summaryrefslogtreecommitdiff
path: root/opl
diff options
context:
space:
mode:
authorSimon Howard2010-08-13 18:42:52 +0000
committerSimon Howard2010-08-13 18:42:52 +0000
commit6ebf557c44b11a16ff15e5f560a81753be33bad3 (patch)
treebb60a52ee57911703dd10b230bfecdbbd4628e1a /opl
parentf3d3b03870a6842e104c67ce6fc7edfde89d77ec (diff)
downloadchocolate-doom-6ebf557c44b11a16ff15e5f560a81753be33bad3.tar.gz
chocolate-doom-6ebf557c44b11a16ff15e5f560a81753be33bad3.tar.bz2
chocolate-doom-6ebf557c44b11a16ff15e5f560a81753be33bad3.zip
Add C-converted version of DOSbox OPL emulator.
Subversion-branch: /trunk/chocolate-doom Subversion-revision: 1955
Diffstat (limited to 'opl')
-rw-r--r--opl/dbopl.c1603
-rw-r--r--opl/dbopl.h196
2 files changed, 1799 insertions, 0 deletions
diff --git a/opl/dbopl.c b/opl/dbopl.c
new file mode 100644
index 00000000..556c570d
--- /dev/null
+++ b/opl/dbopl.c
@@ -0,0 +1,1603 @@
+/*
+ * Copyright (C) 2002-2010 The DOSBox Team
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+//
+// Chocolate Doom-related discussion:
+//
+// This is the DosBox OPL emulator code (src/hardware/dbopl.cpp) r3635,
+// converted to C. The bulk of the work was done using the minus-minus
+// script in the Chocolate Doom SVN repository, then the result tweaked
+// by hand until working.
+//
+
+
+/*
+ DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
+ Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
+ Except for the table generation it's all integer math
+ Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
+ The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
+ MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
+
+ //TODO Don't delay first operator 1 sample in opl3 mode
+ //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
+ //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
+ //TODO Check if having the same accuracy in all frequency multipliers sounds better or not
+
+ //DUNNO Keyon in 4op, switch to 2op without keyoff.
+*/
+
+/* $Id: dbopl.cpp,v 1.10 2009-06-10 19:54:51 harekiet Exp $ */
+
+
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+//#include "dosbox.h"
+#include "dbopl.h"
+
+
+#define GCC_UNLIKELY(x) x
+
+#define TRUE 1
+#define FALSE 0
+
+#ifndef PI
+#define PI 3.14159265358979323846
+#endif
+
+#define OPLRATE ((double)(14318180.0 / 288.0))
+#define TREMOLO_TABLE 52
+
+//Try to use most precision for frequencies
+//Else try to keep different waves in synch
+//#define WAVE_PRECISION 1
+#ifndef WAVE_PRECISION
+//Wave bits available in the top of the 32bit range
+//Original adlib uses 10.10, we use 10.22
+#define WAVE_BITS 10
+#else
+//Need some extra bits at the top to have room for octaves and frequency multiplier
+//We support to 8 times lower rate
+//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
+#define WAVE_BITS 14
+#endif
+#define WAVE_SH ( 32 - WAVE_BITS )
+#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
+
+//Use the same accuracy as the waves
+#define LFO_SH ( WAVE_SH - 10 )
+//LFO is controlled by our tremolo 256 sample limit
+#define LFO_MAX ( 256 << ( LFO_SH ) )
+
+
+//Maximum amount of attenuation bits
+//Envelope goes to 511, 9 bits
+#if (DBOPL_WAVE == WAVE_TABLEMUL )
+//Uses the value directly
+#define ENV_BITS ( 9 )
+#else
+//Add 3 bits here for more accuracy and would have to be shifted up either way
+#define ENV_BITS ( 9 )
+#endif
+//Limits of the envelope with those bits and when the envelope goes silent
+#define ENV_MIN 0
+#define ENV_EXTRA ( ENV_BITS - 9 )
+#define ENV_MAX ( 511 << ENV_EXTRA )
+#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
+#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
+
+//Attack/decay/release rate counter shift
+#define RATE_SH 24
+#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
+//Has to fit within 16bit lookuptable
+#define MUL_SH 16
+
+//Check some ranges
+#if ENV_EXTRA > 3
+#error Too many envelope bits
+#endif
+
+static inline void Operator__SetState(Operator *self, Bit8u s );
+static inline Bit32u Chip__ForwardNoise(Chip *self);
+
+// C++'s template<> sure is useful sometimes.
+
+static Channel* Channel__BlockTemplate(Channel *self, Chip* chip,
+ Bit32u samples, Bit32s* output,
+ SynthMode mode );
+#define BLOCK_TEMPLATE(mode) \
+ static Channel* Channel__BlockTemplate_ ## mode(Channel *self, Chip* chip, \
+ Bit32u samples, Bit32s* output) \
+ { \
+ return Channel__BlockTemplate(self, chip, samples, output, mode); \
+ }
+
+BLOCK_TEMPLATE(sm2AM)
+BLOCK_TEMPLATE(sm2FM)
+BLOCK_TEMPLATE(sm3AM)
+BLOCK_TEMPLATE(sm3FM)
+BLOCK_TEMPLATE(sm3FMFM)
+BLOCK_TEMPLATE(sm3AMFM)
+BLOCK_TEMPLATE(sm3FMAM)
+BLOCK_TEMPLATE(sm3AMAM)
+BLOCK_TEMPLATE(sm2Percussion)
+BLOCK_TEMPLATE(sm3Percussion)
+
+//How much to substract from the base value for the final attenuation
+static const Bit8u KslCreateTable[16] = {
+ //0 will always be be lower than 7 * 8
+ 64, 32, 24, 19,
+ 16, 12, 11, 10,
+ 8, 6, 5, 4,
+ 3, 2, 1, 0,
+};
+
+#define M(_X_) ((Bit8u)( (_X_) * 2))
+static const Bit8u FreqCreateTable[16] = {
+ M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ),
+ M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15)
+};
+#undef M
+
+//We're not including the highest attack rate, that gets a special value
+static const Bit8u AttackSamplesTable[13] = {
+ 69, 55, 46, 40,
+ 35, 29, 23, 20,
+ 19, 15, 11, 10,
+ 9
+};
+//On a real opl these values take 8 samples to reach and are based upon larger tables
+static const Bit8u EnvelopeIncreaseTable[13] = {
+ 4, 5, 6, 7,
+ 8, 10, 12, 14,
+ 16, 20, 24, 28,
+ 32,
+};
+
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+static Bit16u ExpTable[ 256 ];
+#endif
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+//PI table used by WAVEHANDLER
+static Bit16u SinTable[ 512 ];
+#endif
+
+#if ( DBOPL_WAVE > WAVE_HANDLER )
+//Layout of the waveform table in 512 entry intervals
+//With overlapping waves we reduce the table to half it's size
+
+// | |//\\|____|WAV7|//__|/\ |____|/\/\|
+// |\\//| | |WAV7| | \/| | |
+// |06 |0126|17 |7 |3 |4 |4 5 |5 |
+
+//6 is just 0 shifted and masked
+
+static Bit16s WaveTable[ 8 * 512 ];
+//Distance into WaveTable the wave starts
+static const Bit16u WaveBaseTable[8] = {
+ 0x000, 0x200, 0x200, 0x800,
+ 0xa00, 0xc00, 0x100, 0x400,
+
+};
+//Mask the counter with this
+static const Bit16u WaveMaskTable[8] = {
+ 1023, 1023, 511, 511,
+ 1023, 1023, 512, 1023,
+};
+
+//Where to start the counter on at keyon
+static const Bit16u WaveStartTable[8] = {
+ 512, 0, 0, 0,
+ 0, 512, 512, 256,
+};
+#endif
+
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+static Bit16u MulTable[ 384 ];
+#endif
+
+static Bit8u KslTable[ 8 * 16 ];
+static Bit8u TremoloTable[ TREMOLO_TABLE ];
+//Start of a channel behind the chip struct start
+static Bit16u ChanOffsetTable[32];
+//Start of an operator behind the chip struct start
+static Bit16u OpOffsetTable[64];
+
+//The lower bits are the shift of the operator vibrato value
+//The highest bit is right shifted to generate -1 or 0 for negation
+//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
+static const Bit8s VibratoTable[ 8 ] = {
+ 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
+ 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
+};
+
+//Shift strength for the ksl value determined by ksl strength
