i = 0; i < 255; i++ ) {
+ Chip__WriteReg( self, i, 0xff );
+ Chip__WriteReg( self, i, 0x0 );
+ }
+}
+
+static int doneTables = FALSE;
+void DBOPL_InitTables( void ) {
+ int i, oct;
+
+ if ( doneTables )
+ return;
+ doneTables = TRUE;
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+ //Exponential volume table, same as the real adlib
+ for ( i = 0; i < 256; i++ ) {
+ //Save them in reverse
+ ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 );
+ ExpTable[i] += 1024; //or remove the -1 oh well :)
+ //Preshift to the left once so the final volume can shift to the right
+ ExpTable[i] *= 2;
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+ //Add 0.5 for the trunc rounding of the integer cast
+ //Do a PI sinetable instead of the original 0.5 PI
+ for ( i = 0; i < 512; i++ ) {
+ SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+ //Multiplication based tables
+ for ( i = 0; i < 384; i++ ) {
+ int s = i * 8;
+ //TODO maybe keep some of the precision errors of the original table?
+ double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH ));
+ MulTable[i] = (Bit16u)(val);
+ }
+
+ //Sine Wave Base
+ for ( i = 0; i < 512; i++ ) {
+ WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084);
+ WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
+ }
+ //Exponential wave
+ for ( i = 0; i < 256; i++ ) {
+ WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 );
+ WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLELOG )
+ //Sine Wave Base
+ for ( i = 0; i < 512; i++ ) {
+ WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+ WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
+ }
+ //Exponential wave
+ for ( i = 0; i < 256; i++ ) {
+ WaveTable[ 0x700 + i ] = i * 8;
+ WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
+ }
+#endif
+
+ // | |//\\|____|WAV7|//__|/\ |____|/\/\|
+ // |\\//| | |WAV7| | \/| | |
+ // |06 |0126|27 |7 |3 |4 |4 5 |5 |
+
+#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
+ for ( i = 0; i < 256; i++ ) {
+ //Fill silence gaps
+ WaveTable[ 0x400 + i ] = WaveTable[0];
+ WaveTable[ 0x500 + i ] = WaveTable[0];
+ WaveTable[ 0x900 + i ] = WaveTable[0];
+ WaveTable[ 0xc00 + i ] = WaveTable[0];
+ WaveTable[ 0xd00 + i ] = WaveTable[0];
+ //Replicate sines in other pieces
+ WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
+ //double speed sines
+ WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
+ WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ }
+#endif
+
+ //Create the ksl table
+ for ( oct = 0; oct < 8; oct++ ) {
+ int base = oct * 8;
+ for ( i = 0; i < 16; i++ ) {
+ int val = base - KslCreateTable[i];
+ if ( val < 0 )
+ val = 0;
+ //*4 for the final range to match attenuation range
+ KslTable[ oct * 16 + i ] = val * 4;
+ }
+ }
+ //Create the Tremolo table, just increase and decrease a triangle wave
+ for ( i = 0; i < TREMOLO_TABLE / 2; i++ ) {
+ Bit8u val = i << ENV_EXTRA;
+ TremoloTable[i] = val;
+ TremoloTable[TREMOLO_TABLE - 1 - i] = val;
+ }
+ //Create a table with offsets of the channels from the start of the chip
+ Chip *chip = NULL;
+ for ( i = 0; i < 32; i++ ) {
+ Bitu index = i & 0xf;
+ if ( index >= 9 ) {
+ ChanOffsetTable[i] = 0;
+ continue;
+ }
+ //Make sure the four op channels follow eachother
+ if ( index < 6 ) {
+ index = (index % 3) * 2 + ( index / 3 );
+ }
+ //Add back the bits for highest ones
+ if ( i >= 16 )
+ index += 9;
+ Bitu blah = (Bitu) ( &(chip->chan[ index ]) );
+ ChanOffsetTable[i] = blah;
+ }
+ //Same for operators
+ for ( i = 0; i < 64; i++ ) {
+ if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) {
+ OpOffsetTable[i] = 0;
+ continue;
+ }
+ Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
+ //Make sure we use 16 and up for the 2nd range to match the chanoffset gap
+ if ( chNum >= 12 )
+ chNum += 16 - 12;
+ Bitu opNum = ( i % 8 ) / 3;
+ Channel* chan = NULL;
+ Bitu blah = (Bitu) ( &(chan->op[opNum]) );
+ OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah;
+ }
+#if 0
+ //Stupid checks if table's are correct
+ for ( Bitu i = 0; i < 18; i++ ) {
+ Bit32u find = (Bit16u)( &(chip->chan[ i ]) );
+ for ( Bitu c = 0; c < 32; c++ ) {
+ if ( ChanOffsetTable[c] == find ) {
+ find = 0;
+ break;
+ }
+ }
+ if ( find ) {
+ find = find;
+ }
+ }
+ for ( Bitu i = 0; i < 36; i++ ) {
+ Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) );
+ for ( Bitu c = 0; c < 64; c++ ) {
+ if ( OpOffsetTable[c] == find ) {
+ find = 0;
+ break;
+ }
+ }
+ if ( find ) {
+ find = find;
+ }
+ }
+#endif
+}
+
+/*
+
+Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) {
+ return chip.WriteAddr( port, val );
+
+}
+void Handler::WriteReg( Bit32u addr, Bit8u val ) {
+ chip.WriteReg( addr, val );
+}
+
+void Handler::Generate( MixerChannel* chan, Bitu samples ) {
+ Bit32s buffer[ 512 * 2 ];
+ if ( GCC_UNLIKELY(samples > 512) )
+ samples = 512;
+ if ( !chip.opl3Active ) {
+ chip.GenerateBlock2( samples, buffer );
+ chan->AddSamples_m32( samples, buffer );
+ } else {
+ chip.GenerateBlock3( samples, buffer );
+ chan->AddSamples_s32( samples, buffer );
+ }
+}
+
+void Handler::Init( Bitu rate ) {
+ InitTables();
+ chip.Setup( rate );
+}
+*/
+
diff --git a/opl/dbopl.h b/opl/dbopl.h
new file mode 100644
index 00000000..a5c10bfd
--- /dev/null
+++ b/opl/dbopl.h
@@ -0,0 +1,203 @@
+/*
+ * Copyright (C) 2002-2010 The DOSBox Team
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+#include <inttypes.h>
+
+//Use 8 handlers based on a small logatirmic wavetabe and an exponential table for volume
+#define WAVE_HANDLER 10
+//Use a logarithmic wavetable with an exponential table for volume
+#define WAVE_TABLELOG 11
+//Use a linear wavetable with a multiply table for volume
+#define WAVE_TABLEMUL 12
+
+//Select the type of wave generator routine
+#define DBOPL_WAVE WAVE_TABLEMUL
+
+typedef struct _Chip Chip;
+typedef struct _Operator Operator;
+typedef struct _Channel Channel;
+
+typedef uintptr_t Bitu;
+typedef intptr_t Bits;
+typedef uint32_t Bit32u;
+typedef int32_t Bit32s;
+typedef uint16_t Bit16u;
+typedef int16_t Bit16s;
+typedef uint8_t Bit8u;
+typedef int8_t Bit8s;
+
+#if (DBOPL_WAVE == WAVE_HANDLER)
+typedef Bits ( DB_FASTCALL *WaveHandler) ( Bitu i, Bitu volume );
+#endif
+
+#define DB_FASTCALL
+
+typedef Bits (*VolumeHandler)(Operator *self);
+typedef Channel* (*SynthHandler)(Channel *self, Chip* chip, Bit32u samples, Bit32s* output );
+
+//Different synth modes that can generate blocks of data
+typedef enum {
+ sm2AM,
+ sm2FM,
+ sm3AM,
+ sm3FM,
+ sm4Start,
+ sm3FMFM,
+ sm3AMFM,
+ sm3FMAM,
+ sm3AMAM,
+ sm6Start,
+ sm2Percussion,
+ sm3Percussion,
+} SynthMode;
+
+//Shifts for the values contained in chandata variable
+enum {
+ SHIFT_KSLBASE = 16,
+ SHIFT_KEYCODE = 24,
+};
+
+//Masks for operator 20 values
+enum {
+ MASK_KSR = 0x10,
+ MASK_SUSTAIN = 0x20,
+ MASK_VIBRATO = 0x40,
+ MASK_TREMOLO = 0x80,
+};
+
+typedef enum {
+ OFF,
+ RELEASE,
+ SUSTAIN,
+ DECAY,
+ ATTACK,
+} OperatorState;
+
+struct _Operator {
+ VolumeHandler volHandler;
+
+#if (DBOPL_WAVE == WAVE_HANDLER)
+ WaveHandler waveHandler; //Routine that generate a wave
+#else
+ Bit16s* waveBase;
+ Bit32u waveMask;
+ Bit32u waveStart;
+#endif
+ Bit32u waveIndex; //WAVE_BITS shifted counter of the frequency index
+ Bit32u waveAdd; //The base frequency without vibrato
+ Bit32u waveCurrent; //waveAdd + vibratao
+
+ Bit32u chanData; //Frequency/octave and derived data coming from whatever channel controls this
+ Bit32u freqMul; //Scale channel frequency with this, TODO maybe remove?
