diff options
-rw-r--r-- | opl/dbopl.c | 1603 | ||||
-rw-r--r-- | opl/dbopl.h | 196 |
2 files changed, 1799 insertions, 0 deletions
diff --git a/opl/dbopl.c b/opl/dbopl.c new file mode 100644 index 00000000..556c570d --- /dev/null +++ b/opl/dbopl.c @@ -0,0 +1,1603 @@ +/* + * Copyright (C) 2002-2010 The DOSBox Team + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ + +// +// Chocolate Doom-related discussion: +// +// This is the DosBox OPL emulator code (src/hardware/dbopl.cpp) r3635, +// converted to C. The bulk of the work was done using the minus-minus +// script in the Chocolate Doom SVN repository, then the result tweaked +// by hand until working. +// + + +/* + DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator. + Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2 + Except for the table generation it's all integer math + Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms + The generation was based on the MAME implementation but tried to have it use less memory and be faster in general + MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times + + //TODO Don't delay first operator 1 sample in opl3 mode + //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter + //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though? + //TODO Check if having the same accuracy in all frequency multipliers sounds better or not + + //DUNNO Keyon in 4op, switch to 2op without keyoff. +*/ + +/* $Id: dbopl.cpp,v 1.10 2009-06-10 19:54:51 harekiet Exp $ */ + + +#include <math.h> +#include <stdlib.h> +#include <string.h> +//#include "dosbox.h" +#include "dbopl.h" + + +#define GCC_UNLIKELY(x) x + +#define TRUE 1 +#define FALSE 0 + +#ifndef PI +#define PI 3.14159265358979323846 +#endif + +#define OPLRATE ((double)(14318180.0 / 288.0)) +#define TREMOLO_TABLE 52 + +//Try to use most precision for frequencies +//Else try to keep different waves in synch +//#define WAVE_PRECISION 1 +#ifndef WAVE_PRECISION +//Wave bits available in the top of the 32bit range +//Original adlib uses 10.10, we use 10.22 +#define WAVE_BITS 10 +#else +//Need some extra bits at the top to have room for octaves and frequency multiplier +//We support to 8 times lower rate +//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits +#define WAVE_BITS 14 +#endif +#define WAVE_SH ( 32 - WAVE_BITS ) +#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 ) + +//Use the same accuracy as the waves +#define LFO_SH ( WAVE_SH - 10 ) +//LFO is controlled by our tremolo 256 sample limit +#define LFO_MAX ( 256 << ( LFO_SH ) ) + + +//Maximum amount of attenuation bits +//Envelope goes to 511, 9 bits +#if (DBOPL_WAVE == WAVE_TABLEMUL ) +//Uses the value directly +#define ENV_BITS ( 9 ) +#else +//Add 3 bits here for more accuracy and would have to be shifted up either way +#define ENV_BITS ( 9 ) +#endif +//Limits of the envelope with those bits and when the envelope goes silent +#define ENV_MIN 0 +#define ENV_EXTRA ( ENV_BITS - 9 ) +#define ENV_MAX ( 511 << ENV_EXTRA ) +#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) ) +#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT ) + +//Attack/decay/release rate counter shift +#define RATE_SH 24 +#define RATE_MASK ( ( 1 << RATE_SH ) - 1 ) +//Has to fit within 16bit lookuptable +#define MUL_SH 16 + +//Check some ranges +#if ENV_EXTRA > 3 +#error Too many envelope bits +#endif + +static inline void Operator__SetState(Operator *self, Bit8u s ); +static inline Bit32u Chip__ForwardNoise(Chip *self); + +// C++'s template<> sure is useful sometimes. + +static Channel* Channel__BlockTemplate(Channel *self, Chip* chip, + Bit32u samples, Bit32s* output, + SynthMode mode ); +#define BLOCK_TEMPLATE(mode) \ + static Channel* Channel__BlockTemplate_ ## mode(Channel *self, Chip* chip, \ + Bit32u samples, Bit32s* output) \ + { \ + return Channel__BlockTemplate(self, chip, samples, output, mode); \ + } + +BLOCK_TEMPLATE(sm2AM) +BLOCK_TEMPLATE(sm2FM) +BLOCK_TEMPLATE(sm3AM) +BLOCK_TEMPLATE(sm3FM) +BLOCK_TEMPLATE(sm3FMFM) +BLOCK_TEMPLATE(sm3AMFM) +BLOCK_TEMPLATE(sm3FMAM) +BLOCK_TEMPLATE(sm3AMAM) +BLOCK_TEMPLATE(sm2Percussion) +BLOCK_TEMPLATE(sm3Percussion) + +//How much to substract from the base value for the final attenuation +static const Bit8u KslCreateTable[16] = { + //0 will always be be lower than 7 * 8 + 64, 32, 24, 19, + 16, 12, 11, 10, + 8, 6, 5, 4, + 3, 2, 1, 0, +}; + +#define M(_X_) ((Bit8u)( (_X_) * 2)) +static const Bit8u FreqCreateTable[16] = { + M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ), + M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15) +}; +#undef M + +//We're not including the highest attack rate, that gets a special value +static const Bit8u AttackSamplesTable[13] = { + 69, 55, 46, 40, + 35, 29, 23, 20, + 19, 15, 11, 10, + 9 +}; +//On a real opl these values take 8 samples to reach and are based upon larger tables +static const Bit8u EnvelopeIncreaseTable[13] = { + 4, 5, 6, 7, + 8, 10, 12, 14, + 16, 20, 24, 28, + 32, +}; + +#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG ) +static Bit16u ExpTable[ 256 ]; +#endif + +#if ( DBOPL_WAVE == WAVE_HANDLER ) +//PI table used by WAVEHANDLER +static Bit16u SinTable[ 512 ]; +#endif + +#if ( DBOPL_WAVE > WAVE_HANDLER ) +//Layout of the waveform table in 512 entry intervals +//With overlapping waves we reduce the table to half it's size + +// | |//\\|____|WAV7|//__|/\ |____|/\/\| +// |\\//| | |WAV7| | \/| | | +// |06 |0126|17 |7 |3 |4 |4 5 |5 | + +//6 is just 0 shifted and masked + +static Bit16s WaveTable[ 8 * 512 ]; +//Distance into WaveTable the wave starts +static const Bit16u WaveBaseTable[8] = { + 0x000, 0x200, 0x200, 0x800, + 0xa00, 0xc00, 0x100, 0x400, + +}; +//Mask the counter with this +static const Bit16u WaveMaskTable[8] = { + 1023, 1023, 511, 511, + 1023, 1023, 512, 1023, +}; + +//Where to start the counter on at keyon +static const Bit16u WaveStartTable[8] = { + 512, 0, 0, 0, + 0, 512, 