+static const Bit8u KslShiftTable[4] = {
+ 31,1,2,0
+};
+
+//Generate a table index and table shift value using input value from a selected rate
+static void EnvelopeSelect( Bit8u val, Bit8u *index, Bit8u *shift ) {
+ if ( val < 13 * 4 ) { //Rate 0 - 12
+ *shift = 12 - ( val >> 2 );
+ *index = val & 3;
+ } else if ( val < 15 * 4 ) { //rate 13 - 14
+ *shift = 0;
+ *index = val - 12 * 4;
+ } else { //rate 15 and up
+ *shift = 0;
+ *index = 12;
+ }
+}
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+/*
+ Generate the different waveforms out of the sine/exponetial table using handlers
+*/
+static inline Bits MakeVolume( Bitu wave, Bitu volume ) {
+ Bitu total = wave + volume;
+ Bitu index = total & 0xff;
+ Bitu sig = ExpTable[ index ];
+ Bitu exp = total >> 8;
+#if 0
+ //Check if we overflow the 31 shift limit
+ if ( exp >= 32 ) {
+ LOG_MSG( "WTF %d %d", total, exp );
+ }
+#endif
+ return (sig >> exp);
+};
+
+static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) {
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) {
+ Bit32u wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) {
+ Bitu wave = SinTable[i & 511];
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) {
+ Bitu wave = SinTable[i & 255];
+ wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) {
+ //Twice as fast
+ i <<= 1;
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) {
+ //Twice as fast
+ i <<= 1;
+ Bitu wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) {
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ return (MakeVolume( 0, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) {
+ //Negative is reversed here
+ Bits neg = (( i >> 9) & 1) - 1;
+ Bitu wave = (i << 3);
+ //When negative the volume also runs backwards
+ wave = ((wave ^ neg) - neg) & 4095;
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+
+static const WaveHandler WaveHandlerTable[8] = {
+ WaveForm0, WaveForm1, WaveForm2, WaveForm3,
+ WaveForm4, WaveForm5, WaveForm6, WaveForm7
+};
+
+#endif
+
+/*
+ Operator
+*/
+
+//We zero out when rate == 0
+inline void Operator__UpdateAttack(Operator *self, const Chip* chip ) {
+ Bit8u rate = self->reg60 >> 4;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + self->ksr;
+ self->attackAdd = chip->attackRates[ val ];
+ self->rateZero &= ~(1 << ATTACK);
+ } else {
+ self->attackAdd = 0;
+ self->rateZero |= (1 << ATTACK);
+ }
+}
+inline void Operator__UpdateDecay(Operator *self, const Chip* chip ) {
+ Bit8u rate = self->reg60 & 0xf;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + self->ksr;
+ self->decayAdd = chip->linearRates[ val ];
+ self->rateZero &= ~(1 << DECAY);
+ } else {
+ self->decayAdd = 0;
+ self->rateZero |= (1 << DECAY);
+ }
+}
+inline void Operator__UpdateRelease(Operator *self, const Chip* chip ) {
+ Bit8u rate = self->reg80 & 0xf;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + self->ksr;
+ self->releaseAdd = chip->linearRates[ val ];
+ self->rateZero &= ~(1 << RELEASE);
+ if ( !(self->reg20 & MASK_SUSTAIN ) ) {
+ self->rateZero &= ~( 1 << SUSTAIN );
+ }
+ } else {
+ self->rateZero |= (1 << RELEASE);
+ self->releaseAdd = 0;
+ if ( !(self->reg20 & MASK_SUSTAIN ) ) {
+ self->rateZero |= ( 1 << SUSTAIN );
+ }
+ }
+}
+
+inline void Operator__UpdateAttenuation(Operator *self) {
+ Bit8u kslBase = (Bit8u)((self->chanData >> SHIFT_KSLBASE) & 0xff);
+ Bit32u tl = self->reg40 & 0x3f;
+ Bit8u kslShift = KslShiftTable[ self->reg40 >> 6 ];
+ //Make sure the attenuation goes to the right bits
+ self->totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max
+ self->totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
+}
+
+void Operator__UpdateFrequency(Operator *self) {
+ Bit32u freq = self->chanData & (( 1 << 10 ) - 1);
+ Bit32u block = (self->chanData >> 10) & 0xff;
+#ifdef WAVE_PRECISION
+ block = 7 - block;
+ self->waveAdd = ( freq * self->freqMul ) >> block;
+#else
+ self->waveAdd = ( freq << block ) * self->freqMul;
+#endif
+ if ( self->reg20 & MASK_VIBRATO ) {
+ self->vibStrength = (Bit8u)(freq >> 7);
+
+#ifdef WAVE_PRECISION
+ self->vibrato = ( self->vibStrength * self->freqMul ) >> block;
+#else
+ self->vibrato = ( self->vibStrength << block ) * self->freqMul;
+#endif
+ } else {
+ self->vibStrength = 0;
+ self->vibrato = 0;
+ }
+}
+
+void Operator__UpdateRates(Operator *self, const Chip* chip ) {
+ //Mame seems to reverse this where enabling ksr actually lowers
+ //the rate, but pdf manuals says otherwise?
+ Bit8u newKsr = (Bit8u)((self->chanData >> SHIFT_KEYCODE) & 0xff);
+ if ( !( self->reg20 & MASK_KSR ) ) {
+ newKsr >>= 2;
+ }
+ if ( self->ksr == newKsr )
+ return;
+ self->ksr = newKsr;
+ Operator__UpdateAttack( self, chip );
+ Operator__UpdateDecay( self, chip );
+ Operator__UpdateRelease( self, chip );
+}
+
+static inline Bit32s Operator__RateForward(Operator *self, Bit32u add ) {
+ self->rateIndex += add;
+ Bit32s ret = self->rateIndex >> RATE_SH;
+ self->rateIndex = self->rateIndex & RATE_MASK;
+ return ret;
+}
+
+static Bits Operator__TemplateVolume(Operator *self, OperatorState yes) {
+ Bit32s vol = self->volume;
+ Bit32s change;
+ switch ( yes ) {
+ case OFF:
+ return ENV_MAX;
+ case ATTACK:
+ change = Operator__RateForward( self, self->attackAdd );
+ if ( !change )
+ return vol;
+ vol += ( (~vol) * change ) >> 3;
+ if ( vol < ENV_MIN ) {
+ self->volume = ENV_MIN;
+ self->rateIndex = 0;
+ Operator__SetState( self, DECAY );
+ return ENV_MIN;
+ }
+ break;
+ case DECAY:
+ vol += Operator__RateForward( self, self->decayAdd );
+ if ( GCC_UNLIKELY(vol >= self->sustainLevel) ) {
+ //Check if we didn't overshoot max attenuation, then just go off
+ if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+ self->volume = ENV_MAX;
+ Operator__SetState( self, OFF );
+ return ENV_MAX;
+ }
+ //Continue as sustain
+ self->rateIndex = 0;
+ Operator__SetState( self, SUSTAIN );
+ }
+ break;
+ case SUSTAIN:
+ if ( self->reg20 & MASK_SUSTAIN ) {
+ return vol;
+ }
+ //In sustain phase, but not sustaining, do regular release
+ case RELEASE:
+ vol += Operator__RateForward( self, self->releaseAdd );;
+ if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+ self->volume = ENV_MAX;
+ Operator__SetState( self, OFF );
+ return ENV_MAX;
+ }
+ break;
+ }
+ self->volume = vol;
+ return vol;
+}
+
+#define TEMPLATE_VOLUME(mode) \
+ static Bits Operator__TemplateVolume ## mode(Operator *self) \
+ { \
+ return Operator__TemplateVolume(self, mode); \
+ }
+
+TEMPLATE_VOLUME(OFF)
+TEMPLATE_VOLUME(RELEASE)
+TEMPLATE_VOLUME(SUSTAIN)
+TEMPLATE_VOLUME(ATTACK)
+TEMPLATE_VOLUME(DECAY)
+
+static const VolumeHandler VolumeHandlerTable[5] = {
+ &Operator__TemplateVolumeOFF,
+ &Operator__TemplateVolumeRELEASE,
+ &Operator__TemplateVolumeSUSTAIN,
+ &Operator__TemplateVolumeDECAY,
+ &Operator__TemplateVolumeATTACK,
+};
+
+static inline Bitu Operator__ForwardVolume(Operator *self) {
+ return self->currentLevel + (self->volHandler)();
+}
+
+
+static inline Bitu Operator__ForwardWave(Operator *self) {
+ self->waveIndex += self->waveCurrent;
+ return self->waveIndex >> WAVE_SH;
+}
+
+void Operator__Write20(Operator *self, const Chip* chip, Bit8u val ) {
+ Bit8u change = (self->reg20 ^ val );
+ if ( !change )
+ return;
+ self->reg20 = val;
+ //Shift the tremolo bit over the entire register, saved a branch, YES!