+ Bit32u vibrato; //Scaled up vibrato strength
+ Bit32s sustainLevel; //When stopping at sustain level stop here
+ Bit32s totalLevel; //totalLevel is added to every generated volume
+ Bit32u currentLevel; //totalLevel + tremolo
+ Bit32s volume; //The currently active volume
+
+ Bit32u attackAdd; //Timers for the different states of the envelope
+ Bit32u decayAdd;
+ Bit32u releaseAdd;
+ Bit32u rateIndex; //Current position of the evenlope
+
+ Bit8u rateZero; //Bits for the different states of the envelope having no changes
+ Bit8u keyOn; //Bitmask of different values that can generate keyon
+ //Registers, also used to check for changes
+ Bit8u reg20, reg40, reg60, reg80, regE0;
+ //Active part of the envelope we're in
+ Bit8u state;
+ //0xff when tremolo is enabled
+ Bit8u tremoloMask;
+ //Strength of the vibrato
+ Bit8u vibStrength;
+ //Keep track of the calculated KSR so we can check for changes
+ Bit8u ksr;
+};
+
+struct _Channel {
+ Operator op[2];
+ SynthHandler synthHandler;
+ Bit32u chanData; //Frequency/octave and derived values
+ Bit32s old[2]; //Old data for feedback
+
+ Bit8u feedback; //Feedback shift
+ Bit8u regB0; //Register values to check for changes
+ Bit8u regC0;
+ //This should correspond with reg104, bit 6 indicates a Percussion channel, bit 7 indicates a silent channel
+ Bit8u fourMask;
+ Bit8s maskLeft; //Sign extended values for both channel's panning
+ Bit8s maskRight;
+
+};
+
+struct _Chip {
+ //This is used as the base counter for vibrato and tremolo
+ Bit32u lfoCounter;
+ Bit32u lfoAdd;
+
+
+ Bit32u noiseCounter;
+ Bit32u noiseAdd;
+ Bit32u noiseValue;
+
+ //Frequency scales for the different multiplications
+ Bit32u freqMul[16];
+ //Rates for decay and release for rate of this chip
+ Bit32u linearRates[76];
+ //Best match attack rates for the rate of this chip
+ Bit32u attackRates[76];
+
+ //18 channels with 2 operators each
+ Channel chan[18];
+
+ Bit8u reg104;
+ Bit8u reg08;
+ Bit8u reg04;
+ Bit8u regBD;
+ Bit8u vibratoIndex;
+ Bit8u tremoloIndex;
+ Bit8s vibratoSign;
+ Bit8u vibratoShift;
+ Bit8u tremoloValue;
+ Bit8u vibratoStrength;
+ Bit8u tremoloStrength;
+ //Mask for allowed wave forms
+ Bit8u waveFormMask;
+ //0 or -1 when enabled
+ Bit8s opl3Active;
+
+};
+
+/*
+struct Handler : public Adlib::Handler {
+ DBOPL::Chip chip;
+ virtual Bit32u WriteAddr( Bit32u port, Bit8u val );
+ virtual void WriteReg( Bit32u addr, Bit8u val );
+ virtual void Generate( MixerChannel* chan, Bitu samples );
+ virtual void Init( Bitu rate );
+};
+*/
+
+
+void Chip__Setup(Chip *self, Bit32u rate );
+void DBOPL_InitTables( void );
+void Chip__Chip(Chip *self);
+void Chip__WriteReg(Chip *self, Bit32u reg, Bit8u val );
+void Chip__GenerateBlock2(Chip *self, Bitu total, Bit32s* output );
+
+
diff --git a/opl/fmopl.c b/opl/fmopl.c
deleted file mode 100644
index 1671244e..00000000
--- a/opl/fmopl.c
+++ /dev/null
@@ -1,1155 +0,0 @@
-/* This file is derived from fmopl.cpp from ScummVM.
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
- * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <stdarg.h>
-#include <math.h>
-
-#include "fmopl.h"
-
-#define PI 3.1415926539
-
-#define CLIP(value, min, max) \
- ( (value) < (min) ? (min) : \
- (value) > (max) ? (max) : (value) )
-
-/* -------------------- preliminary define section --------------------- */
-/* attack/decay rate time rate */
-#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
-#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
-
-#define FREQ_BITS 24 /* frequency turn */
-
-/* counter bits = 20 , octerve 7 */
-#define FREQ_RATE (1<<(FREQ_BITS-20))
-#define TL_BITS (FREQ_BITS+2)
-
-/* final output shift , limit minimum and maximum */
-#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
-#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
-#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
-
-/* -------------------- quality selection --------------------- */
-
-/* sinwave entries */
-/* used static memory = SIN_ENT * 4 (byte) */
-#define SIN_ENT_SHIFT 11
-#define SIN_ENT (1<<SIN_ENT_SHIFT)
-
-/* output level entries (envelope,sinwave) */
-/* envelope counter lower bits */
-static int ENV_BITS;
-/* envelope output entries */
-static int EG_ENT;
-
-/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
-/* used static memory = EG_ENT*4 (byte) */
-static int EG_OFF; /* OFF */
-static int EG_DED;
-static int EG_DST; /* DECAY START */
-static int EG_AED;
-#define EG_AST 0 /* ATTACK START */
-
-#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
-
-/* LFO table entries */
-#define VIB_ENT 512
-#define VIB_SHIFT (32-9)
-#define AMS_ENT 512
-#define AMS_SHIFT (32-9)
-
-#define VIB_RATE_SHIFT 8
-#define VIB_RATE (1<<VIB_RATE_SHIFT)
-
-/* -------------------- local defines , macros --------------------- */
-
-/* register number to channel number , slot offset */
-#define SLOT1 0
-#define SLOT2 1
-
-/* envelope phase */
-#define ENV_MOD_RR 0x00
-#define ENV_MOD_DR 0x01
-#define ENV_MOD_AR 0x02
-
-/* -------------------- tables --------------------- */
-static const int slot_array[32] = {
- 0, 2, 4, 1, 3, 5,-1,-1,
- 6, 8,10, 7, 9,11,-1,-1,
- 12,14,16,13,15,17,-1,-1,
- -1,-1,-1,-1,-1,-1,-1,-1
-};
-
-static uint32_t KSL_TABLE[8 * 16];
-
-static const double KSL_TABLE_SEED[8 * 16] = {
- /* OCT 0 */
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.000, 0.000, 0.000,
- /* OCT 1 */
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 0.750, 1.125, 1.500,
- 1.875, 2.250, 2.625, 3.000,
- /* OCT 2 */
- 0.000, 0.000, 0.000, 0.000,
- 0.000, 1.125, 1.875, 2.625,
- 3.000, 3.750, 4.125, 4.500,
- 4.875, 5.250, 5.625, 6.000,
- /* OCT 3 */
- 0.000, 0.000, 0.000, 1.875,
- 3.000, 4.125, 4.875, 5.625,
- 6.000, 6.750, 7.125, 7.500,
- 7.875, 8.250, 8.625, 9.000,
- /* OCT 4 */
- 0.000, 0.000, 3.000, 4.875,
- 6.000, 7.125, 7.875, 8.625,
- 9.000, 9.750, 10.125, 10.500,
- 10.875, 11.250, 11.625, 12.000,
- /* OCT 5 */
- 0.000, 3.000, 6.000, 7.875,
- 9.000, 10.125, 10.875, 11.625,
- 12.000, 12.750, 13.125, 13.500,
- 13.875, 14.250, 14.625, 15.000,
- /* OCT 6 */
- 0.000, 6.000, 9.000, 10.875,
- 12.000, 13.125, 13.875, 14.625,
- 15.000, 15.750, 16.125, 16.500,
- 16.875, 17.250, 17.625, 18.000,
- /* OCT 7 */
- 0.000, 9.000, 12.000, 13.875,
- 15.000, 16.125, 16.875, 17.625,
- 18.000, 18.750, 19.125, 19.500,
- 19.875, 20.250, 20.625, 21.000
-};
-
-/* sustain level table (3db per step) */
-/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
-
-static int SL_TABLE[16];
-
-static const uint32_t SL_TABLE_SEED[16] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31
-};
-
-#define TL_MAX (EG_ENT * 2) /* limit(tl + ksr + envelope) + sinwave */
-/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
-/* TL_TABLE[ 0 to TL_MAX ] : plus section */
-/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
-static int *TL_TABLE;
-
-/* pointers to TL_TABLE with sinwave output offset */
-static int **SIN_TABLE;
-
-/* LFO table */
-static int *AMS_TABLE;
-static int *VIB_TABLE;
-
-/* envelope output curve table */
-/* attack + decay + OFF */
-//static int ENV_CURVE[2*EG_ENT+1];
-//static int ENV_CURVE[2 * 4096 + 1]; // to keep it static ...