512, 256, +}; +#endif + +#if ( DBOPL_WAVE == WAVE_TABLEMUL ) +static Bit16u MulTable[ 384 ]; +#endif + +static Bit8u KslTable[ 8 * 16 ]; +static Bit8u TremoloTable[ TREMOLO_TABLE ]; +//Start of a channel behind the chip struct start +static Bit16u ChanOffsetTable[32]; +//Start of an operator behind the chip struct start +static Bit16u OpOffsetTable[64]; + +//The lower bits are the shift of the operator vibrato value +//The highest bit is right shifted to generate -1 or 0 for negation +//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0 +static const Bit8s VibratoTable[ 8 ] = { + 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00, + 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80 +}; + +//Shift strength for the ksl value determined by ksl strength +static const Bit8u KslShiftTable[4] = { + 31,1,2,0 +}; + +//Generate a table index and table shift value using input value from a selected rate +static void EnvelopeSelect( Bit8u val, Bit8u *index, Bit8u *shift ) { + if ( val < 13 * 4 ) { //Rate 0 - 12 + *shift = 12 - ( val >> 2 ); + *index = val & 3; + } else if ( val < 15 * 4 ) { //rate 13 - 14 + *shift = 0; + *index = val - 12 * 4; + } else { //rate 15 and up + *shift = 0; + *index = 12; + } +} + +#if ( DBOPL_WAVE == WAVE_HANDLER ) +/* + Generate the different waveforms out of the sine/exponetial table using handlers +*/ +static inline Bits MakeVolume( Bitu wave, Bitu volume ) { + Bitu total = wave + volume; + Bitu index = total & 0xff; + Bitu sig = ExpTable[ index ]; + Bitu exp = total >> 8; +#if 0 + //Check if we overflow the 31 shift limit + if ( exp >= 32 ) { + LOG_MSG( "WTF %d %d", total, exp ); + } +#endif + return (sig >> exp); +}; + +static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) { + Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 + Bitu wave = SinTable[i & 511]; + return (MakeVolume( wave, volume ) ^ neg) - neg; +} +static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) { + Bit32u wave = SinTable[i & 511]; + wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); + return MakeVolume( wave, volume ); +} +static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) { + Bitu wave = SinTable[i & 511]; + return MakeVolume( wave, volume ); +} +static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) { + Bitu wave = SinTable[i & 255]; + wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 ); + return MakeVolume( wave, volume ); +} +static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) { + //Twice as fast + i <<= 1; + Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 + Bitu wave = SinTable[i & 511]; + wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); + return (MakeVolume( wave, volume ) ^ neg) - neg; +} +static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) { + //Twice as fast + i <<= 1; + Bitu wave = SinTable[i & 511]; + wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); + return MakeVolume( wave, volume ); +} +static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) { + Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 + return (MakeVolume( 0, volume ) ^ neg) - neg; +} +static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) { + //Negative is reversed here + Bits neg = (( i >> 9) & 1) - 1; + Bitu wave = (i << 3); + //When negative the volume also runs backwards + wave = ((wave ^ neg) - neg) & 4095; + return (MakeVolume( wave, volume ) ^ neg) - neg; +} + +static const WaveHandler WaveHandlerTable[8] = { + WaveForm0, WaveForm1, WaveForm2, WaveForm3, + WaveForm4, WaveForm5, WaveForm6, WaveForm7 +}; + +#endif + +/* + Operator +*/ + +//We zero out when rate == 0 +inline void Operator__UpdateAttack(Operator *self, const Chip* chip ) { + Bit8u rate = self->reg60 >> 4; + if ( rate ) { + Bit8u val = (rate << 2) + self->ksr; + self->attackAdd = chip->attackRates[ val ]; + self->rateZero &= ~(1 << ATTACK); + } else { + self->attackAdd = 0; + self->rateZero |= (1 << ATTACK); + } +} +inline void Operator__UpdateDecay(Operator *self, const Chip* chip ) { + Bit8u rate = self->reg60 & 0xf; + if ( rate ) { + Bit8u val = (rate << 2) + self->ksr; + self->decayAdd = chip->linearRates[ val ]; + self->rateZero &= ~(1 << DECAY); + } else { + self->decayAdd = 0; + self->rateZero |= (1 << DECAY); + } +} +inline void Operator__UpdateRelease(Operator *self, const Chip* chip ) { + Bit8u rate = self->reg80 & 0xf; + if ( rate ) { + Bit8u val = (rate << 2) + self->ksr; + self->releaseAdd = chip->linearRates[ val ]; + self->rateZero &= ~(1 << RELEASE); + if ( !(self->reg20 & MASK_SUSTAIN ) ) { + self->rateZero &= ~( 1 << SUSTAIN ); + } + } else { + self->rateZero |= (1 << RELEASE); + self->releaseAdd = 0; + if ( !(self->reg20 & MASK_SUSTAIN ) ) { + self->rateZero |= ( 1 << SUSTAIN ); + } + } +} + +inline void Operator__UpdateAttenuation(Operator *self) { + Bit8u kslBase = (Bit8u)((self->chanData >> SHIFT_KSLBASE) & 0xff); + Bit32u tl = self->reg40 & 0x3f; + Bit8u kslShift = KslShiftTable[ self->reg40 >> 6 ]; + //Make sure the attenuation goes to the right bits + self->totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max + self->totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift; +} + +void Operator__UpdateFrequency(Operator *self) { + Bit32u freq = self->chanData & (( 1 << 10 ) - 1); + Bit32u block = (self->chanData >> 10) & 0xff; +#ifdef WAVE_PRECISION + block = 7 - block; + self->waveAdd = ( freq * self->freqMul ) >> block; +#else + self->waveAdd = ( freq << block ) * self->freqMul; +#endif + if ( self->reg20 & MASK_VIBRATO ) { + self->vibStrength = (Bit8u)(freq >> 7); + +#ifdef WAVE_PRECISION + self->vibrato = ( self->vibStrength * self->freqMul ) >> block; +#else + self->vibrato = ( self->vibStrength << block ) * self->freqMul; +#endif + } else { + self->vibStrength = 0; + self->vibrato = 0; + } +} + +void Operator__UpdateRates(Operator *self, const Chip* chip ) { + //Mame seems to reverse this where enabling ksr actually lowers + //the rate, but pdf manuals says otherwise? + Bit8u newKsr = (Bit8u)((self->chanData >> SHIFT_KEYCODE) & 0xff); + if ( !