+ self->tremoloMask = (Bit8s)(val) >> 7;
+ self->tremoloMask &= ~(( 1 << ENV_EXTRA ) -1);
+ //Update specific features based on changes
+ if ( change & MASK_KSR ) {
+ Operator__UpdateRates( self, chip );
+ }
+ //With sustain enable the volume doesn't change
+ if ( self->reg20 & MASK_SUSTAIN || ( !self->releaseAdd ) ) {
+ self->rateZero |= ( 1 << SUSTAIN );
+ } else {
+ self->rateZero &= ~( 1 << SUSTAIN );
+ }
+ //Frequency multiplier or vibrato changed
+ if ( change & (0xf | MASK_VIBRATO) ) {
+ self->freqMul = chip->freqMul[ val & 0xf ];
+ Operator__UpdateFrequency(self);
+ }
+}
+
+void Operator__Write40(Operator *self, const Chip *chip, Bit8u val ) {
+ if (!(self->reg40 ^ val ))
+ return;
+ self->reg40 = val;
+ Operator__UpdateAttenuation( self );
+}
+
+void Operator__Write60(Operator *self, const Chip* chip, Bit8u val ) {
+ Bit8u change = self->reg60 ^ val;
+ self->reg60 = val;
+ if ( change & 0x0f ) {
+ Operator__UpdateDecay( self, chip );
+ }
+ if ( change & 0xf0 ) {
+ Operator__UpdateAttack( self, chip );
+ }
+}
+
+void Operator__Write80(Operator *self, const Chip* chip, Bit8u val ) {
+ Bit8u change = (self->reg80 ^ val );
+ if ( !change )
+ return;
+ self->reg80 = val;
+ Bit8u sustain = val >> 4;
+ //Turn 0xf into 0x1f
+ sustain |= ( sustain + 1) & 0x10;
+ self->sustainLevel = sustain << ( ENV_BITS - 5 );
+ if ( change & 0x0f ) {
+ Operator__UpdateRelease( self, chip );
+ }
+}
+
+void Operator__WriteE0(Operator *self, const Chip* chip, Bit8u val ) {
+ if ( !(self->regE0 ^ val) )
+ return;
+ //in opl3 mode you can always selet 7 waveforms regardless of waveformselect
+ Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) );
+ self->regE0 = val;
+#if( DBOPL_WAVE == WAVE_HANDLER )
+ self->waveHandler = WaveHandlerTable[ waveForm ];
+#else
+ self->waveBase = WaveTable + WaveBaseTable[ waveForm ];
+ self->waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
+ self->waveMask = WaveMaskTable[ waveForm ];
+#endif
+}
+
+static inline void Operator__SetState(Operator *self, Bit8u s ) {
+ self->state = s;
+ self->volHandler = VolumeHandlerTable[ s ];
+}
+
+static inline int Operator__Silent(Operator *self) {
+ if ( !ENV_SILENT( self->totalLevel + self->volume ) )
+ return FALSE;
+ if ( !(self->rateZero & ( 1 << self->state ) ) )
+ return FALSE;
+ return TRUE;
+}
+
+static inline void Operator__Prepare(Operator *self, const Chip* chip ) {
+ self->currentLevel = self->totalLevel + (chip->tremoloValue & self->tremoloMask);
+ self->waveCurrent = self->waveAdd;
+ if ( self->vibStrength >> chip->vibratoShift ) {
+ Bit32s add = self->vibrato >> chip->vibratoShift;
+ //Sign extend over the shift value
+ Bit32s neg = chip->vibratoSign;
+ //Negate the add with -1 or 0
+ add = ( add ^ neg ) - neg;
+ self->waveCurrent += add;
+ }
+}
+
+void Operator__KeyOn(Operator *self, Bit8u mask ) {
+ if ( !self->keyOn ) {
+ //Restart the frequency generator
+#if( DBOPL_WAVE > WAVE_HANDLER )
+ self->waveIndex = self->waveStart;
+#else
+ self->waveIndex = 0;
+#endif
+ self->rateIndex = 0;
+ Operator__SetState( self, ATTACK );
+ }
+ self->keyOn |= mask;
+}
+
+void Operator__KeyOff(Operator *self, Bit8u mask ) {
+ self->keyOn &= ~mask;
+ if ( !self->keyOn ) {
+ if ( self->state != OFF ) {
+ Operator__SetState( self, RELEASE );
+ }
+ }
+}
+
+static inline Bits Operator__GetWave(Operator *self, Bitu index, Bitu vol ) {
+#if( DBOPL_WAVE == WAVE_HANDLER )
+ return self->waveHandler( index, vol << ( 3 - ENV_EXTRA ) );
+#elif( DBOPL_WAVE == WAVE_TABLEMUL )
+ return(self->waveBase[ index & self->waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
+#elif( DBOPL_WAVE == WAVE_TABLELOG )
+ Bit32s wave = self->waveBase[ index & self->waveMask ];
+ Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA );
+ Bit32s sig = ExpTable[ total & 0xff ];
+ Bit32u exp = total >> 8;
+ Bit32s neg = wave >> 16;
+ return((sig ^ neg) - neg) >> exp;
+#else
+#error "No valid wave routine"
+#endif
+}
+
+static inline Bits Operator__GetSample(Operator *self, Bits modulation ) {
+ Bitu vol = Operator__ForwardVolume(self);
+ if ( ENV_SILENT( vol ) ) {
+ //Simply forward the wave
+ self->waveIndex += self->waveCurrent;
+ return 0;
+ } else {
+ Bitu index = Operator__ForwardWave(self);
+ index += modulation;
+ return Operator__GetWave( self, index, vol );
+ }
+}
+
+void Operator__Operator(Operator *self) {
+ self->chanData = 0;
+ self->freqMul = 0;
+ self->waveIndex = 0;
+ self->waveAdd = 0;
+ self->waveCurrent = 0;
+ self->keyOn = 0;
+ self->ksr = 0;
+ self->reg20 = 0;
+ self->reg40 = 0;
+ self->reg60 = 0;
+ self->reg80 = 0;
+ self->regE0 = 0;
+ Operator__SetState( self, OFF );
+ self->rateZero = (1 << OFF);
+ self->sustainLevel = ENV_MAX;
+ self->currentLevel = ENV_MAX;
+ self->totalLevel = ENV_MAX;
+ self->volume = ENV_MAX;
+ self->releaseAdd = 0;
+}
+
+/*
+ Channel
+*/
+
+void Channel__Channel(Channel *self) {
+ Operator__Operator(&self->op[0]);
+ Operator__Operator(&self->op[1]);
+ self->old[0] = self->old[1] = 0;
+ self->chanData = 0;
+ self->regB0 = 0;
+ self->regC0 = 0;
+ self->maskLeft = -1;
+ self->maskRight = -1;
+ self->feedback = 31;
+ self->fourMask = 0;
+ self->synthHandler = Channel__BlockTemplate_sm2FM;
+};
+
+static inline Operator* Channel__Op( Channel *self, Bitu index ) {
+ return &( ( self + (index >> 1) )->op[ index & 1 ]);
+}
+
+void Channel__SetChanData(Channel *self, const Chip* chip, Bit32u data ) {
+ Bit32u change = self->chanData ^ data;
+ self->chanData = data;
+ Channel__Op( self, 0 )->chanData = data;
+ Channel__Op( self, 1 )->chanData = data;
+ //Since a frequency update triggered this, always update frequency
+ Operator__UpdateFrequency(Channel__Op( self, 0 ));
+ Operator__UpdateFrequency(Channel__Op( self, 1 ));
+ if ( change & ( 0xff << SHIFT_KSLBASE ) ) {
+ Operator__UpdateAttenuation(Channel__Op( self, 0 ));