-static int *ENV_CURVE;
-
-
-/* multiple table */
-#define ML(a) (int)(a * 2)
-static const uint32_t MUL_TABLE[16]= {
-/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
- ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
- ML(8.00), ML(9.00), ML(10.00), ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
-};
-#undef ML
-
-/* dummy attack / decay rate ( when rate == 0 ) */
-static int RATE_0[16]=
-{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-
-/* -------------------- static state --------------------- */
-
-/* lock level of common table */
-static int num_lock = 0;
-
-/* work table */
-static void *cur_chip = NULL; /* current chip point */
-/* currenct chip state */
-/* static OPLSAMPLE *bufL,*bufR; */
-static OPL_CH *S_CH;
-static OPL_CH *E_CH;
-static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
-
-static int outd[1];
-static int ams;
-static int vib;
-static int *ams_table;
-static int *vib_table;
-static int amsIncr;
-static int vibIncr;
-static int feedback2; /* connect for SLOT 2 */
-
-/* --------------------- rebuild tables ------------------- */
-
-#define ARRAYSIZE(x) (sizeof(x) / sizeof(*x))
-#define SC_KSL(mydb) ((uint32_t) (mydb / (EG_STEP / 2)))
-#define SC_SL(db) (int)(db * ((3 / EG_STEP) * (1 << ENV_BITS))) + EG_DST
-
-void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM) {
- int i;
-
- ENV_BITS = ENV_BITS_PARAM;
- EG_ENT = EG_ENT_PARAM;
- EG_OFF = ((2 * EG_ENT)<<ENV_BITS); /* OFF */
- EG_DED = EG_OFF;
- EG_DST = (EG_ENT << ENV_BITS); /* DECAY START */
- EG_AED = EG_DST;
- //EG_STEP = (96.0/EG_ENT);
-
- for (i = 0; i < ARRAYSIZE(KSL_TABLE_SEED); i++)
- KSL_TABLE[i] = SC_KSL(KSL_TABLE_SEED[i]);
-
- for (i = 0; i < ARRAYSIZE(SL_TABLE_SEED); i++)
- SL_TABLE[i] = SC_SL(SL_TABLE_SEED[i]);
-}
-
-#undef SC_KSL
-#undef SC_SL
-
-/* --------------------- subroutines --------------------- */
-
-/* status set and IRQ handling */
-static inline void OPL_STATUS_SET(FM_OPL *OPL, int flag) {
- /* set status flag */
- OPL->status |= flag;
- if(!(OPL->status & 0x80)) {
- if(OPL->status & OPL->statusmask) { /* IRQ on */
- OPL->status |= 0x80;
- /* callback user interrupt handler (IRQ is OFF to ON) */
- if(OPL->IRQHandler)
- (OPL->IRQHandler)(OPL->IRQParam,1);
- }
- }
-}
-
-/* status reset and IRQ handling */
-static inline void OPL_STATUS_RESET(FM_OPL *OPL, int flag) {
- /* reset status flag */
- OPL->status &= ~flag;
- if((OPL->status & 0x80)) {
- if (!(OPL->status & OPL->statusmask)) {
- OPL->status &= 0x7f;
- /* callback user interrupt handler (IRQ is ON to OFF) */
- if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
- }
- }
-}
-
-/* IRQ mask set */
-static inline void OPL_STATUSMASK_SET(FM_OPL *OPL, int flag) {
- OPL->statusmask = flag;
- /* IRQ handling check */
- OPL_STATUS_SET(OPL,0);
- OPL_STATUS_RESET(OPL,0);
-}
-
-/* ----- key on ----- */
-static inline void OPL_KEYON(OPL_SLOT *SLOT) {
- /* sin wave restart */
- SLOT->Cnt = 0;
- /* set attack */
- SLOT->evm = ENV_MOD_AR;
- SLOT->evs = SLOT->evsa;
- SLOT->evc = EG_AST;
- SLOT->eve = EG_AED;
-}
-
-/* ----- key off ----- */
-static inline void OPL_KEYOFF(OPL_SLOT *SLOT) {
- if( SLOT->evm > ENV_MOD_RR) {
- /* set envelope counter from envleope output */
-
- // WORKAROUND: The Kyra engine does something very strange when
- // starting a new song. For each channel:
- //
- // * The release rate is set to "fastest".
- // * Any note is keyed off.
- // * A very low-frequency note is keyed on.
- //
- // Usually, what happens next is that the real notes is keyed
- // on immediately, in which case there's no problem.
- //
- // However, if the note is again keyed off (because the channel
- // begins on a rest rather than a note), the envelope counter
- // was moved from the very lowest point on the attack curve to
- // the very highest point on the release curve.
- //
- // Again, this might not be a problem, if the release rate is
- // still set to "fastest". But in many cases, it had already
- // been increased. And, possibly because of inaccuracies in the
- // envelope generator, that would cause the note to "fade out"
- // for quite a long time.
- //
- // What we really need is a way to find the correct starting
- // point for the envelope counter, and that may be what the
- // commented-out line below is meant to do. For now, simply
- // handle the pathological case.