( self->reg20 & MASK_KSR ) ) { + newKsr >>= 2; + } + if ( self->ksr == newKsr ) + return; + self->ksr = newKsr; + Operator__UpdateAttack( self, chip ); + Operator__UpdateDecay( self, chip ); + Operator__UpdateRelease( self, chip ); +} + +static inline Bit32s Operator__RateForward(Operator *self, Bit32u add ) { + self->rateIndex += add; + Bit32s ret = self->rateIndex >> RATE_SH; + self->rateIndex = self->rateIndex & RATE_MASK; + return ret; +} + +static Bits Operator__TemplateVolume(Operator *self, OperatorState yes) { + Bit32s vol = self->volume; + Bit32s change; + switch ( yes ) { + case OFF: + return ENV_MAX; + case ATTACK: + change = Operator__RateForward( self, self->attackAdd ); + if ( !change ) + return vol; + vol += ( (~vol) * change ) >> 3; + if ( vol < ENV_MIN ) { + self->volume = ENV_MIN; + self->rateIndex = 0; + Operator__SetState( self, DECAY ); + return ENV_MIN; + } + break; + case DECAY: + vol += Operator__RateForward( self, self->decayAdd ); + if ( GCC_UNLIKELY(vol >= self->sustainLevel) ) { + //Check if we didn't overshoot max attenuation, then just go off + if ( GCC_UNLIKELY(vol >= ENV_MAX) ) { + self->volume = ENV_MAX; + Operator__SetState( self, OFF ); + return ENV_MAX; + } + //Continue as sustain + self->rateIndex = 0; + Operator__SetState( self, SUSTAIN ); + } + break; + case SUSTAIN: + if ( self->reg20 & MASK_SUSTAIN ) { + return vol; + } + //In sustain phase, but not sustaining, do regular release + case RELEASE: + vol += Operator__RateForward( self, self->releaseAdd );; + if ( GCC_UNLIKELY(vol >= ENV_MAX) ) { + self->volume = ENV_MAX; + Operator__SetState( self, OFF ); + return ENV_MAX; + } + break; + } + self->volume = vol; + return vol; +} + +#define TEMPLATE_VOLUME(mode) \ + static Bits Operator__TemplateVolume ## mode(Operator *self) \ + { \ + return Operator__TemplateVolume(self, mode); \ + } + +TEMPLATE_VOLUME(OFF) +TEMPLATE_VOLUME(RELEASE) +TEMPLATE_VOLUME(SUSTAIN) +TEMPLATE_VOLUME(ATTACK) +TEMPLATE_VOLUME(DECAY) + +static const VolumeHandler VolumeHandlerTable[5] = { + &Operator__TemplateVolumeOFF, + &Operator__TemplateVolumeRELEASE, + &Operator__TemplateVolumeSUSTAIN, + &Operator__TemplateVolumeDECAY, + &Operator__TemplateVolumeATTACK, +}; + +static inline Bitu Operator__ForwardVolume(Operator *self) { + return self->currentLevel + (self->volHandler)(); +} + + +static inline Bitu Operator__ForwardWave(Operator *self) { + self->waveIndex += self->waveCurrent; + return self->waveIndex >> WAVE_SH; +} + +void Operator__Write20(Operator *self, const Chip* chip, Bit8u val ) { + Bit8u change = (self->reg20 ^ val ); + if ( !change ) + return; + self->reg20 = val; + //Shift the tremolo bit over the entire register, saved a branch, YES! + self->tremoloMask = (Bit8s)(val) >> 7; + self->tremoloMask &= ~(( 1 << ENV_EXTRA ) -1); + //Update specific features based on changes + if ( change & MASK_KSR ) { + Operator__UpdateRates( self, chip ); + } + //With sustain enable the volume doesn't change + if ( self->reg20 & MASK_SUSTAIN || ( !self->releaseAdd ) ) { + self->rateZero |= ( 1 << SUSTAIN ); + } else { + self->rateZero &= ~( 1 << SUSTAIN ); + } + //Frequency multiplier or vibrato changed + if ( change & (0xf | MASK_VIBRATO) ) { + self->freqMul = chip->freqMul[ val & 0xf ]; + Operator__UpdateFrequency(self); + } +} + +void Operator__Write40(Operator *self, const Chip *chip, Bit8u val ) { + if (!(self->reg40 ^ val )) + return; + self->reg40 = val; + Operator__UpdateAttenuation( self ); +} + +void Operator__Write60(Operator *self, const Chip* chip, Bit8u val ) { + Bit8u change = self->reg60 ^ val; + self->reg60 = val; + if ( change & 0x0f ) { + Operator__UpdateDecay( self, chip ); + } + if ( change & 0xf0 ) { + Operator__UpdateAttack( self, chip ); + } +} + +void Operator__Write80(Operator *self, const Chip* chip, Bit8u val ) { + Bit8u change = (self->reg80 ^ val ); + if ( !change ) + return; + self->reg80 = val; + Bit8u sustain = val >> 4; + //Turn 0xf into 0x1f + sustain |= ( sustain + 1) & 0x10; + self->sustainLevel = sustain << ( ENV_BITS - 5 ); + if ( change & 0x0f ) { + Operator__UpdateRelease( self, chip ); + } +} + +void Operator__WriteE0(Operator *self, const Chip* chip, Bit8u val ) { + if ( !(self->regE0 ^ val) ) + return; + //in opl3 mode you can always selet 7 waveforms regardless of waveformselect + Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) ); + self->regE0 = val; +#if( DBOPL_WAVE == WAVE_HANDLER ) + self->waveHandler = WaveHandlerTable[ waveForm ]; +#else + self->waveBase = WaveTable + WaveBaseTable[ waveForm ]; + self->waveStart = WaveStartTable[ waveForm ] << WAVE_SH; + self->waveMask = WaveMaskTable[ waveForm ]; +#endif +} + +static inline void Operator__SetState(Operator *self, Bit8u s ) { + self->state = s; + self->volHandler = VolumeHandlerTable[ s ]; +} + +static inline int Operator__Silent(Operator *self) { + if ( !ENV_SILENT( self->totalLevel + self->volume ) ) + return FALSE; + if ( !