+ Operator__UpdateAttenuation(Channel__Op( self, 1 ));
+ }
+ if ( change & ( 0xff << SHIFT_KEYCODE ) ) {
+ Operator__UpdateRates(Channel__Op( self, 0 ), chip);
+ Operator__UpdateRates(Channel__Op( self, 1 ), chip);
+ }
+}
+
+void Channel__UpdateFrequency(Channel *self, const Chip* chip, Bit8u fourOp ) {
+ //Extrace the frequency bits
+ Bit32u data = self->chanData & 0xffff;
+ Bit32u kslBase = KslTable[ data >> 6 ];
+ Bit32u keyCode = ( data & 0x1c00) >> 9;
+ if ( chip->reg08 & 0x40 ) {
+ keyCode |= ( data & 0x100)>>8; /* notesel == 1 */
+ } else {
+ keyCode |= ( data & 0x200)>>9; /* notesel == 0 */
+ }
+ //Add the keycode and ksl into the highest bits of chanData
+ data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE );
+ Channel__SetChanData( self + 0, chip, data );
+ if ( fourOp & 0x3f ) {
+ Channel__SetChanData( self + 1, chip, data );
+ }
+}
+
+void Channel__WriteA0(Channel *self, const Chip* chip, Bit8u val ) {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask;
+ //Don't handle writes to silent fourop channels
+ if ( fourOp > 0x80 )
+ return;
+ Bit32u change = (self->chanData ^ val ) & 0xff;
+ if ( change ) {
+ self->chanData ^= change;
+ Channel__UpdateFrequency( self, chip, fourOp );
+ }
+}
+
+void Channel__WriteB0(Channel *self, const Chip* chip, Bit8u val ) {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask;
+ //Don't handle writes to silent fourop channels
+ if ( fourOp > 0x80 )
+ return;
+ Bitu change = (self->chanData ^ ( val << 8 ) ) & 0x1f00;
+ if ( change ) {
+ self->chanData ^= change;
+ Channel__UpdateFrequency( self, chip, fourOp );
+ }
+ //Check for a change in the keyon/off state
+ if ( !(( val ^ self->regB0) & 0x20))
+ return;
+ self->regB0 = val;
+ if ( val & 0x20 ) {
+ Operator__KeyOn( Channel__Op(self, 0), 0x1 );
+ Operator__KeyOn( Channel__Op(self, 1), 0x1 );
+ if ( fourOp & 0x3f ) {
+ Operator__KeyOn( Channel__Op(self + 1, 0), 1 );
+ Operator__KeyOn( Channel__Op(self + 1, 1), 1 );
+ }
+ } else {
+ Operator__KeyOff( Channel__Op(self, 0), 0x1 );
+ Operator__KeyOff( Channel__Op(self, 1), 0x1 );
+ if ( fourOp & 0x3f ) {
+ Operator__KeyOff( Channel__Op(self + 1, 0), 1 );
+ Operator__KeyOff( Channel__Op(self + 1, 1), 1 );
+ }
+ }
+}
+
+void Channel__WriteC0(Channel *self, const Chip* chip, Bit8u val ) {
+ Bit8u change = val ^ self->regC0;
+ if ( !change )
+ return;
+ self->regC0 = val;
+ self->feedback = ( val >> 1 ) & 7;
+ if ( self->feedback ) {
+ //We shift the input to the right 10 bit wave index value
+ self->feedback = 9 - self->feedback;
+ } else {
+ self->feedback = 31;
+ }
+ //Select the new synth mode
+ if ( chip->opl3Active ) {
+ //4-op mode enabled for this channel
+ if ( (chip->reg104 & self->fourMask) & 0x3f ) {
+ Channel* chan0, *chan1;
+ //Check if it's the 2nd channel in a 4-op
+ if ( !(self->fourMask & 0x80 ) ) {
+ chan0 = self;
+ chan1 = self + 1;
+ } else {
+ chan0 = self - 1;
+ chan1 = self;
+ }
+
+ Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 );
+ switch ( synth ) {
+ case 0:
+ chan0->synthHandler = Channel__BlockTemplate_sm3FMFM;
+ break;
+ case 1:
+ chan0->synthHandler = Channel__BlockTemplate_sm3AMFM;
+ break;
+ case 2:
+ chan0->synthHandler = Channel__BlockTemplate_sm3FMAM ;
+ break;
+ case 3:
+ chan0->synthHandler = Channel__BlockTemplate_sm3AMAM ;
+ break;
+ }
+ //Disable updating percussion channels
+ } else if ((self->fourMask & 0x40) && ( chip->regBD & 0x20) ) {
+
+ //Regular dual op, am or fm
+ } else if ( val & 1 ) {
+ self->synthHandler = Channel__BlockTemplate_sm3AM;
+ } else {
+ self->synthHandler = Channel__BlockTemplate_sm3FM;
+ }
+ self->maskLeft = ( val & 0x10 ) ? -1 : 0;
+ self->maskRight = ( val & 0x20 ) ? -1 : 0;
+ //opl2 active
+ } else {
+ //Disable updating percussion channels
+ if ( (self->fourMask & 0x40) && ( chip->regBD & 0x20 ) ) {
+
+ //Regular dual op, am or fm
+ } else if ( val & 1 ) {
+ self->synthHandler = Channel__BlockTemplate_sm2AM;
+ } else {
+ self->synthHandler = Channel__BlockTemplate_sm2FM;
+ }
+ }
+}
+
+void Channel__ResetC0(Channel *self, const Chip* chip ) {
+ Bit8u val = self->regC0;
+ self->regC0 ^= 0xff;
+ Channel__WriteC0( self, chip, val );
+};
+
+static inline void Channel__GeneratePercussion(Channel *self, Chip* chip,
+ Bit32s* output, int opl3Mode ) {
+ Channel* chan = self;
+
+ //BassDrum
+ Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback;
+ self->old[0] = self->old[1];
+ self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod );
+
+ //When bassdrum is in AM mode first operator is ignoed
+ if ( chan->regC0 & 1 ) {
+ mod = 0;
+ } else {
+ mod = self->old[0];
+ }
+ Bit32s sample = Operator__GetSample( Channel__Op(self, 1), mod );
+
+ //Precalculate stuff used by other outputs
+ Bit32u noiseBit = Chip__ForwardNoise(chip) & 0x1;
+ Bit32u c2 = Operator__ForwardWave(Channel__Op(self, 2));
+ Bit32u c5 = Operator__ForwardWave(Channel__Op(self, 5));
+ Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00;
+
+ //Hi-Hat
+ Bit32u hhVol = Operator__ForwardVolume(Channel__Op(self, 2));
+ if ( !ENV_SILENT( hhVol ) ) {
+ Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 )));
+ sample += Operator__GetWave( Channel__Op(self, 2), hhIndex, hhVol );
+ }
+ //Snare Drum
+ Bit32u sdVol = Operator__ForwardVolume( Channel__Op(self, 3) );
+ if ( !ENV_SILENT( sdVol ) ) {
+ Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 );
+ sample += Operator__GetWave( Channel__Op(self, 3), sdIndex, sdVol );
+ }
+ //Tom-tom
+ sample += Operator__GetSample( Channel__Op(self, 4), 0 );
+
+ //Top-Cymbal
+ Bit32u tcVol = Operator__ForwardVolume(Channel__Op(self, 5));
+ if ( !ENV_SILENT( tcVol ) ) {
+ Bit32u tcIndex = (1 + phaseBit) << 8;
+ sample += Operator__GetWave( Channel__Op(self, 5), tcIndex, tcVol );
+ }
+ sample <<= 1;
+ if ( opl3Mode ) {
+ output[0] += sample;
+ output[1] += sample;
+ } else {
+ output[0] += sample;
+ }
+}
+