-
- if (SLOT->evm == ENV_MOD_AR && SLOT->evc == EG_AST)
- SLOT->evc = EG_DED;
- else if( !(SLOT->evc & EG_DST) )
- //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
- SLOT->evc = EG_DST;
- SLOT->eve = EG_DED;
- SLOT->evs = SLOT->evsr;
- SLOT->evm = ENV_MOD_RR;
- }
-}
-
-/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
-
-/* return : envelope output */
-static inline uint32_t OPL_CALC_SLOT(OPL_SLOT *SLOT) {
- /* calcrate envelope generator */
- if((SLOT->evc += SLOT->evs) >= SLOT->eve) {
- switch( SLOT->evm ) {
- case ENV_MOD_AR: /* ATTACK -> DECAY1 */
- /* next DR */
- SLOT->evm = ENV_MOD_DR;
- SLOT->evc = EG_DST;
- SLOT->eve = SLOT->SL;
- SLOT->evs = SLOT->evsd;
- break;
- case ENV_MOD_DR: /* DECAY -> SL or RR */
- SLOT->evc = SLOT->SL;
- SLOT->eve = EG_DED;
- if(SLOT->eg_typ) {
- SLOT->evs = 0;
- } else {
- SLOT->evm = ENV_MOD_RR;
- SLOT->evs = SLOT->evsr;
- }
- break;
- case ENV_MOD_RR: /* RR -> OFF */
- SLOT->evc = EG_OFF;
- SLOT->eve = EG_OFF + 1;
- SLOT->evs = 0;
- break;
- }
- }
- /* calcrate envelope */
- return SLOT->TLL + ENV_CURVE[SLOT->evc>>ENV_BITS] + (SLOT->ams ? ams : 0);
-}
-
-/* set algorythm connection */
-static void set_algorythm(OPL_CH *CH) {
- int *carrier = &outd[0];
- CH->connect1 = CH->CON ? carrier : &feedback2;
- CH->connect2 = carrier;
-}
-
-/* ---------- frequency counter for operater update ---------- */
-static inline void CALC_FCSLOT(OPL_CH *CH, OPL_SLOT *SLOT) {
- int ksr;
-
- /* frequency step counter */
- SLOT->Incr = CH->fc * SLOT->mul;
- ksr = CH->kcode >> SLOT->KSR;
-
- if( SLOT->ksr != ksr ) {
- SLOT->ksr = ksr;
- /* attack , decay rate recalcration */
- SLOT->evsa = SLOT->AR[ksr];
- SLOT->evsd = SLOT->DR[ksr];
- SLOT->evsr = SLOT->RR[ksr];
- }
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
-}
-
-/* set multi,am,vib,EG-TYP,KSR,mul */
-static inline void set_mul(FM_OPL *OPL, int slot, int v) {
- OPL_CH *CH = &OPL->P_CH[slot>>1];
- OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
-
- SLOT->mul = MUL_TABLE[v & 0x0f];
- SLOT->KSR = (v & 0x10) ? 0 : 2;
- SLOT->eg_typ = (v & 0x20) >> 5;
- SLOT->vib = (v & 0x40);
- SLOT->ams = (v & 0x80);
- CALC_FCSLOT(CH, SLOT);
-}
-
-/* set ksl & tl */
-static inline void set_ksl_tl(FM_OPL *OPL, int slot, int v) {
- OPL_CH *CH = &OPL->P_CH[slot>>1];
- OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
- int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */
-
- SLOT->ksl = ksl ? 3-ksl : 31;
- SLOT->TL = (int)((v & 0x3f) * (0.75 / EG_STEP)); /* 0.75db step */
-
- if(!(OPL->mode & 0x80)) { /* not CSM latch total level */
- SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
- }
-}
-
-/* set attack rate & decay rate */
-static inline void set_ar_dr(FM_OPL *OPL, int slot, int v) {
- OPL_CH *CH = &OPL->P_CH[slot>>1];
- OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
- int ar = v >> 4;
- int dr = v & 0x0f;
-
- SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0;
- SLOT->evsa = SLOT->AR[SLOT->ksr];
- if(SLOT->evm == ENV_MOD_AR)
- SLOT->evs = SLOT->evsa;
-
- SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
- SLOT->evsd = SLOT->DR[SLOT->ksr];
- if(SLOT->evm == ENV_MOD_DR)
- SLOT->evs = SLOT->evsd;
-}
-
-/* set sustain level & release rate */
-static inline void set_sl_rr(FM_OPL *OPL, int slot, int v) {
- OPL_CH *CH = &OPL->P_CH[slot>>1];
- OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
- int sl = v >> 4;
- int rr = v & 0x0f;
-
- SLOT->SL = SL_TABLE[sl];
- if(SLOT->evm == ENV_MOD_DR)
- SLOT->eve = SLOT->SL;
- SLOT->RR = &OPL->DR_TABLE[rr<<2];
- SLOT->evsr = SLOT->RR[SLOT->ksr];
- if(SLOT->evm == ENV_MOD_RR)
- SLOT->evs = SLOT->evsr;
-}
-
-/* operator output calcrator */
-
-#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt + con)>>(24-SIN_ENT_SHIFT)) & (SIN_ENT-1)][env]
-/* ---------- calcrate one of channel ---------- */
-static inline void OPL_CALC_CH(OPL_CH *CH) {
- uint32_t env_out;
- OPL_SLOT *SLOT;
-
- feedback2 = 0;
- /* SLOT 1 */
- SLOT = &CH->SLOT[SLOT1];
- env_out=OPL_CALC_SLOT(SLOT);
- if(env_out < (uint32_t)(EG_ENT - 1)) {
- /* PG */
- if(SLOT->vib)
- SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT->Cnt += SLOT->Incr;
- /* connection */
- if(CH->FB) {
- int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB;
- CH->op1_out[1] = CH->op1_out[0];
- *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
- } else {
- *CH->connect1 += OP_OUT(SLOT, env_out, 0);
- }
- } else {
- CH->op1_out[1] = CH->op1_out[0];
- CH->op1_out[0] = 0;
- }
- /* SLOT 2 */
- SLOT = &CH->SLOT[SLOT2];
- env_out=OPL_CALC_SLOT(SLOT);
- if(env_out < (uint32_t)(EG_ENT - 1)) {
- /* PG */
- if(SLOT->vib)
- SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT->Cnt += SLOT->Incr;
- /* connection */
- outd[0] += OP_OUT(SLOT, env_out, feedback2);
- }
-}
-
-/* ---------- calcrate rythm block ---------- */
-#define WHITE_NOISE_db 6.0
-static inline void OPL_CALC_RH(FM_OPL *OPL, OPL_CH *CH) {
- uint32_t env_tam, env_sd, env_top, env_hh;
- // This code used to do int(OPL->rnd.getRandomBit() * (WHITE_NOISE_db / EG_STEP)),
- // but EG_STEP = 96.0/EG_ENT, and WHITE_NOISE_db=6.0. So, that's equivalent to
- // int(OPL->rnd.getRandomBit() * EG_ENT/16). We know that EG_ENT is 4096, or 1024,
- // or 128, so we can safely avoid any FP ops.
- int whitenoise = (rand() & 1) * (EG_ENT>>4);
-
- int tone8;
-
- OPL_SLOT *SLOT;
- int env_out;
-
- /* BD : same as FM serial mode and output level is large */
- feedback2 = 0;
- /* SLOT 1 */
- SLOT = &CH[6].SLOT[SLOT1];
- env_out = OPL_CALC_SLOT(SLOT);
- if(env_out < EG_ENT-1) {
- /* PG */
- if(SLOT->vib)
- SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT->Cnt += SLOT->Incr;
- /* connection */
- if(CH[6].FB) {
- int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB;
- CH[6].op1_out[1] = CH[6].op1_out[0];
- feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
- }
- else {
- feedback2 = OP_OUT(SLOT, env_out, 0);
- }
- } else {
- feedback2 = 0;
- CH[6].op1_out[1] = CH[6].op1_out[0];
- CH[6].op1_out[0] = 0;
- }
- /* SLOT 2 */
- SLOT = &CH[6].SLOT[SLOT2];
- env_out = OPL_CALC_SLOT(SLOT);
- if(env_out < EG_ENT-1) {
- /* PG */
- if(SLOT->vib)
- SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT->Cnt += SLOT->Incr;
- /* connection */
- outd[0] += OP_OUT(SLOT, env_out, feedback2) * 2;
- }
-
- // SD (17) = mul14[fnum7] + white noise
- // TAM (15) = mul15[fnum8]
- // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
- // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
- env_sd = OPL_CALC_SLOT(SLOT7_2) + whitenoise;
- env_tam =OPL_CALC_SLOT(SLOT8_1);
- env_top = OPL_CALC_SLOT(SLOT8_2);
- env_hh = OPL_CALC_SLOT(SLOT7_1) + whitenoise;
-
- /* PG */
- if(SLOT7_1->vib)
- SLOT7_1->Cnt += (SLOT7_1->Incr * vib) >> (VIB_RATE_SHIFT-1);
- else
- SLOT7_1->Cnt += 2 * SLOT7_1->Incr;
- if(SLOT7_2->vib)
- SLOT7_2->Cnt += (CH[7].fc * vib) >> (VIB_RATE_SHIFT-3);
- else
- SLOT7_2->Cnt += (CH[7].fc * 8);
- if(SLOT8_1->vib)
- SLOT8_1->Cnt += (SLOT8_1->Incr * vib) >> VIB_RATE_SHIFT;
- else
- SLOT8_1->Cnt += SLOT8_1->Incr;
- if(SLOT8_2->vib)