(self->rateZero & ( 1 << self->state ) ) ) + return FALSE; + return TRUE; +} + +static inline void Operator__Prepare(Operator *self, const Chip* chip ) { + self->currentLevel = self->totalLevel + (chip->tremoloValue & self->tremoloMask); + self->waveCurrent = self->waveAdd; + if ( self->vibStrength >> chip->vibratoShift ) { + Bit32s add = self->vibrato >> chip->vibratoShift; + //Sign extend over the shift value + Bit32s neg = chip->vibratoSign; + //Negate the add with -1 or 0 + add = ( add ^ neg ) - neg; + self->waveCurrent += add; + } +} + +void Operator__KeyOn(Operator *self, Bit8u mask ) { + if ( !self->keyOn ) { + //Restart the frequency generator +#if( DBOPL_WAVE > WAVE_HANDLER ) + self->waveIndex = self->waveStart; +#else + self->waveIndex = 0; +#endif + self->rateIndex = 0; + Operator__SetState( self, ATTACK ); + } + self->keyOn |= mask; +} + +void Operator__KeyOff(Operator *self, Bit8u mask ) { + self->keyOn &= ~mask; + if ( !self->keyOn ) { + if ( self->state != OFF ) { + Operator__SetState( self, RELEASE ); + } + } +} + +static inline Bits Operator__GetWave(Operator *self, Bitu index, Bitu vol ) { +#if( DBOPL_WAVE == WAVE_HANDLER ) + return self->waveHandler( index, vol << ( 3 - ENV_EXTRA ) ); +#elif( DBOPL_WAVE == WAVE_TABLEMUL ) + return(self->waveBase[ index & self->waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH; +#elif( DBOPL_WAVE == WAVE_TABLELOG ) + Bit32s wave = self->waveBase[ index & self->waveMask ]; + Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA ); + Bit32s sig = ExpTable[ total & 0xff ]; + Bit32u exp = total >> 8; + Bit32s neg = wave >> 16; + return((sig ^ neg) - neg) >> exp; +#else +#error "No valid wave routine" +#endif +} + +static inline Bits Operator__GetSample(Operator *self, Bits modulation ) { + Bitu vol = Operator__ForwardVolume(self); + if ( ENV_SILENT( vol ) ) { + //Simply forward the wave + self->waveIndex += self->waveCurrent; + return 0; + } else { + Bitu index = Operator__ForwardWave(self); + index += modulation; + return Operator__GetWave( self, index, vol ); + } +} + +void Operator__Operator(Operator *self) { + self->chanData = 0; + self->freqMul = 0; + self->waveIndex = 0; + self->waveAdd = 0; + self->waveCurrent = 0; + self->keyOn = 0; + self->ksr = 0; + self->reg20 = 0; + self->reg40 = 0; + self->reg60 = 0; + self->reg80 = 0; + self->regE0 = 0; + Operator__SetState( self, OFF ); + self->rateZero = (1 << OFF); + self->sustainLevel = ENV_MAX; + self->currentLevel = ENV_MAX; + self->totalLevel = ENV_MAX; + self->volume = ENV_MAX; + self->releaseAdd = 0; +} + +/* + Channel +*/ + +void Channel__Channel(Channel *self) { + Operator__Operator(&self->op[0]); + Operator__Operator(&self->op[1]); + self->old[0] = self->old[1] = 0; + self->chanData = 0; + self->regB0 = 0; + self->regC0 = 0; + self->maskLeft = -1; + self->maskRight = -1; + self->feedback = 31; + self->fourMask = 0; + self->synthHandler = Channel__BlockTemplate_sm2FM; +}; + +static inline Operator* Channel__Op( Channel *self, Bitu index ) { + return &( ( self + (index >> 1) )->op[ index & 1 ]); +} + +void Channel__SetChanData(Channel *self, const Chip* chip, Bit32u data ) { + Bit32u change = self->chanData ^ data; + self->chanData = data; + Channel__Op( self, 0 )->chanData = data; + Channel__Op( self, 1 )->chanData = data; + //Since a frequency update triggered this, always update frequency + Operator__UpdateFrequency(Channel__Op( self, 0 )); + Operator__UpdateFrequency(Channel__Op( self, 1 )); + if ( change & ( 0xff << SHIFT_KSLBASE ) ) { + Operator__UpdateAttenuation(Channel__Op( self, 0 )); + Operator__UpdateAttenuation(Channel__Op( self, 1 )); + } + if ( change & ( 0xff << SHIFT_KEYCODE ) ) { + Operator__UpdateRates(Channel__Op( self, 0 ), chip); + Operator__UpdateRates(Channel__Op( self, 1 ), chip); + } +} + +void Channel__UpdateFrequency(Channel *self, const Chip* chip, Bit8u fourOp ) { + //Extrace the frequency bits + Bit32u data = self->chanData & 0xffff; + Bit32u kslBase = KslTable[ data >> 6 ]; + Bit32u keyCode = ( data & 0x1c00) >> 9; + if ( chip->reg08 & 0x40 ) { + keyCode |= ( data & 0x100)>>8; /* notesel == 1 */ + } else { + keyCode |= ( data & 0x200)>>9; /* notesel == 0 */ + } + //Add the keycode and ksl into the highest bits of chanData + data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE ); + Channel__SetChanData( self + 0, chip, data ); + if ( fourOp & 0x3f ) { + Channel__SetChanData( self + 1, chip, data ); + } +} + +void Channel__WriteA0(Channel *self, const Chip* chip, Bit8u val ) { + Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask; + //Don't handle writes to silent fourop channels + if ( fourOp > 0x80 ) + return; + Bit32u change = (self->chanData ^ val ) & 0xff; + if ( change ) { + self->chanData ^= change; + Channel__UpdateFrequency( self, chip, fourOp ); + } +} + +void Channel__WriteB0(Channel *self, const Chip* chip, Bit8u val ) { + Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask; + //Don't handle writes to silent fourop channels + if ( fourOp > 0x80 ) + return; + Bitu change = (self->chanData ^ ( val << 8 ) ) & 0x1f00; + if ( change ) { + self->chanData ^= change; + Channel__UpdateFrequency( self, chip, fourOp ); + } + //Check for a change in the keyon/off state + if ( !(( val ^ self->regB0) & 0x20)) + return; + self->regB0 = val; + if ( val & 0x20 ) { + Operator__KeyOn( Channel__Op(self, 0), 0x1 ); + Operator__KeyOn( Channel__Op(self, 1), 0x1 ); + if ( fourOp & 0x3f ) { + Operator__KeyOn( Channel__Op(self + 1, 0), 1 ); + Operator__KeyOn( Channel__Op(self + 1, 1), 1 ); + } + } else { + Operator__KeyOff( Channel__Op(self, 0), 0x1 ); + Operator__KeyOff( Channel__Op(self, 1), 0x1 ); + if ( fourOp & 0x3f ) { + Operator__KeyOff( Channel__Op(self + 1, 0), 1 ); + Operator__KeyOff( Channel__Op(self + 1, 1), 1 ); + } + } +} + +void Channel__WriteC0(Channel *self, const Chip* chip, Bit8u val ) { + Bit8u change = val ^ self->regC0; + if ( !change ) + return; + self->regC0 = val; + self->feedback = ( val >> 1 ) & 7; + if ( self->feedback ) { + //We shift the input to the right 10 bit wave index value + self->feedback = 9 - self->feedback; + } else { + self->feedback = 31; + } + //Select the new synth mode + if ( chip->opl3Active ) { + //4-op mode enabled for this channel + if ( (chip->reg104 & self->fourMask) & 0x3f ) { + Channel* chan0, *chan1; + //Check if it's the 2nd channel in a 4-op + if ( !