+Channel* Channel__BlockTemplate(Channel *self, Chip* chip,
+ Bit32u samples, Bit32s* output,
+ SynthMode mode ) {
+ Bitu i;
+
+ switch( mode ) {
+ case sm2AM:
+ case sm3AM:
+ if ( Operator__Silent(Channel__Op(self, 0))
+ && Operator__Silent(Channel__Op(self, 1))) {
+ self->old[0] = self->old[1] = 0;
+ return(self + 1);
+ }
+ break;
+ case sm2FM:
+ case sm3FM:
+ if ( Operator__Silent(Channel__Op(self, 1))) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 1);
+ }
+ break;
+ case sm3FMFM:
+ if ( Operator__Silent(Channel__Op(self, 3))) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 2);
+ }
+ break;
+ case sm3AMFM:
+ if ( Operator__Silent( Channel__Op(self, 0) )
+ && Operator__Silent( Channel__Op(self, 3) )) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 2);
+ }
+ break;
+ case sm3FMAM:
+ if ( Operator__Silent( Channel__Op(self, 1))
+ && Operator__Silent( Channel__Op(self, 3))) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 2);
+ }
+ break;
+ case sm3AMAM:
+ if ( Operator__Silent( Channel__Op(self, 0) )
+ && Operator__Silent( Channel__Op(self, 2) )
+ && Operator__Silent( Channel__Op(self, 3) )) {
+ self->old[0] = self->old[1] = 0;
+ return (self + 2);
+ }
+ break;
+
+ default:
+ abort();
+ }
+ //Init the operators with the the current vibrato and tremolo values
+ Operator__Prepare( Channel__Op( self, 0 ), chip );
+ Operator__Prepare( Channel__Op( self, 1 ), chip );
+ if ( mode > sm4Start ) {
+ Operator__Prepare( Channel__Op( self, 2 ), chip );
+ Operator__Prepare( Channel__Op( self, 3 ), chip );
+ }
+ if ( mode > sm6Start ) {
+ Operator__Prepare( Channel__Op( self, 4 ), chip );
+ Operator__Prepare( Channel__Op( self, 5 ), chip );
+ }
+ for ( i = 0; i < samples; i++ ) {
+ //Early out for percussion handlers
+ if ( mode == sm2Percussion ) {
+ Channel__GeneratePercussion( self, chip, output + i, FALSE );
+ continue; //Prevent some unitialized value bitching
+ } else if ( mode == sm3Percussion ) {
+ Channel__GeneratePercussion( self, chip, output + i * 2, TRUE );
+ continue; //Prevent some unitialized value bitching
+ }
+
+ //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
+ Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback;
+ self->old[0] = self->old[1];
+ self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod );
+ Bit32s sample;
+ Bit32s out0 = self->old[0];
+ if ( mode == sm2AM || mode == sm3AM ) {
+ sample = out0 + Operator__GetSample( Channel__Op(self, 1), 0 );
+ } else if ( mode == sm2FM || mode == sm3FM ) {
+ sample = Operator__GetSample( Channel__Op(self, 1), out0 );
+ } else if ( mode == sm3FMFM ) {
+ Bits next = Operator__GetSample( Channel__Op(self, 1), out0 );
+ next = Operator__GetSample( Channel__Op(self, 2), next );
+ sample = Operator__GetSample( Channel__Op(self, 3), next );
+ } else if ( mode == sm3AMFM ) {
+ sample = out0;
+ Bits next = Operator__GetSample( Channel__Op(self, 1), 0 );
+ next = Operator__GetSample( Channel__Op(self, 2), next );
+ sample += Operator__GetSample( Channel__Op(self, 3), next );
+ } else if ( mode == sm3FMAM ) {
+ sample = Operator__GetSample( Channel__Op(self, 1), out0 );
+ Bits next = Operator__GetSample( Channel__Op(self, 2), 0 );
+ sample += Operator__GetSample( Channel__Op(self, 3), next );
+ } else if ( mode == sm3AMAM ) {
+ sample = out0;
+ Bits next = Operator__GetSample( Channel__Op(self, 1), 0 );
+ sample += Operator__GetSample( Channel__Op(self, 2), next );
+ sample += Operator__GetSample( Channel__Op(self, 3), 0 );
+ }
+ switch( mode ) {
+ case sm2AM:
+ case sm2FM:
+ output[ i ] += sample;
+ break;
+ case sm3AM:
+ case sm3FM:
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ output[ i * 2 + 0 ] += sample & self->maskLeft;
+ output[ i * 2 + 1 ] += sample & self->maskRight;
+ break;
+ default:
+ abort();
+ }
+ }
+ switch( mode ) {
+ case sm2AM:
+ case sm2FM:
+ case sm3AM:
+ case sm3FM:
+ return ( self + 1 );
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ return ( self + 2 );
+ case sm2Percussion:
+ case sm3Percussion:
+ return( self + 3 );
+ default:
+ abort();
+ }
+ return 0;
+}
+
+/*
+ Chip
+*/
+
+void Chip__Chip(Chip *self) {
+ int i;
+
+ for (i=0; i<18; ++i) {
+ Channel__Channel(&self->chan[i]);
+ }
+
+ self->reg08 = 0;
+ self->reg04 = 0;
+ self->regBD = 0;
+ self->reg104 = 0;
+ self->opl3Active = 0;
+}
+
+static inline Bit32u Chip__ForwardNoise(Chip *self) {
+ self->noiseCounter += self->noiseAdd;
+ Bitu count = self->noiseCounter >> LFO_SH;
+ self->noiseCounter &= WAVE_MASK;
+ for ( ; count > 0; --count ) {
+ //Noise calculation from mame
+ self->noiseValue ^= ( 0x800302 ) & ( 0 - (self->noiseValue & 1 ) );
+ self->noiseValue >>= 1;
+ }
+ return self->noiseValue;
+}
+
+static inline Bit32u Chip__ForwardLFO(Chip *self, Bit32u samples ) {
+ //Current vibrato value, runs 4x slower than tremolo
+ self->vibratoSign = ( VibratoTable[ self->vibratoIndex >> 2] ) >> 7;
+ self->vibratoShift = ( VibratoTable[ self->vibratoIndex >> 2] & 7) + self->vibratoStrength;
+ self->tremoloValue = TremoloTable[ self->tremoloIndex ] >> self->tremoloStrength;
+
+ //Check hom many samples there can be done before the value changes
+ Bit32u todo = LFO_MAX - self->lfoCounter;
+ Bit32u count = (todo + self->lfoAdd - 1) / self->lfoAdd;
+ if ( count > samples ) {
+ count = samples;
+ self->lfoCounter += count * self->lfoAdd;
+ } else {
+ self->lfoCounter += count * self->lfoAdd;
+ self->lfoCounter &= (LFO_MAX - 1);
+ //Maximum of 7 vibrato value * 4
+ self->vibratoIndex = ( self->vibratoIndex + 1 ) & 31;
+ //Clip tremolo to the the table size
+ if ( self->tremoloIndex + 1 < TREMOLO_TABLE )
+ ++self->tremoloIndex;
+ else
+ self->tremoloIndex = 0;
+ }
+ return count;
+}
+
+
+void Chip__WriteBD(Chip *self, Bit8u val ) {
+ Bit8u change = self->regBD ^ val;
+ if ( !change )
+ return;
+ self->regBD = val;
+ //TODO could do this with shift and xor?