- SLOT8_2->Cnt += ((CH[8].fc * 3) * vib) >> (VIB_RATE_SHIFT-4);
- else
- SLOT8_2->Cnt += (CH[8].fc * 48);
-
- tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
-
- /* SD */
- if(env_sd < (uint32_t)(EG_ENT - 1))
- outd[0] += OP_OUT(SLOT7_1, env_sd, 0) * 8;
- /* TAM */
- if(env_tam < (uint32_t)(EG_ENT - 1))
- outd[0] += OP_OUT(SLOT8_1, env_tam, 0) * 2;
- /* TOP-CY */
- if(env_top < (uint32_t)(EG_ENT - 1))
- outd[0] += OP_OUT(SLOT7_2, env_top, tone8) * 2;
- /* HH */
- if(env_hh < (uint32_t)(EG_ENT-1))
- outd[0] += OP_OUT(SLOT7_2, env_hh, tone8) * 2;
-}
-
-/* ----------- initialize time tabls ----------- */
-static void init_timetables(FM_OPL *OPL, int ARRATE, int DRRATE) {
- int i;
- double rate;
-
- /* make attack rate & decay rate tables */
- for (i = 0; i < 4; i++)
- OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
- for (i = 4; i <= 60; i++) {
- rate = OPL->freqbase; /* frequency rate */
- if(i < 60)
- rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
- rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */
- rate *= (double)(EG_ENT << ENV_BITS);
- OPL->AR_TABLE[i] = (int)(rate / ARRATE);
- OPL->DR_TABLE[i] = (int)(rate / DRRATE);
- }
- for (i = 60; i < 76; i++) {
- OPL->AR_TABLE[i] = EG_AED-1;
- OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
- }
-}
-
-/* ---------- generic table initialize ---------- */
-static int OPLOpenTable(void) {
- int s,t;
- double rate;
- int i,j;
- double pom;
-
- /* allocate dynamic tables */
- if((TL_TABLE = (int *)malloc(TL_MAX * 2 * sizeof(int))) == NULL)
- return 0;
-
- if((SIN_TABLE = (int **)malloc(SIN_ENT * 4 * sizeof(int *))) == NULL) {
- free(TL_TABLE);
- return 0;
- }
-
- if((AMS_TABLE = (int *)malloc(AMS_ENT * 2 * sizeof(int))) == NULL) {
- free(TL_TABLE);
- free(SIN_TABLE);
- return 0;
- }
-
- if((VIB_TABLE = (int *)malloc(VIB_ENT * 2 * sizeof(int))) == NULL) {
- free(TL_TABLE);
- free(SIN_TABLE);
- free(AMS_TABLE);
- return 0;
- }
- /* make total level table */
- for (t = 0; t < EG_ENT - 1 ; t++) {
- rate = ((1 << TL_BITS) - 1) / pow(10.0, EG_STEP * t / 20); /* dB -> voltage */
- TL_TABLE[ t] = (int)rate;
- TL_TABLE[TL_MAX + t] = -TL_TABLE[t];
- }
- /* fill volume off area */
- for (t = EG_ENT - 1; t < TL_MAX; t++) {
- TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0;
- }
-
- /* make sinwave table (total level offet) */
- /* degree 0 = degree 180 = off */
- SIN_TABLE[0] = SIN_TABLE[SIN_ENT /2 ] = &TL_TABLE[EG_ENT - 1];
- for (s = 1;s <= SIN_ENT / 4; s++) {
- pom = sin(2 * PI * s / SIN_ENT); /* sin */
- pom = 20 * log10(1 / pom); /* decibel */
- j = (int) (pom / EG_STEP); /* TL_TABLE steps */
-
- /* degree 0 - 90 , degree 180 - 90 : plus section */
- SIN_TABLE[ s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j];
- /* degree 180 - 270 , degree 360 - 270 : minus section */
- SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j];
- }
- for (s = 0;s < SIN_ENT; s++) {
- SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
- SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)];
- SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s];
- }
-
-
- ENV_CURVE = (int *)malloc(sizeof(int) * (2*EG_ENT+1));
-
- /* envelope counter -> envelope output table */
- for (i=0; i < EG_ENT; i++) {
- /* ATTACK curve */
- pom = pow(((double)(EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT;
- /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
- ENV_CURVE[i] = (int)pom;
- /* DECAY ,RELEASE curve */
- ENV_CURVE[(EG_DST >> ENV_BITS) + i]= i;
- }
- /* off */
- ENV_CURVE[EG_OFF >> ENV_BITS]= EG_ENT - 1;
- /* make LFO ams table */
- for (i=0; i < AMS_ENT; i++) {
- pom = (1.0 + sin(2 * PI * i / AMS_ENT)) / 2; /* sin */
- AMS_TABLE[i] = (int)((1.0 / EG_STEP) * pom); /* 1dB */
- AMS_TABLE[AMS_ENT + i] = (int)((4.8 / EG_STEP) * pom); /* 4.8dB */
- }
- /* make LFO vibrate table */
- for (i=0; i < VIB_ENT; i++) {
- /* 100cent = 1seminote = 6% ?? */
- pom = (double)VIB_RATE * 0.06 * sin(2 * PI * i / VIB_ENT); /* +-100sect step */
- VIB_TABLE[i] = (int)(VIB_RATE + (pom * 0.07)); /* +- 7cent */
- VIB_TABLE[VIB_ENT + i] = (int)(VIB_RATE + (pom * 0.14)); /* +-14cent */
- }
- return 1;
-}
-
-static void OPLCloseTable(void) {
- free(TL_TABLE);
- free(SIN_TABLE);
- free(AMS_TABLE);
- free(VIB_TABLE);
- free(ENV_CURVE);
-}
-
-/* CSM Key Controll */
-static inline void CSMKeyControll(OPL_CH *CH) {
- OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
- OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
- /* all key off */
- OPL_KEYOFF(slot1);
- OPL_KEYOFF(slot2);
- /* total level latch */
- slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
- slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
- /* key on */
- CH->op1_out[0] = CH->op1_out[1] = 0;
- OPL_KEYON(slot1);
- OPL_KEYON(slot2);
-}
-
-/* ---------- opl initialize ---------- */
-static void OPL_initalize(FM_OPL *OPL) {
- int fn;
-
- /* frequency base */
- OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
- /* Timer base time */
- OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
- /* make time tables */
- init_timetables(OPL, OPL_ARRATE, OPL_DRRATE);
- /* make fnumber -> increment counter table */
- for( fn=0; fn < 1024; fn++) {
- OPL->FN_TABLE[fn] = (uint32_t)(OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
- }
- /* LFO freq.table */
- OPL->amsIncr = (int)(OPL->rate ? (double)AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
- OPL->vibIncr = (int)(OPL->rate ? (double)VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
-}
-
-/* ---------- write a OPL registers ---------- */
-void OPLWriteReg(FM_OPL *OPL, int r, int v) {
- OPL_CH *CH;
- int slot;
- uint32_t block_fnum;
-
- switch(r & 0xe0) {
- case 0x00: /* 00-1f:controll */
- switch(r & 0x1f) {
- case 0x01:
- /* wave selector enable */
- if(OPL->type&OPL_TYPE_WAVESEL) {
- OPL->wavesel = v & 0x20;
- if(!OPL->wavesel) {
- /* preset compatible mode */
- int c;
- for(c=0; c<OPL->max_ch; c++) {
- OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
- OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
- }
- }
- }
- return;
- case 0x02: /* Timer 1 */
- OPL->T[0] = (256-v) * 4;
- break;
- case 0x03: /* Timer 2 */
- OPL->T[1] = (256-v) * 16;
- return;
- case 0x04: /* IRQ clear / mask and Timer enable */
- if(v & 0x80) { /* IRQ flag clear */
- OPL_STATUS_RESET(OPL, 0x7f);
- } else { /* set IRQ mask ,timer enable*/
- uint8_t st1 = v & 1;
- uint8_t st2 = (v >> 1) & 1;
- /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
- OPL_STATUS_RESET(OPL, v & 0x78);
- OPL_STATUSMASK_SET(OPL,((~v) & 0x78) | 0x01);
- /* timer 2 */
- if(OPL->st[1] != st2) {
- double interval = st2 ? (double)OPL->T[1] * OPL->TimerBase : 0.0;
- OPL->st[1] = st2;
- if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 1, interval);
- }
- /* timer 1 */
- if(OPL->st[0] != st1) {
- double interval = st1 ? (double)OPL->T[0] * OPL->TimerBase : 0.0;
- OPL->st[0] = st1;
- if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 0, interval);
- }
- }
- return;
- }
- break;
- case 0x20: /* am,vib,ksr,eg type,mul */