(self->fourMask & 0x80 ) ) { + chan0 = self; + chan1 = self + 1; + } else { + chan0 = self - 1; + chan1 = self; + } + + Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 ); + switch ( synth ) { + case 0: + chan0->synthHandler = Channel__BlockTemplate_sm3FMFM; + break; + case 1: + chan0->synthHandler = Channel__BlockTemplate_sm3AMFM; + break; + case 2: + chan0->synthHandler = Channel__BlockTemplate_sm3FMAM ; + break; + case 3: + chan0->synthHandler = Channel__BlockTemplate_sm3AMAM ; + break; + } + //Disable updating percussion channels + } else if ((self->fourMask & 0x40) && ( chip->regBD & 0x20) ) { + + //Regular dual op, am or fm + } else if ( val & 1 ) { + self->synthHandler = Channel__BlockTemplate_sm3AM; + } else { + self->synthHandler = Channel__BlockTemplate_sm3FM; + } + self->maskLeft = ( val & 0x10 ) ? -1 : 0; + self->maskRight = ( val & 0x20 ) ? -1 : 0; + //opl2 active + } else { + //Disable updating percussion channels + if ( (self->fourMask & 0x40) && ( chip->regBD & 0x20 ) ) { + + //Regular dual op, am or fm + } else if ( val & 1 ) { + self->synthHandler = Channel__BlockTemplate_sm2AM; + } else { + self->synthHandler = Channel__BlockTemplate_sm2FM; + } + } +} + +void Channel__ResetC0(Channel *self, const Chip* chip ) { + Bit8u val = self->regC0; + self->regC0 ^= 0xff; + Channel__WriteC0( self, chip, val ); +}; + +static inline void Channel__GeneratePercussion(Channel *self, Chip* chip, + Bit32s* output, int opl3Mode ) { + Channel* chan = self; + + //BassDrum + Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback; + self->old[0] = self->old[1]; + self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod ); + + //When bassdrum is in AM mode first operator is ignoed + if ( chan->regC0 & 1 ) { + mod = 0; + } else { + mod = self->old[0]; + } + Bit32s sample = Operator__GetSample( Channel__Op(self, 1), mod ); + + //Precalculate stuff used by other outputs + Bit32u noiseBit = Chip__ForwardNoise(chip) & 0x1; + Bit32u c2 = Operator__ForwardWave(Channel__Op(self, 2)); + Bit32u c5 = Operator__ForwardWave(Channel__Op(self, 5)); + Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00; + + //Hi-Hat + Bit32u hhVol = Operator__ForwardVolume(Channel__Op(self, 2)); + if ( !ENV_SILENT( hhVol ) ) { + Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 ))); + sample += Operator__GetWave( Channel__Op(self, 2), hhIndex, hhVol ); + } + //Snare Drum + Bit32u sdVol = Operator__ForwardVolume( Channel__Op(self, 3) ); + if ( !ENV_SILENT( sdVol ) ) { + Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 ); + sample += Operator__GetWave( Channel__Op(self, 3), sdIndex, sdVol ); + } + //Tom-tom + sample += Operator__GetSample( Channel__Op(self, 4), 0 ); + + //Top-Cymbal + Bit32u tcVol = Operator__ForwardVolume(Channel__Op(self, 5)); + if ( !ENV_SILENT( tcVol ) ) { + Bit32u tcIndex = (1 + phaseBit) << 8; + sample += Operator__GetWave( Channel__Op(self, 5), tcIndex, tcVol ); + } + sample <<= 1; + if ( opl3Mode ) { + output[0] += sample; + output[1] += sample; + } else { + output[0] += sample; + } +} + +Channel* Channel__BlockTemplate(Channel *self, Chip* chip, + Bit32u samples, Bit32s* output, + SynthMode mode ) { + Bitu i; + + switch( mode ) { + case sm2AM: + case sm3AM: + if ( Operator__Silent(Channel__Op(self, 0)) + && Operator__Silent(Channel__Op(self, 1))) { + self->old[0] = self->old[1] = 0; + return(self + 1); + } + break; + case sm2FM: + case sm3FM: + if ( Operator__Silent(Channel__Op(self, 1))) { + self->old[0] = self->old[1] = 0; + return (self + 1); + } + break; + case sm3FMFM: + if ( Operator__Silent(Channel__Op(self, 3))) { + self->old[0] = self->old[1] = 0; + return (self + 2); + } + break; + case sm3AMFM: + if ( Operator__Silent( Channel__Op(self, 0) ) + && Operator__Silent( Channel__Op(self, 3) )) { + self->old[0] = self->old[1] = 0; + return (self + 2); + } + break; + case sm3FMAM: + if ( Operator__Silent( Channel__Op(self, 1)) + && Operator__Silent( Channel__Op(self, 3))) { + self->old[0] = self->old[1] = 0; + return (self + 2); + } + break; + case sm3AMAM: + if ( Operator__Silent( Channel__Op(self, 0) ) + && Operator__Silent( Channel__Op(self, 2) ) + && Operator__Silent( Channel__Op(self, 3) )) { + self->old[0] = self->old[1] = 0; + return (self + 2); + } + break; + + default: + abort(); + } + //Init the operators with the the current vibrato and tremolo values + Operator__Prepare( Channel__Op( self, 0 ), chip ); + Operator__Prepare( Channel__Op( self, 1 ), chip ); + if ( mode > sm4Start ) { + Operator__Prepare( Channel__Op( self, 2 ), chip ); + Operator__Prepare( Channel__Op( self, 3 ), chip ); + } + if ( mode > sm6Start ) { + Operator__Prepare( Channel__Op( self, 4 ), chip ); + Operator__Prepare( Channel__Op( self, 5 ), chip ); + } + for ( i = 0; i < samples; i++ ) { + //Early out for percussion handlers + if ( mode == sm2Percussion ) { + Channel__GeneratePercussion( self, chip, output + i, FALSE ); + continue; //Prevent some unitialized value bitching + } else if ( mode == sm3Percussion ) { + Channel__GeneratePercussion( self, chip, output + i * 2, TRUE ); + continue; //Prevent some unitialized value bitching + } + + //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise + Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback; + self->old[0] = self->old[1]; + self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod ); + Bit32s sample; + Bit32s out0 = self->old[0]; + if ( mode == sm2AM || mode == sm3AM ) { + sample = out0 + Operator__GetSample( Channel__Op(self, 1), 0 ); + } else if ( mode == sm2FM || mode == sm3FM ) { + sample = Operator__GetSample( Channel__Op(self, 1), out0 ); + } else if ( mode == sm3FMFM ) { + Bits next = Operator__GetSample( Channel__Op(self, 1), out0 ); + next = Operator__GetSample( Channel__Op(self, 2), next ); + sample = Operator__GetSample( Channel__Op(self, 3), next ); + } else if ( mode == sm3AMFM ) { + sample = out0; + Bits next = Operator__GetSample( Channel__Op(self, 1), 0 ); + next = Operator__GetSample( Channel__Op(self, 2), next ); + sample += Operator__GetSample( Channel__Op(self, 3), next ); + } else if ( mode == sm3FMAM ) { + sample = Operator__GetSample( Channel__Op(self, 1), out0 ); + Bits next = Operator__GetSample( Channel__Op(self, 2), 0 ); + sample += Operator__GetSample( Channel__Op(self, 3), next ); + } else if ( mode == sm3AMAM ) { + sample = out0; + Bits next = Operator__GetSample( Channel__Op(self, 1), 0 ); + sample += Operator__GetSample( Channel__Op(self, 2), next ); + sample += Operator__GetSample( Channel__Op(self, 3), 0 ); + } + switch( mode ) { + case sm2AM: + case sm2FM: + output[ i ] += sample; + break; + case sm3AM: + case sm3FM: + case sm3FMFM: + case sm3AMFM: + case sm3FMAM: + case sm3AMAM: + output[ i * 2 + 0 ] += sample & self->maskLeft; + output[ i * 2 + 1 ] += sample & self->maskRight; + break; + default: + abort(); + } + } + switch( mode ) { + case sm2AM: + case sm2FM: + case sm3AM: + case sm3FM: + return ( self + 1 ); + case sm3FMFM: + case sm3AMFM: + case sm3FMAM: + case sm3AMAM: + return ( self + 2 ); + case sm2Percussion: + case sm3Percussion: + return( self + 3 ); + default: + abort(); + } + return 0; +} + +/* + Chip +*/ + +void Chip__Chip(Chip *self) { + int i; + + for (i=0; i<18; ++i) { + Channel__Channel(&self->chan[i]); + } + + self->reg08 = 0; + self->reg04 = 0; + self->regBD = 0; + self->reg104 = 0; + self->opl3Active = 0; +} + +static inline Bit32u Chip__ForwardNoise(Chip *self) { + self->noiseCounter += self->noiseAdd; + Bitu count = self->noiseCounter >> LFO_SH; + self->noiseCounter &= WAVE_MASK; + for ( ; count > 0; --count ) { + //Noise calculation from mame + self->noiseValue ^= ( 0x800302 ) & ( 0 - (self->noiseValue & 1 ) ); + self->noiseValue >>= 1; + } + return self->noiseValue; +} + +static inline Bit32u Chip__ForwardLFO(Chip *self, Bit32u samples ) { + //Current vibrato value, runs 4x slower than tremolo + self->vibratoSign = ( VibratoTable[ self->vibratoIndex >> 2] ) >> 7; + self->vibratoShift = ( VibratoTable[ self->vibratoIndex >> 2] & 7) + self->vibratoStrength; + self->tremoloValue = TremoloTable[ self->tremoloIndex ] >> self->tremoloStrength; + + //Check hom many samples there can be done before the value changes + Bit32u todo = LFO_MAX - self->lfoCounter; + Bit32u count = (todo + self->lfoAdd - 1) / self->lfoAdd; + if ( count > samples ) { + count = samples; + self->lfoCounter += count * self->lfoAdd; + } else { + self->lfoCounter += count * self->lfoAdd; + self->lfoCounter &= (LFO_MAX - 1); + //Maximum of 7 vibrato value * 4 + self->vibratoIndex = ( self->vibratoIndex + 1 ) & 31; + //Clip tremolo to the the table size + if ( self->tremoloIndex + 1 < TREMOLO_TABLE ) + ++self->tremoloIndex; + else + self->tremoloIndex = 0; + } + return count; +} + + +void Chip__WriteBD(Chip *self, Bit8u val ) { + Bit8u change = self->regBD ^ val; + if ( !change ) + return; + self->regBD = val; + //TODO could do this with shift and xor? + self->vibratoStrength = (val & 0x40) ? 0x00 : 0x01; + self->tremoloStrength = (val & 0x80) ? 0x00 : 0x02; + if ( val & 0x20 ) { + //Drum was just enabled, make sure channel 6 has the right synth + if ( change & 0x20 ) { + if ( self->opl3Active ) { + self->chan[6].synthHandler + = Channel__BlockTemplate_sm3Percussion; + } else { + self->chan[6].synthHandler + = Channel__BlockTemplate_sm2Percussion; + } + } + //Bass Drum + if ( val & 0x10 ) { + Operator__KeyOn( &self->chan[6].op[0], 0x2 ); + Operator__KeyOn( &self->chan[6].op[1], 0x2 ); + } else { + Operator__KeyOff( &self->chan[6].op[0], 0x2 ); + Operator__KeyOff( &self->chan[6].op[1], 0x2 ); + } + //Hi-Hat + if ( val & 0x1 ) { + Operator__KeyOn( &self->chan[7].op[0], 0x2 ); + } else { + Operator__KeyOff( &self->chan[7].op[0], 0x2 ); + } + //Snare + if ( val & 0x8 ) { + Operator__KeyOn( &self->chan[7].op[1], 0x2 ); + } else { + Operator__KeyOff( &self->chan[7].op[1], 0x2 ); + } + //Tom-Tom + if ( val & 0x4 ) { + Operator__KeyOn( &self->chan[8].op[0], 0x2 ); + } else { + Operator__KeyOff( &self->chan[8].op[0], 0x2 ); + } + //Top Cymbal + if ( val & 0x2 ) { + Operator__KeyOn( &self->chan[8].op[1], 0x2 ); + } else { + Operator__KeyOff( &self->chan[8].op[1], 0x2 ); + } + //Toggle keyoffs when we turn off the percussion + } else if ( change & 0x20 ) { + //Trigger a reset to setup the original synth handler + Channel__ResetC0( &self->chan[6], self ); + Operator__KeyOff( &self->chan[6].op[0], 0x2 ); + Operator__KeyOff( &self->chan[6].op[1], 0x2 ); + Operator__KeyOff( &self->chan[7].op[0], 0x2 ); + Operator__KeyOff( &self->chan[7].op[1], 0x2 ); + Operator__KeyOff( &self->chan[8].op[0], 0x2 ); + Operator__KeyOff( &self->chan[8].op[1], 0x2 ); + } +} + + +#define REGOP( _FUNC_ ) \ + index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \ + if ( OpOffsetTable[ index ] ) { \ + Operator* regOp = (Operator*)( ((char *)self ) + OpOffsetTable[ index ] ); \ + Operator__ ## _FUNC_ (regOp, self, val); \ + } + +#define REGCHAN( _FUNC_ ) \ + index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \ + if ( ChanOffsetTable[ index ] ) { \ + Channel* regChan = (Channel*)( ((char *)self ) + ChanOffsetTable[ index ] ); \ + Channel__ ## _FUNC_ (regChan, self, val); \ + } + +void Chip__WriteReg(Chip *self, Bit32u reg, Bit8u val ) { + Bitu index; + switch ( (reg & 0xf0) >> 4 ) { + case 0x00 >> 4: + if ( reg == 0x01 ) { + self->waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0; + } else if ( reg == 0x104 ) { + //Only detect changes in lowest 6 bits + if ( !((self->reg104 ^ val) & 0x3f) ) + return; + //Always keep the highest bit enabled, for checking > 0x80 + self->reg104 = 0x80 | ( val & 0x3f ); + } else if ( reg == 0x105 ) { + int i; + + //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register + if ( !((self->opl3Active ^ val) & 1 ) ) + return; + self->opl3Active = ( val & 1 ) ? 