+ self->vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
+ self->tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
+ if ( val & 0x20 ) {
+ //Drum was just enabled, make sure channel 6 has the right synth
+ if ( change & 0x20 ) {
+ if ( self->opl3Active ) {
+ self->chan[6].synthHandler
+ = Channel__BlockTemplate_sm3Percussion;
+ } else {
+ self->chan[6].synthHandler
+ = Channel__BlockTemplate_sm2Percussion;
+ }
+ }
+ //Bass Drum
+ if ( val & 0x10 ) {
+ Operator__KeyOn( &self->chan[6].op[0], 0x2 );
+ Operator__KeyOn( &self->chan[6].op[1], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[6].op[0], 0x2 );
+ Operator__KeyOff( &self->chan[6].op[1], 0x2 );
+ }
+ //Hi-Hat
+ if ( val & 0x1 ) {
+ Operator__KeyOn( &self->chan[7].op[0], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[7].op[0], 0x2 );
+ }
+ //Snare
+ if ( val & 0x8 ) {
+ Operator__KeyOn( &self->chan[7].op[1], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[7].op[1], 0x2 );
+ }
+ //Tom-Tom
+ if ( val & 0x4 ) {
+ Operator__KeyOn( &self->chan[8].op[0], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[8].op[0], 0x2 );
+ }
+ //Top Cymbal
+ if ( val & 0x2 ) {
+ Operator__KeyOn( &self->chan[8].op[1], 0x2 );
+ } else {
+ Operator__KeyOff( &self->chan[8].op[1], 0x2 );
+ }
+ //Toggle keyoffs when we turn off the percussion
+ } else if ( change & 0x20 ) {
+ //Trigger a reset to setup the original synth handler
+ Channel__ResetC0( &self->chan[6], self );
+ Operator__KeyOff( &self->chan[6].op[0], 0x2 );
+ Operator__KeyOff( &self->chan[6].op[1], 0x2 );
+ Operator__KeyOff( &self->chan[7].op[0], 0x2 );
+ Operator__KeyOff( &self->chan[7].op[1], 0x2 );
+ Operator__KeyOff( &self->chan[8].op[0], 0x2 );
+ Operator__KeyOff( &self->chan[8].op[1], 0x2 );
+ }
+}
+
+
+#define REGOP( _FUNC_ ) \
+ index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
+ if ( OpOffsetTable[ index ] ) { \
+ Operator* regOp = (Operator*)( ((char *)self ) + OpOffsetTable[ index ] ); \
+ Operator__ ## _FUNC_ (regOp, self, val); \
+ }
+
+#define REGCHAN( _FUNC_ ) \
+ index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
+ if ( ChanOffsetTable[ index ] ) { \
+ Channel* regChan = (Channel*)( ((char *)self ) + ChanOffsetTable[ index ] ); \
+ Channel__ ## _FUNC_ (regChan, self, val); \
+ }
+
+void Chip__WriteReg(Chip *self, Bit32u reg, Bit8u val ) {
+ Bitu index;
+ switch ( (reg & 0xf0) >> 4 ) {
+ case 0x00 >> 4:
+ if ( reg == 0x01 ) {
+ self->waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0;
+ } else if ( reg == 0x104 ) {
+ //Only detect changes in lowest 6 bits
+ if ( !((self->reg104 ^ val) & 0x3f) )
+ return;
+ //Always keep the highest bit enabled, for checking > 0x80
+ self->reg104 = 0x80 | ( val & 0x3f );
+ } else if ( reg == 0x105 ) {
+ int i;
+
+ //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
+ if ( !((self->opl3Active ^ val) & 1 ) )
+ return;
+ self->opl3Active = ( val & 1 ) ? 0xff : 0;
+ //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
+ for ( i = 0; i < 18;i++ ) {
+ Channel__ResetC0( &self->chan[i], self );
+ }
+ } else if ( reg == 0x08 ) {
+ self->reg08 = val;
+ }
+ case 0x10 >> 4:
+ break;
+ case 0x20 >> 4:
+ case 0x30 >> 4:
+ REGOP( Write20 );
+ break;
+ case 0x40 >> 4:
+ case 0x50 >> 4:
+ REGOP( Write40 );
+ break;
+ case 0x60 >> 4:
+ case 0x70 >> 4:
+ REGOP( Write60 );
+ break;
+ case 0x80 >> 4:
+ case 0x90 >> 4:
+ REGOP( Write80 );
+ break;
+ case 0xa0 >> 4:
+ REGCHAN( WriteA0 );
+ break;
+ case 0xb0 >> 4:
+ if ( reg == 0xbd ) {
+ Chip__WriteBD( self, val );
+ } else {
+ REGCHAN( WriteB0 );
+ }
+ break;
+ case 0xc0 >> 4:
+ REGCHAN( WriteC0 );
+ case 0xd0 >> 4:
+ break;
+ case 0xe0 >> 4:
+ case 0xf0 >> 4:
+ REGOP( WriteE0 );
+ break;
+ }
+}
+
+
+Bit32u Chip__WriteAddr(Chip *self, Bit32u port, Bit8u val ) {
+ switch ( port & 3 ) {
+ case 0:
+ return val;
+ case 2:
+ if ( self->opl3Active || (val == 0x05) )
+ return 0x100 | val;
+ else
+ return val;
+ }
+ return 0;
+}
+
+void Chip__GenerateBlock2(Chip *self, Bitu total, Bit32s* output ) {
+ while ( total > 0 ) {
+ Channel *ch;
+ int count;
+
+ Bit32u samples = Chip__ForwardLFO( self, total );
+ memset(output, 0, sizeof(Bit32s) * samples);
+ count = 0;
+ for ( ch = self->chan; ch < self->chan + 9; ) {
+ count++;
+ ch = (ch->synthHandler)( ch, self, samples, output );
+ }
+ total -= samples;
+ output += samples;
+ }
+}
+
+void Chip__GenerateBlock3(Chip *self, Bitu total, Bit32s* output ) {
+ while ( total > 0 ) {
+ int count;
+ Channel *ch;
+
+ Bit32u samples = Chip__ForwardLFO( self, total );
+ memset(output, 0, sizeof(Bit32s) * samples *2);
+ count = 0;
+ for ( ch = self->chan; ch < self->chan + 18; ) {
+ count++;
+ ch = (ch->synthHandler)( ch, self, samples, output );
+ }
+ total -= samples;
+ output += samples * 2;
+ }
+}
+
+void Chip__Setup(Chip *self, Bit32u rate ) {
+ double original = OPLRATE;
+ Bit32u i;
+// double original = rate;
+ double scale = original / (double)rate;
+
+ //Noise counter is run at the same precision as general waves
+ self->noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+ self->noiseCounter = 0;
+ self->noiseValue = 1; //Make sure it triggers the noise xor the first time
+ //The low frequency oscillation counter
+ //Every time his overflows vibrato and tremoloindex are increased
+ self->lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+ self->lfoCounter = 0;
+ self->vibratoIndex = 0;
+ self->tremoloIndex = 0;
+
+ //With higher octave this gets shifted up
+ //-1 since the freqCreateTable = *2
+#ifdef WAVE_PRECISION
+ double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10));
+ for ( i = 0; i < 16; i++ ) {
+ self->freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] );
+ }
+#else
+ Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10)));
+ for ( i = 0; i < 16; i++ ) {
+ self->freqMul[i] = freqScale * FreqCreateTable[ i ];
+ }
+#endif
+
+ //-3 since the real envelope takes 8 steps to reach the single value we supply
+ for ( i = 0; i < 76; i++ ) {
+ Bit8u index, shift;
+ EnvelopeSelect( i, &index, &shift );
+ self->linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 )));
+ }
+ //Generate the best matching attack rate
+ for ( i = 0; i < 62; i++ ) {
+ Bit8u index, shift;