- slot = slot_array[r&0x1f];
- if(slot == -1)
- return;
- set_mul(OPL,slot,v);
- return;
- case 0x40:
- slot = slot_array[r&0x1f];
- if(slot == -1)
- return;
- set_ksl_tl(OPL,slot,v);
- return;
- case 0x60:
- slot = slot_array[r&0x1f];
- if(slot == -1)
- return;
- set_ar_dr(OPL,slot,v);
- return;
- case 0x80:
- slot = slot_array[r&0x1f];
- if(slot == -1)
- return;
- set_sl_rr(OPL,slot,v);
- return;
- case 0xa0:
- switch(r) {
- case 0xbd:
- /* amsep,vibdep,r,bd,sd,tom,tc,hh */
- {
- uint8_t rkey = OPL->rythm ^ v;
- OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0];
- OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0];
- OPL->rythm = v & 0x3f;
- if(OPL->rythm & 0x20) {
- /* BD key on/off */
- if(rkey & 0x10) {
- if(v & 0x10) {
- OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
- OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
- OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
- } else {
- OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
- OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
- }
- }
- /* SD key on/off */
- if(rkey & 0x08) {
- if(v & 0x08)
- OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
- else
- OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
- }/* TAM key on/off */
- if(rkey & 0x04) {
- if(v & 0x04)
- OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
- else
- OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
- }
- /* TOP-CY key on/off */
- if(rkey & 0x02) {
- if(v & 0x02)
- OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
- else
- OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
- }
- /* HH key on/off */
- if(rkey & 0x01) {
- if(v & 0x01)
- OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
- else
- OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
- }
- }
- }
- return;
-
- default:
- break;
- }
- /* keyon,block,fnum */
- if((r & 0x0f) > 8)
- return;
- CH = &OPL->P_CH[r & 0x0f];
- if(!(r&0x10)) { /* a0-a8 */
- block_fnum = (CH->block_fnum & 0x1f00) | v;
- } else { /* b0-b8 */
- int keyon = (v >> 5) & 1;
- block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff);
- if(CH->keyon != keyon) {
- if((CH->keyon=keyon)) {
- CH->op1_out[0] = CH->op1_out[1] = 0;
- OPL_KEYON(&CH->SLOT[SLOT1]);
- OPL_KEYON(&CH->SLOT[SLOT2]);
- } else {
- OPL_KEYOFF(&CH->SLOT[SLOT1]);
- OPL_KEYOFF(&CH->SLOT[SLOT2]);
- }
- }
- }
- /* update */
- if(CH->block_fnum != block_fnum) {
- int blockRv = 7 - (block_fnum >> 10);
- int fnum = block_fnum & 0x3ff;
- CH->block_fnum = block_fnum;
- CH->ksl_base = KSL_TABLE[block_fnum >> 6];
- CH->fc = OPL->FN_TABLE[fnum] >> blockRv;
- CH->kcode = CH->block_fnum >> 9;
- if((OPL->mode & 0x40) && CH->block_fnum & 0x100)
- CH->kcode |=1;
- CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
- CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
- }
- return;
- case 0xc0:
- /* FB,C */
- if((r & 0x0f) > 8)
- return;
- CH = &OPL->P_CH[r&0x0f];
- {
- int feedback = (v >> 1) & 7;
- CH->FB = feedback ? (8 + 1) - feedback : 0;
- CH->CON = v & 1;
- set_algorythm(CH);
- }
- return;
- case 0xe0: /* wave type */
- slot = slot_array[r & 0x1f];
- if(slot == -1)
- return;
- CH = &OPL->P_CH[slot>>1];
- if(OPL->wavesel) {
- CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT];
- }
- return;
- }
-}
-
-/* lock/unlock for common table */
-static int OPL_LockTable(void) {
- num_lock++;
- if(num_lock>1)
- return 0;
- /* first time */
- cur_chip = NULL;
- /* allocate total level table (128kb space) */
- if(!OPLOpenTable()) {
- num_lock--;
- return -1;
- }
- return 0;
-}
-
-static void OPL_UnLockTable(void) {
- if(num_lock)
- num_lock--;
- if(num_lock)
- return;
- /* last time */
- cur_chip = NULL;
- OPLCloseTable();
-}
-
-/*******************************************************************************/
-/* YM3812 local section */
-/*******************************************************************************/
-
-/* ---------- update one of chip ----------- */
-void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length, int interleave) {
- int i;
- int data;
- int16_t *buf = buffer;
- uint32_t amsCnt = OPL->amsCnt;
- uint32_t vibCnt = OPL->vibCnt;
- uint8_t rythm = OPL->rythm & 0x20;
- OPL_CH *CH, *R_CH;
-
-
- if((void *)OPL != cur_chip) {
- cur_chip = (void *)OPL;
- /* channel pointers */
- S_CH = OPL->P_CH;
- E_CH = &S_CH[9];
- /* rythm slot */
- SLOT7_1 = &S_CH[7].SLOT[SLOT1];
- SLOT7_2 = &S_CH[7].SLOT[SLOT2];
- SLOT8_1 = &S_CH[8].SLOT[SLOT1];
- SLOT8_2 = &S_CH[8].SLOT[SLOT2];
- /* LFO state */
- amsIncr = OPL->amsIncr;
- vibIncr = OPL->vibIncr;
- ams_table = OPL->ams_table;
- vib_table = OPL->vib_table;
- }
- R_CH = rythm ? &S_CH[6] : E_CH;
- for(i = 0; i < length; i++) {
- /* channel A channel B channel C */
- /* LFO */
- ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
- vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
- outd[0] = 0;
- /* FM part */
- for(CH=S_CH; CH < R_CH; CH++)
- OPL_CALC_CH(CH);
- /* Rythn part */
- if(rythm)
- OPL_CALC_RH(OPL, S_CH);
- /* limit check */
- data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT);
- /* store to sound buffer */
- buf[i << interleave] = data >> OPL_OUTSB;
- }
-
- OPL->amsCnt = amsCnt;
- OPL->vibCnt = vibCnt;
-}
-
-/* ---------- reset a chip ---------- */
-void OPLResetChip(FM_OPL *OPL) {
- int c,s;
- int i;
-
- /* reset chip */
- OPL->mode = 0; /* normal mode */
- OPL_STATUS_RESET(OPL, 0x7f);
- /* reset with register write */
- OPLWriteReg(OPL, 0x01,0); /* wabesel disable */
- OPLWriteReg(OPL, 0x02,0); /* Timer1 */
- OPLWriteReg(OPL, 0x03,0); /* Timer2 */
- OPLWriteReg(OPL, 0x04,0); /* IRQ mask clear */
- for(i = 0xff; i >= 0x20; i--)
- OPLWriteReg(OPL,i,0);
- /* reset OPerator parameter */
- for(c = 0; c < OPL->max_ch ;c++ ) {
- OPL_CH *CH = &OPL->P_CH[c];
- /* OPL->P_CH[c].PAN = OPN_CENTER; */
- for(s = 0; s < 2; s++ ) {
- /* wave table */
- CH->SLOT[s].wavetable = &SIN_TABLE[0];
- /* CH->SLOT[s].evm = ENV_MOD_RR; */
- CH->SLOT[s].evc = EG_OFF;
- CH->SLOT[s].eve = EG_OFF + 1;
- CH->SLOT[s].evs = 0;
- }
- }
-}
-
-/* ---------- Create a virtual YM3812 ---------- */
-/* 'rate' is sampling rate and 'bufsiz' is the size of the */
-FM_OPL *OPLCreate(int type, int clock, int rate) {
- char *ptr;
- FM_OPL *OPL;
- int state_size;
- int max_ch = 9; /* normaly 9 channels */
-
- if( OPL_LockTable() == -1)
- return NULL;
- /* allocate OPL state space */
- state_size = sizeof(FM_OPL);
- state_size += sizeof(OPL_CH) * max_ch;
-
- /* allocate memory block */
- ptr = (char *)calloc(state_size, 1);
- if(ptr == NULL)
- return NULL;
-
- /* clear */
- memset(ptr, 0, state_size);
- OPL = (FM_OPL *)ptr; ptr += sizeof(FM_OPL);
- OPL->P_CH = (OPL_CH *)ptr; ptr += sizeof(OPL_CH) * max_ch;
-
- /* set channel state pointer */
- OPL->type = type;
- OPL->clock = clock;
- OPL->rate = rate;
- OPL->max_ch = max_ch;
-
- /* init grobal tables */
- OPL_initalize(OPL);
-
- /* reset chip */
- OPLResetChip(OPL);
- return OPL;
-}
-
-/* ---------- Destroy one of vietual YM3812 ---------- */
-void OPLDestroy(FM_OPL *OPL) {