0xff : 0; + //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers + for ( i = 0; i < 18;i++ ) { + Channel__ResetC0( &self->chan[i], self ); + } + } else if ( reg == 0x08 ) { + self->reg08 = val; + } + case 0x10 >> 4: + break; + case 0x20 >> 4: + case 0x30 >> 4: + REGOP( Write20 ); + break; + case 0x40 >> 4: + case 0x50 >> 4: + REGOP( Write40 ); + break; + case 0x60 >> 4: + case 0x70 >> 4: + REGOP( Write60 ); + break; + case 0x80 >> 4: + case 0x90 >> 4: + REGOP( Write80 ); + break; + case 0xa0 >> 4: + REGCHAN( WriteA0 ); + break; + case 0xb0 >> 4: + if ( reg == 0xbd ) { + Chip__WriteBD( self, val ); + } else { + REGCHAN( WriteB0 ); + } + break; + case 0xc0 >> 4: + REGCHAN( WriteC0 ); + case 0xd0 >> 4: + break; + case 0xe0 >> 4: + case 0xf0 >> 4: + REGOP( WriteE0 ); + break; + } +} + + +Bit32u Chip__WriteAddr(Chip *self, Bit32u port, Bit8u val ) { + switch ( port & 3 ) { + case 0: + return val; + case 2: + if ( self->opl3Active || (val == 0x05) ) + return 0x100 | val; + else + return val; + } + return 0; +} + +void Chip__GenerateBlock2(Chip *self, Bitu total, Bit32s* output ) { + while ( total > 0 ) { + Channel *ch; + int count; + + Bit32u samples = Chip__ForwardLFO( self, total ); + memset(output, 0, sizeof(Bit32s) * samples); + count = 0; + for ( ch = self->chan; ch < self->chan + 9; ) { + count++; + ch = (ch->synthHandler)( ch, self, samples, output ); + } + total -= samples; + output += samples; + } +} + +void Chip__GenerateBlock3(Chip *self, Bitu total, Bit32s* output ) { + while ( total > 0 ) { + int count; + Channel *ch; + + Bit32u samples = Chip__ForwardLFO( self, total ); + memset(output, 0, sizeof(Bit32s) * samples *2); + count = 0; + for ( ch = self->chan; ch < self->chan + 18; ) { + count++; + ch = (ch->synthHandler)( ch, self, samples, output ); + } + total -= samples; + output += samples * 2; + } +} + +void Chip__Setup(Chip *self, Bit32u rate ) { + double original = OPLRATE; + Bit32u i; +// double original = rate; + double scale = original / (double)rate; + + //Noise counter is run at the same precision as general waves + self->noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) ); + self->noiseCounter = 0; + self->noiseValue = 1; //Make sure it triggers the noise xor the first time + //The low frequency oscillation counter + //Every time his overflows vibrato and tremoloindex are increased + self->lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) ); + self->lfoCounter = 0; + self->vibratoIndex = 0; + self->tremoloIndex = 0; + + //With higher octave this gets shifted up + //-1 since the freqCreateTable = *2 +#ifdef WAVE_PRECISION + double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10)); + for ( i = 0; i < 16; i++ ) { + self->freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] ); + } +#else + Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10))); + for ( i = 0; i < 16; i++ ) { + self->freqMul[i] = freqScale * FreqCreateTable[ i ]; + } +#endif + + //-3 since the real envelope takes 8 steps to reach the single value we supply + for ( i = 0; i < 76; i++ ) { + Bit8u index, shift; + EnvelopeSelect( i, &index, &shift ); + self->linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 ))); + } + //Generate the best matching attack rate + for ( i = 0; i < 62; i++ ) { + Bit8u index, shift; + EnvelopeSelect( i, &index, &shift ); + //Original amount of samples the attack would take + Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale); + + Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 ))); + Bit32s bestAdd = guessAdd; + Bit32u bestDiff = 1 << 30; + Bit32u passes; + + for ( passes = 0; passes < 16; passes ++ ) { + Bit32s volume = ENV_MAX; + Bit32s samples = 0; + Bit32u count = 0; + while ( volume > 0 && samples < original * 2 ) { + count += guessAdd; + Bit32s change = count >> RATE_SH; + count &= RATE_MASK; + if ( GCC_UNLIKELY(change) ) { // less than 1 % + volume += ( ~volume * change ) >> 3; + } + samples++; + + } + Bit32s diff = original - samples; + Bit32u lDiff = labs( diff ); + //Init last on first pass + if ( lDiff < bestDiff ) { + bestDiff = lDiff; + bestAdd = guessAdd; + if ( !bestDiff ) + break; + } + //Below our target + if ( diff < 0 ) { + //Better than the last time + Bit32s mul = ((original - diff) << 12) / original; + guessAdd = ((guessAdd * mul) >> 12); + guessAdd++; + } else if ( diff > 0 ) { + Bit32s mul = ((original - diff) << 12) / original; + guessAdd = (guessAdd * mul) >> 12; + guessAdd--; + } + } + self->attackRates[i] = bestAdd; + } + for ( i = 62; i < 76; i++ ) { + //This should provide instant volume maximizing + self->attackRates[i] = 8 << RATE_SH; + } + //Setup the channels with the correct four op flags + //Channels are accessed through a table so they appear linear here + self->chan[ 0].fourMask = 0x00 | ( 1 << 0 ); + self->chan[ 1].fourMask = 0x80 | ( 1 << 0 ); + self->chan[ 2].fourMask = 0x00 | ( 1 << 1 ); + self->chan[ 3].fourMask = 0x80 | ( 1 << 1 ); + self->chan[ 4].fourMask = 0x00 | ( 1 << 2 ); + self->chan[ 5].fourMask = 0x80 | ( 1 << 2 ); + + self->chan[ 9].fourMask = 0x00 | ( 1 << 3 ); + self->chan[10].fourMask = 0x80 | ( 1 << 3 ); + self->chan[11].fourMask = 0x00 | ( 1 << 4 ); + self->chan[12].fourMask = 0x80 | ( 1 << 4 ); + self->chan[13].fourMask = 0x00 | ( 1 << 5 ); + self->chan[14].fourMask = 0x80 | ( 1 << 5 ); + + //mark the percussion channels + self->chan[ 6].fourMask = 0x40; + self->chan[ 7].fourMask = 0x40; + self->chan[ 8].fourMask = 0x40; + + //Clear Everything in opl3 mode + Chip__WriteReg( self, 0x105, 0x1 ); + for ( i = 0; i < 512; i++ ) { + if ( i == 0x105 ) + continue; + Chip__WriteReg( self, i, 0xff ); + Chip__WriteReg( self, i, 0x0 ); + } + Chip__WriteReg( self, 0x105, 0x0 ); + //Clear everything in opl2 mode + for ( i = 0; i < 255; i++ ) { + Chip__WriteReg( self, i, 0xff ); + Chip__WriteReg( self, i, 0x0 ); + } +} + +static int doneTables = FALSE; +void InitTables( void ) { + int i, oct; + + if ( doneTables ) + return; + doneTables = TRUE; +#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG ) + //Exponential volume table, same as the real adlib + for ( i = 0; i < 256; i++ ) { + //Save them in reverse + ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 ); + ExpTable[i] += 1024; //or remove the -1 oh well :) + //Preshift to