+ EnvelopeSelect( i, &index, &shift );
+ //Original amount of samples the attack would take
+ Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale);
+
+ Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 )));
+ Bit32s bestAdd = guessAdd;
+ Bit32u bestDiff = 1 << 30;
+ Bit32u passes;
+
+ for ( passes = 0; passes < 16; passes ++ ) {
+ Bit32s volume = ENV_MAX;
+ Bit32s samples = 0;
+ Bit32u count = 0;
+ while ( volume > 0 && samples < original * 2 ) {
+ count += guessAdd;
+ Bit32s change = count >> RATE_SH;
+ count &= RATE_MASK;
+ if ( GCC_UNLIKELY(change) ) { // less than 1 %
+ volume += ( ~volume * change ) >> 3;
+ }
+ samples++;
+
+ }
+ Bit32s diff = original - samples;
+ Bit32u lDiff = labs( diff );
+ //Init last on first pass
+ if ( lDiff < bestDiff ) {
+ bestDiff = lDiff;
+ bestAdd = guessAdd;
+ if ( !bestDiff )
+ break;
+ }
+ //Below our target
+ if ( diff < 0 ) {
+ //Better than the last time
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = ((guessAdd * mul) >> 12);
+ guessAdd++;
+ } else if ( diff > 0 ) {
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = (guessAdd * mul) >> 12;
+ guessAdd--;
+ }
+ }
+ self->attackRates[i] = bestAdd;
+ }
+ for ( i = 62; i < 76; i++ ) {
+ //This should provide instant volume maximizing
+ self->attackRates[i] = 8 << RATE_SH;
+ }
+ //Setup the channels with the correct four op flags
+ //Channels are accessed through a table so they appear linear here
+ self->chan[ 0].fourMask = 0x00 | ( 1 << 0 );
+ self->chan[ 1].fourMask = 0x80 | ( 1 << 0 );
+ self->chan[ 2].fourMask = 0x00 | ( 1 << 1 );
+ self->chan[ 3].fourMask = 0x80 | ( 1 << 1 );
+ self->chan[ 4].fourMask = 0x00 | ( 1 << 2 );
+ self->chan[ 5].fourMask = 0x80 | ( 1 << 2 );
+
+ self->chan[ 9].fourMask = 0x00 | ( 1 << 3 );
+ self->chan[10].fourMask = 0x80 | ( 1 << 3 );
+ self->chan[11].fourMask = 0x00 | ( 1 << 4 );
+ self->chan[12].fourMask = 0x80 | ( 1 << 4 );
+ self->chan[13].fourMask = 0x00 | ( 1 << 5 );
+ self->chan[14].fourMask = 0x80 | ( 1 << 5 );
+
+ //mark the percussion channels
+ self->chan[ 6].fourMask = 0x40;
+ self->chan[ 7].fourMask = 0x40;
+ self->chan[ 8].fourMask = 0x40;
+
+ //Clear Everything in opl3 mode
+ Chip__WriteReg( self, 0x105, 0x1 );
+ for ( i = 0; i < 512; i++ ) {
+ if ( i == 0x105 )
+ continue;
+ Chip__WriteReg( self, i, 0xff );
+ Chip__WriteReg( self, i, 0x0 );
+ }
+ Chip__WriteReg( self, 0x105, 0x0 );
+ //Clear everything in opl2 mode
+ for ( i = 0; i < 255; i++ ) {
+ Chip__WriteReg( self, i, 0xff );
+ Chip__WriteReg( self, i, 0x0 );
+ }
+}
+
+static int doneTables = FALSE;
+void InitTables( void ) {
+ int i, oct;
+
+ if ( doneTables )
+ return;
+ doneTables = TRUE;
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+ //Exponential volume table, same as the real adlib
+ for ( i = 0; i < 256; i++ ) {
+ //Save them in reverse
+ ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 );
+ ExpTable[i] += 1024; //or remove the -1 oh well :)
+ //Preshift to the left once so the final volume can shift to the right
+ ExpTable[i] *= 2;
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+ //Add 0.5 for the trunc rounding of the integer cast
+ //Do a PI sinetable instead of the original 0.5 PI
+ for ( i = 0; i < 512; i++ ) {
+ SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+ //Multiplication based tables
+ for ( i = 0; i < 384; i++ ) {
+ int s = i * 8;
+ //TODO maybe keep some of the precision errors of the original table?
+ double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH ));
+ MulTable[i] = (Bit16u)(val);
+ }
+
+ //Sine Wave Base
+ for ( i = 0; i < 512; i++ ) {
+ WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084);
+ WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
+ }
+ //Exponential wave
+ for ( i = 0; i < 256; i++ ) {
+ WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 );
+ WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLELOG )
+ //Sine Wave Base
+ for ( i = 0; i < 512; i++ ) {
+ WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+ WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
+ }
+ //Exponential wave
+ for ( i = 0; i < 256; i++ ) {
+ WaveTable[ 0x700 + i ] = i * 8;
+ WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
+ }
+#endif
+
+ // | |//\\|____|WAV7|//__|/\ |____|/\/\|
+ // |\\//| | |WAV7| | \/| | |
+ // |06 |0126|27 |7 |3 |4 |4 5 |5 |
+
+#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
+ for ( i = 0; i < 256; i++ ) {
+ //Fill silence gaps
+ WaveTable[ 0x400 + i ] = WaveTable[0];
+ WaveTable[ 0x500 + i ] = WaveTable[0];
+ WaveTable[ 0x900 + i ] = WaveTable[0];
+ WaveTable[ 0xc00 + i ] = WaveTable[0];
+ WaveTable[ 0xd00 + i ] = WaveTable[0];
+ //Replicate sines in other pieces
+ WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
+ //double speed sines
+ WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
+ WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ }
+#endif
+
+ //Create the ksl table
+ for ( oct = 0; oct < 8; oct++ ) {
+ int base = oct * 8;
+ for ( i = 0; i < 16; i++ ) {
+ int val = base - KslCreateTable[i];
+ if ( val < 0 )
+ val = 0;
+ //*4 for the final range to match attenuation range
+ KslTable[ oct * 16 + i ] = val * 4;
+ }
+ }
+ //Create the Tremolo table, just increase and decrease a triangle wave
+ for ( i = 0; i < TREMOLO_TABLE / 2; i++ ) {
+ Bit8u val = i << ENV_EXTRA;
+ TremoloTable[i] = val;
+ TremoloTable[TREMOLO_TABLE - 1 - i] = val;
+ }
+ //Create a table with offsets of the channels from the start of the chip
+ Chip *chip = NULL;
+ for ( i = 0; i < 32; i++ ) {
+ Bitu index = i & 0xf;
+ if ( index >= 9 ) {
+ ChanOffsetTable[i] = 0;
+ continue;
+ }
+ //Make sure the four op channels follow eachother
+ if ( index < 6 ) {
+ index = (index % 3) * 2 + ( index / 3 );
+ }
+ //Add back the bits for highest ones
+ if ( i >= 16 )
+ index += 9;
+ Bitu blah = (Bitu) ( &(chip->chan[ index ]) );
+ ChanOffsetTable[i] = blah;
+ }
+ //Same for operators
+ for ( i = 0; i < 64; i++ ) {
+ if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) {
+ OpOffsetTable[i] = 0;
+ continue;
+ }
+ Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
+ //Make sure we use 16 and up for the 2nd range to match the chanoffset gap
+ if ( chNum >= 12 )