- OPL_UnLockTable();
- free(OPL);
-}
-
-/* ---------- Option handlers ---------- */
-void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,int channelOffset) {
- OPL->TimerHandler = TimerHandler;
- OPL->TimerParam = channelOffset;
-}
-
-void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param) {
- OPL->IRQHandler = IRQHandler;
- OPL->IRQParam = param;
-}
-
-void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler,int param) {
- OPL->UpdateHandler = UpdateHandler;
- OPL->UpdateParam = param;
-}
-
-/* ---------- YM3812 I/O interface ---------- */
-int OPLWrite(FM_OPL *OPL,int a,int v) {
- if(!(a & 1)) { /* address port */
- OPL->address = v & 0xff;
- } else { /* data port */
- if(OPL->UpdateHandler)
- OPL->UpdateHandler(OPL->UpdateParam,0);
- OPLWriteReg(OPL, OPL->address,v);
- }
- return OPL->status >> 7;
-}
-
-unsigned char OPLRead(FM_OPL *OPL,int a) {
- if(!(a & 1)) { /* status port */
- return OPL->status & (OPL->statusmask | 0x80);
- }
-
- return 0;
-}
-
-int OPLTimerOver(FM_OPL *OPL, int c) {
- if(c) { /* Timer B */
- OPL_STATUS_SET(OPL, 0x20);
- } else { /* Timer A */
- OPL_STATUS_SET(OPL, 0x40);
- /* CSM mode key,TL controll */
- if(OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */
- int ch;
- if(OPL->UpdateHandler)
- OPL->UpdateHandler(OPL->UpdateParam,0);
- for(ch = 0; ch < 9; ch++)
- CSMKeyControll(&OPL->P_CH[ch]);
- }
- }
- /* reload timer */
- if (OPL->TimerHandler)
- (OPL->TimerHandler)(OPL->TimerParam + c, (double)OPL->T[c] * OPL->TimerBase);
- return OPL->status >> 7;
-}
-
-FM_OPL *makeAdlibOPL(int rate) {
- // We need to emulate one YM3812 chip
- int env_bits = FMOPL_ENV_BITS_HQ;
- int eg_ent = FMOPL_EG_ENT_HQ;
-
- OPLBuildTables(env_bits, eg_ent);
- return OPLCreate(OPL_TYPE_YM3812, 3579545, rate);
-}
-
diff --git a/opl/fmopl.h b/opl/fmopl.h
deleted file mode 100644
index 2bbe8363..00000000
--- a/opl/fmopl.h
+++ /dev/null
@@ -1,167 +0,0 @@
-/* This file is derived from fmopl.h from ScummVM.
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
- * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
- */
-
-
-#ifndef OPL_FMOPL_H
-#define OPL_FMOPL_H
-
-#include "inttypes.h"
-
-enum {
- FMOPL_ENV_BITS_HQ = 16,
- FMOPL_ENV_BITS_MQ = 8,
- FMOPL_ENV_BITS_LQ = 8,
- FMOPL_EG_ENT_HQ = 4096,
- FMOPL_EG_ENT_MQ = 1024,
- FMOPL_EG_ENT_LQ = 128
-};
-
-typedef void (*OPL_TIMERHANDLER)(int channel,double interval_Sec);
-typedef void (*OPL_IRQHANDLER)(int param,int irq);
-typedef void (*OPL_UPDATEHANDLER)(int param,int min_interval_us);
-
-#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
-
-/* Saving is necessary for member of the 'R' mark for suspend/resume */
-/* ---------- OPL one of slot ---------- */
-typedef struct fm_opl_slot {
- int TL; /* total level :TL << 8 */
- int TLL; /* adjusted now TL */
- uint8_t KSR; /* key scale rate :(shift down bit) */
- int *AR; /* attack rate :&AR_TABLE[AR<<2] */
- int *DR; /* decay rate :&DR_TABLE[DR<<2] */
- int SL; /* sustain level :SL_TABLE[SL] */
- int *RR; /* release rate :&DR_TABLE[RR<<2] */
- uint8_t ksl; /* keyscale level :(shift down bits) */
- uint8_t ksr; /* key scale rate :kcode>>KSR */
- unsigned int mul; /* multiple :ML_TABLE[ML] */
- unsigned int Cnt; /* frequency count */
- unsigned int Incr; /* frequency step */
-
- /* envelope generator state */
- uint8_t eg_typ;/* envelope type flag */
- uint8_t evm; /* envelope phase */
- int evc; /* envelope counter */
- int eve; /* envelope counter end point */
- int evs; /* envelope counter step */
- int evsa; /* envelope step for AR :AR[ksr] */
- int evsd; /* envelope step for DR :DR[ksr] */
- int evsr; /* envelope step for RR :RR[ksr] */
-
- /* LFO */
- uint8_t ams; /* ams flag */
- uint8_t vib; /* vibrate flag */
- /* wave selector */
- int **wavetable;
-} OPL_SLOT;
-
-/* ---------- OPL one of channel ---------- */
-typedef struct fm_opl_channel {
- OPL_SLOT SLOT[2];
- uint8_t CON; /* connection type */
- uint8_t FB; /* feed back :(shift down bit)*/
- int *connect1; /* slot1 output pointer */
- int *connect2; /* slot2 output pointer */
- int op1_out[2]; /* slot1 output for selfeedback */
-
- /* phase generator state */
- unsigned int block_fnum; /* block+fnum */
- uint8_t kcode; /* key code : KeyScaleCode */
- unsigned int fc; /* Freq. Increment base */
- unsigned int ksl_base; /* KeyScaleLevel Base step */
- uint8_t keyon; /* key on/off flag */
-} OPL_CH;
-
-/* OPL state */
-typedef struct fm_opl_f {
- uint8_t type; /* chip type */
- int clock; /* master clock (Hz) */
- int rate; /* sampling rate (Hz) */
- double freqbase; /* frequency base */
- double TimerBase; /* Timer base time (==sampling time) */
- uint8_t address; /* address register */
- uint8_t status; /* status flag */
- uint8_t statusmask; /* status mask */
- unsigned int mode; /* Reg.08 : CSM , notesel,etc. */
-
- /* Timer */
- int T[2]; /* timer counter */
- uint8_t st[2]; /* timer enable */
-
- /* FM channel slots */
- OPL_CH *P_CH; /* pointer of CH */
- int max_ch; /* maximum channel */
-
- /* Rythm sention */
- uint8_t rythm; /* Rythm mode , key flag */
-
- /* time tables */
- int AR_TABLE[76]; /* atttack rate tables */
- int DR_TABLE[76]; /* decay rate tables */
- unsigned int FN_TABLE[1024];/* fnumber -> increment counter */
-
- /* LFO */
- int *ams_table;
- int *vib_table;
- int amsCnt;
- int amsIncr;
- int vibCnt;
- int vibIncr;
-
- /* wave selector enable flag */
- uint8_t wavesel;
-
- /* external event callback handler */
- OPL_TIMERHANDLER TimerHandler; /* TIMER handler */
- int TimerParam; /* TIMER parameter */
- OPL_IRQHANDLER IRQHandler; /* IRQ handler */
- int IRQParam; /* IRQ parameter */
- OPL_UPDATEHANDLER UpdateHandler; /* stream update handler */
- int UpdateParam; /* stream update parameter */
-} FM_OPL;
-
-/* ---------- Generic interface section ---------- */
-#define OPL_TYPE_YM3526 (0)
-#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
-
-void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM);
-
-FM_OPL *OPLCreate(int type, int clock, int rate);
-void OPLDestroy(FM_OPL *OPL);
-void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler, int channelOffset);
-void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param);
-void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler, int param);
-
-void OPLResetChip(FM_OPL *OPL);
-int OPLWrite(FM_OPL *OPL, int a, int v);
-unsigned char OPLRead(FM_OPL *OPL, int a);
-int OPLTimerOver(FM_OPL *OPL, int c);
-void OPLWriteReg(FM_OPL *OPL, int r, int v);
-void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length, int interleave);
-
-// Factory method
-FM_OPL *makeAdlibOPL(int rate);
-
-#endif
-
diff --git a/opl/opl_sdl.c b/opl/opl_sdl.c
index 1963d5cd..f6a3b229 100644
--- a/opl/opl_sdl.c
+++ b/opl/opl_sdl.c
@@ -33,7 +33,7 @@
#include "SDL.h"
#include "SDL_mixer.h"
-#include "fmopl.h"
+#include "dbopl.h"
#include "opl.h"
#include "opl_internal.h"
@@ -42,6 +42,14 @@
#define MAX_SOUND_SLICE_TIME 100 /* ms */
+typedef struct
+{
+ unsigned int rate; // Number of times the timer is advanced per sec.