+ chNum += 16 - 12;
+ Bitu opNum = ( i % 8 ) / 3;
+ Channel* chan = NULL;
+ Bitu blah = (Bitu) ( &(chan->op[opNum]) );
+ OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah;
+ }
+#if 0
+ //Stupid checks if table's are correct
+ for ( Bitu i = 0; i < 18; i++ ) {
+ Bit32u find = (Bit16u)( &(chip->chan[ i ]) );
+ for ( Bitu c = 0; c < 32; c++ ) {
+ if ( ChanOffsetTable[c] == find ) {
+ find = 0;
+ break;
+ }
+ }
+ if ( find ) {
+ find = find;
+ }
+ }
+ for ( Bitu i = 0; i < 36; i++ ) {
+ Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) );
+ for ( Bitu c = 0; c < 64; c++ ) {
+ if ( OpOffsetTable[c] == find ) {
+ find = 0;
+ break;
+ }
+ }
+ if ( find ) {
+ find = find;
+ }
+ }
+#endif
+}
+
+/*
+
+Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) {
+ return chip.WriteAddr( port, val );
+
+}
+void Handler::WriteReg( Bit32u addr, Bit8u val ) {
+ chip.WriteReg( addr, val );
+}
+
+void Handler::Generate( MixerChannel* chan, Bitu samples ) {
+ Bit32s buffer[ 512 * 2 ];
+ if ( GCC_UNLIKELY(samples > 512) )
+ samples = 512;
+ if ( !chip.opl3Active ) {
+ chip.GenerateBlock2( samples, buffer );
+ chan->AddSamples_m32( samples, buffer );
+ } else {
+ chip.GenerateBlock3( samples, buffer );
+ chan->AddSamples_s32( samples, buffer );
+ }
+}
+
+void Handler::Init( Bitu rate ) {
+ InitTables();
+ chip.Setup( rate );
+}
+*/
+
diff --git a/opl/dbopl.h b/opl/dbopl.h
new file mode 100644
index 00000000..f7d2e416
--- /dev/null
+++ b/opl/dbopl.h
@@ -0,0 +1,196 @@
+/*
+ * Copyright (C) 2002-2010 The DOSBox Team
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+#include <inttypes.h>
+
+//Use 8 handlers based on a small logatirmic wavetabe and an exponential table for volume
+#define WAVE_HANDLER 10
+//Use a logarithmic wavetable with an exponential table for volume
+#define WAVE_TABLELOG 11
+//Use a linear wavetable with a multiply table for volume
+#define WAVE_TABLEMUL 12
+
+//Select the type of wave generator routine
+#define DBOPL_WAVE WAVE_TABLEMUL
+
+typedef struct _Chip Chip;
+typedef struct _Operator Operator;
+typedef struct _Channel Channel;
+
+typedef uintptr_t Bitu;
+typedef intptr_t Bits;
+typedef uint32_t Bit32u;
+typedef int32_t Bit32s;
+typedef uint16_t Bit16u;
+typedef int16_t Bit16s;
+typedef uint8_t Bit8u;
+typedef int8_t Bit8s;
+
+#if (DBOPL_WAVE == WAVE_HANDLER)
+typedef Bits ( DB_FASTCALL *WaveHandler) ( Bitu i, Bitu volume );
+#endif
+
+#define DB_FASTCALL
+
+typedef Bits (*VolumeHandler)();
+typedef Channel* (*SynthHandler)(Channel *self, Chip* chip, Bit32u samples, Bit32s* output );
+
+//Different synth modes that can generate blocks of data
+typedef enum {
+ sm2AM,
+ sm2FM,
+ sm3AM,
+ sm3FM,
+ sm4Start,
+ sm3FMFM,
+ sm3AMFM,
+ sm3FMAM,
+ sm3AMAM,
+ sm6Start,
+ sm2Percussion,
+ sm3Percussion,
+} SynthMode;
+
+//Shifts for the values contained in chandata variable
+enum {
+ SHIFT_KSLBASE = 16,
+ SHIFT_KEYCODE = 24,
+};
+
+//Masks for operator 20 values
+enum {
+ MASK_KSR = 0x10,
+ MASK_SUSTAIN = 0x20,
+ MASK_VIBRATO = 0x40,
+ MASK_TREMOLO = 0x80,
+};
+
+typedef enum {
+ OFF,
+ RELEASE,
+ SUSTAIN,
+ DECAY,
+ ATTACK,
+} OperatorState;
+
+struct _Operator {
+ VolumeHandler volHandler;
+
+#if (DBOPL_WAVE == WAVE_HANDLER)
+ WaveHandler waveHandler; //Routine that generate a wave
+#else
+ Bit16s* waveBase;
+ Bit32u waveMask;
+ Bit32u waveStart;
+#endif
+ Bit32u waveIndex; //WAVE_BITS shifted counter of the frequency index
+ Bit32u waveAdd; //The base frequency without vibrato
+ Bit32u waveCurrent; //waveAdd + vibratao
+
+ Bit32u chanData; //Frequency/octave and derived data coming from whatever channel controls this
+ Bit32u freqMul; //Scale channel frequency with this, TODO maybe remove?
+ Bit32u vibrato; //Scaled up vibrato strength
+ Bit32s sustainLevel; //When stopping at sustain level stop here
+ Bit32s totalLevel; //totalLevel is added to every generated volume
+ Bit32u currentLevel; //totalLevel + tremolo
+ Bit32s volume; //The currently active volume
+
+ Bit32u attackAdd; //Timers for the different states of the envelope
+ Bit32u decayAdd;
+ Bit32u releaseAdd;
+ Bit32u rateIndex; //Current position of the evenlope
+
+ Bit8u rateZero; //Bits for the different states of the envelope having no changes
+ Bit8u keyOn; //Bitmask of different values that can generate keyon
+ //Registers, also used to check for changes
+ Bit8u reg20, reg40, reg60, reg80, regE0;
+ //Active part of the envelope we're in
+ Bit8u state;
+ //0xff when tremolo is enabled
+ Bit8u tremoloMask;
+ //Strength of the vibrato
+ Bit8u vibStrength;
+ //Keep track of the calculated KSR so we can check for changes
+ Bit8u ksr;
+};
+
+struct _Channel {
+ Operator op[2];
+ SynthHandler synthHandler;
+ Bit32u chanData; //Frequency/octave and derived values
+ Bit32s old[2]; //Old data for feedback
+
+ Bit8u feedback; //Feedback shift
+ Bit8u regB0; //Register values to check for changes
+ Bit8u regC0;
+ //This should correspond with reg104, bit 6 indicates a Percussion channel, bit 7 indicates a silent channel
+ Bit8u fourMask;
+ Bit8s maskLeft; //Sign extended values for both channel's panning
+ Bit8s maskRight;
+
+};
+
+struct _Chip {
+ //This is used as the base counter for vibrato and tremolo
+ Bit32u lfoCounter;
+ Bit32u lfoAdd;
+
+
+ Bit32u noiseCounter;
+ Bit32u noiseAdd;
+ Bit32u noiseValue;
+
+ //Frequency scales for the different multiplications
+ Bit32u freqMul[16];
+ //Rates for decay and release for rate of this chip
+ Bit32u linearRates[76];
+ //Best match attack rates for the rate of this chip
+ Bit32u attackRates[76];
+
+ //18 channels with 2 operators each
+ Channel chan[18];
+
+ Bit8u reg104;
+ Bit8u reg08;
+ Bit8u reg04;
+ Bit8u regBD;
+ Bit8u vibratoIndex;
+ Bit8u tremoloIndex;
+ Bit8s vibratoSign;
+ Bit8u vibratoShift;
+ Bit8u tremoloValue;
+ Bit8u vibratoStrength;
+ Bit8u tremoloStrength;
+ //Mask for allowed wave forms
+ Bit8u waveFormMask;
+ //0 or -1 when enabled
+ Bit8s opl3Active;
+
+};
+
+/*
+struct Handler : public Adlib::Handler {
+ DBOPL::Chip chip;
+ virtual Bit32u WriteAddr( Bit32u port, Bit8u val );
+ virtual void WriteReg( Bit32u addr, Bit8u val );
+ virtual void Generate( MixerChannel* chan, Bitu samples );
+ virtual void Init( Bitu rate );
+};
+*/
+
+