+ unsigned int enabled; // Non-zero if timer is enabled.
+ unsigned int value; // Last value that was set.
+ unsigned int expire_time; // Calculated time that timer will expire.
+} opl_timer_t;
+
// When the callback mutex is locked using OPL_Lock, callback functions
// are not invoked.
@@ -70,11 +78,20 @@ static unsigned int pause_offset;
// OPL software emulator structure.
-static FM_OPL *opl_emulator = NULL;
+static Chip opl_chip;
// Temporary mixing buffer used by the mixing callback.
-static int16_t *mix_buffer = NULL;
+static int32_t *mix_buffer = NULL;
+
+// Register number that was written.
+
+static int register_num = 0;
+
+// Timers; DBOPL does not do timer stuff itself.
+
+static opl_timer_t timer1 = { 12500, 0, 0, 0 };
+static opl_timer_t timer2 = { 3125, 0, 0, 0 };
// SDL parameters.
@@ -153,14 +170,14 @@ static void FillBuffer(int16_t *buffer, unsigned int nsamples)
assert(nsamples < mixing_freq);
- YM3812UpdateOne(opl_emulator, mix_buffer, nsamples, 0);
+ Chip__GenerateBlock2(&opl_chip, nsamples, mix_buffer);
// Mix into the destination buffer, doubling up into stereo.
for (i=0; i<nsamples; ++i)
{
- buffer[i * 2] = mix_buffer[i];
- buffer[i * 2 + 1] = mix_buffer[i];
+ buffer[i * 2] = (int16_t) (mix_buffer[i] * 2);
+ buffer[i * 2 + 1] = (int16_t) (mix_buffer[i] * 2);
}
}
@@ -179,7 +196,7 @@ static void OPL_Mix_Callback(void *udata,
buffer = (int16_t *) byte_buffer;
buffer_len = buffer_bytes / 4;
- // Repeatedly call the FMOPL update function until the buffer is
+ // Repeatedly call the OPL emulator update function until the buffer is
// full.
while (filled < buffer_len)
@@ -235,11 +252,13 @@ static void OPL_SDL_Shutdown(void)
sdl_was_initialized = 0;
}
- if (opl_emulator != NULL)
+/*
+ if (opl_chip != NULL)
{
- OPLDestroy(opl_emulator);
- opl_emulator = NULL;
+ OPLDestroy(opl_chip);
+ opl_chip = NULL;
}
+ */
if (callback_mutex != NULL)
{
@@ -254,29 +273,6 @@ static void OPL_SDL_Shutdown(void)
}
}
-// Callback when a timer expires.
-
-static void TimerOver(void *data)
-{
- int channel = (int) data;
-
- OPLTimerOver(opl_emulator, channel);
-}
-
-// Callback invoked when the emulator code wants to set a timer.
-
-static void TimerHandler(int channel, double interval_seconds)
-{
- unsigned int interval_samples;
-
- interval_samples = (int) (interval_seconds * mixing_freq);
-
- SDL_LockMutex(callback_queue_mutex);
- OPL_Queue_Push(callback_queue, TimerOver, (void *) channel,
- current_time - pause_offset + interval_samples);
- SDL_UnlockMutex(callback_queue_mutex);
-}
-
static unsigned int GetSliceSize(void)
{
int limit;
@@ -360,20 +356,13 @@ static int OPL_SDL_Init(unsigned int port_base)
// Mix buffer:
- mix_buffer = malloc(mixing_freq * 2);
+ mix_buffer = malloc(mixing_freq * sizeof(uint32_t));
// Create the emulator structure:
- opl_emulator = makeAdlibOPL(mixing_freq);
-
- if (opl_emulator == NULL)
- {
- fprintf(stderr, "Failed to initialize software OPL emulator!\n");
- OPL_SDL_Shutdown();
- return 0;
- }
-
- OPLSetTimerHandler(opl_emulator, TimerHandler, 0);
+ DBOPL_InitTables();
+ Chip__Chip(&opl_chip);
+ Chip__Setup(&opl_chip, mixing_freq);
callback_mutex = SDL_CreateMutex();
callback_queue_mutex = SDL_CreateMutex();
@@ -386,21 +375,90 @@ static int OPL_SDL_Init(unsigned int port_base)
static unsigned int OPL_SDL_PortRead(opl_port_t port)
{
- if (opl_emulator != NULL)
+ unsigned int result = 0;
+
+ if (timer1.enabled && current_time > timer1.expire_time)
{
- return OPLRead(opl_emulator, port);
+ result |= 0x80; // Either have expired
+ result |= 0x40; // Timer 1 has expired
}
- else
+
+ if (timer2.enabled && current_time > timer2.expire_time)
{
- return 0;
+ result |= 0x80; // Either have expired
+ result |= 0x20; // Timer 2 has expired
+ }
+
+ return result;
+}
+
+static void OPLTimer_CalculateEndTime(opl_timer_t *timer)
+{
+ int tics;
+
+ // If the timer is enabled, calculate the time when the timer
+ // will expire.
+
+ if (timer->enabled)
+ {
+ tics = 0x100 - timer->value;
+ timer->expire_time = current_time
+ + (tics * opl_sample_rate) / timer->rate;
+ }
+}
+
+static void WriteRegister(unsigned int reg_num, unsigned int value)
+{
+ switch (reg_num)
+ {
+ case OPL_REG_TIMER1:
+ timer1.value = value;
+ OPLTimer_CalculateEndTime(&timer1);
+ break;
+
+ case OPL_REG_TIMER2:
+ timer2.value = value;
+ OPLTimer_CalculateEndTime(&timer2);
+ break;
+
+ case OPL_REG_TIMER_CTRL:
+ if (value & 0x80)
+ {
+ timer1.enabled = 0;
+ timer2.enabled = 0;
+ }
+ else
+ {
+ if ((value & 0x40) == 0)
+ {
+ timer1.enabled = (value & 0x01) != 0;
+ OPLTimer_CalculateEndTime(&timer1);
+ }
+
+ if ((value & 0x20) == 0)
+ {
+ timer1.enabled = (value & 0x02) != 0;
+ OPLTimer_CalculateEndTime(&timer2);
+ }
+ }
+
+ break;
+
+ default:
+ Chip__WriteReg(&opl_chip, reg_num, value);
+ break;
}
}
static void OPL_SDL_PortWrite(opl_port_t port, unsigned int value)
{
- if (opl_emulator != NULL)
+ if (port == OPL_REGISTER_PORT)
+ {
+ register_num = value;
+ }
+ else if (port == OPL_DATA_PORT)
{
- OPLWrite(opl_emulator, port, value);
+ WriteRegister(register_num, value);
}
}