the left once so the final volume can shift to the right + ExpTable[i] *= 2; + } +#endif +#if ( DBOPL_WAVE == WAVE_HANDLER ) + //Add 0.5 for the trunc rounding of the integer cast + //Do a PI sinetable instead of the original 0.5 PI + for ( i = 0; i < 512; i++ ) { + SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 ); + } +#endif +#if ( DBOPL_WAVE == WAVE_TABLEMUL ) + //Multiplication based tables + for ( i = 0; i < 384; i++ ) { + int s = i * 8; + //TODO maybe keep some of the precision errors of the original table? + double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH )); + MulTable[i] = (Bit16u)(val); + } + + //Sine Wave Base + for ( i = 0; i < 512; i++ ) { + WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084); + WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ]; + } + //Exponential wave + for ( i = 0; i < 256; i++ ) { + WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 ); + WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ]; + } +#endif +#if ( DBOPL_WAVE == WAVE_TABLELOG ) + //Sine Wave Base + for ( i = 0; i < 512; i++ ) { + WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 ); + WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i]; + } + //Exponential wave + for ( i = 0; i < 256; i++ ) { + WaveTable[ 0x700 + i ] = i * 8; + WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8; + } +#endif + + // | |//\\|____|WAV7|//__|/\ |____|/\/\| + // |\\//| | |WAV7| | \/| | | + // |06 |0126|27 |7 |3 |4 |4 5 |5 | + +#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL )) + for ( i = 0; i < 256; i++ ) { + //Fill silence gaps + WaveTable[ 0x400 + i ] = WaveTable[0]; + WaveTable[ 0x500 + i ] = WaveTable[0]; + WaveTable[ 0x900 + i ] = WaveTable[0]; + WaveTable[ 0xc00 + i ] = WaveTable[0]; + WaveTable[ 0xd00 + i ] = WaveTable[0]; + //Replicate sines in other pieces + WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ]; + //double speed sines + WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ]; + WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ]; + WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ]; + WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ]; + } +#endif + + //Create the ksl table + for ( oct = 0; oct < 8; oct++ ) { + int base = oct * 8; + for ( i = 0; i < 16; i++ ) { + int val = base - KslCreateTable[i]; + if ( val < 0 ) + val = 0; + //*4 for the final range to match attenuation range + KslTable[ oct * 16 + i ] = val * 4; + } + } + //Create the Tremolo table, just increase and decrease a triangle wave + for ( i = 0; i < TREMOLO_TABLE / 2; i++ ) { + Bit8u val = i << ENV_EXTRA; + TremoloTable[i] = val; + TremoloTable[TREMOLO_TABLE - 1 - i] = val; + } + //Create a table with offsets of the channels from the start of the chip + Chip *chip = NULL; + for ( i = 0; i < 32; i++ ) { + Bitu index = i & 0xf; + if ( index >= 9 ) { + ChanOffsetTable[i] = 0; + continue; + } + //Make sure the four op channels follow eachother + if ( index < 6 ) { + index = (index % 3) * 2 + ( index / 3 ); + } + //Add back the bits for highest ones + if ( i >= 16 ) + index += 9; + Bitu blah = (Bitu) ( &(chip->chan[ index ]) ); + ChanOffsetTable[i] = blah; + } + //Same for operators + for ( i = 0; i < 64; i++ ) { + if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) { + OpOffsetTable[i] = 0; + continue; + } + Bitu chNum = (i / 8) * 3 + (i % 8) % 3; + //Make sure we use 16 and up for the 2nd range to match the chanoffset gap + if ( chNum >= 12 ) + chNum += 16 - 12; + Bitu opNum = ( i % 8 ) / 3; + Channel* chan = NULL; + Bitu blah = (Bitu) ( &(chan->op[opNum]) ); + OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah; + } +#if 0 + //Stupid checks if table's are correct + for ( Bitu i = 0; i < 18; i++ ) { + Bit32u find = (Bit16u)( &(chip->chan[ i ]) ); + for ( Bitu c = 0; c < 32; c++ ) { + if ( ChanOffsetTable[c] == find ) { + find = 0; + break; + } + } + if ( find ) { + find = find; + } + } + for ( Bitu i = 0; i < 36; i++ ) { + Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) ); + for ( Bitu c = 0; c < 64; c++ ) { + if ( OpOffsetTable[c] == find ) { + find = 0; + break; + } + } + if ( find ) { + find = find; + } + } +#endif +} + +/* + +Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) { + return chip.WriteAddr( port, val ); + +} +void Handler::WriteReg( Bit32u addr, Bit8u val ) { + chip.WriteReg( addr, val ); +} + +void Handler::Generate( MixerChannel* chan, Bitu samples ) { + Bit32s buffer[ 512 * 2 ]; + if ( GCC_UNLIKELY(samples > 512) ) + samples = 512; + if ( !chip.opl3Active ) { + chip.GenerateBlock2( samples, buffer ); + chan->AddSamples_m32( samples, buffer ); + } else { + chip.GenerateBlock3( samples, buffer ); + chan->AddSamples_s32( samples, buffer ); + } +} + +void Handler::Init( Bitu rate ) { + InitTables(); + chip.Setup( rate ); +} +*/ + diff --git a/opl/dbopl.h b/opl/dbopl.h new file mode 100644 index 00000000..f7d2e416 --- /dev/null +++ b/opl/dbopl.h @@ -0,0 +1,196 @@ +/* + * Copyright (C) 2002-2010 The DOSBox Team + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ + +#include <inttypes.h> + +//Use 8 handlers based on a small logatirmic wavetabe and an exponential table for volume +#define WAVE_HANDLER 10 +//Use a logarithmic wavetable with an exponential table for volume +#define WAVE_TABLELOG 11 +//Use a linear wavetable with a multiply table for volume +#define WAVE_TABLEMUL 12 + +//Select the type of wave generator routine +#define DBOPL_WAVE WAVE_TABLEMUL + +typedef struct _Chip Chip; +typedef struct _Operator Operator; +typedef struct _Channel Channel; + +typedef uintptr_t Bitu; +typedef intptr_t Bits; +typedef uint32_t Bit32u; +typedef int32_t Bit32s; +typedef uint16_t Bit16u; +typedef int16_t Bit16s; +typedef uint8_t Bit8u; +typedef int8_t Bit8s; + +#if (DBOPL_WAVE == WAVE_HANDLER) +typedef Bits ( DB_FASTCALL *WaveHandler) ( Bitu i, Bitu volume ); +#endif + +#define DB_FASTCALL + +typedef Bits (*VolumeHandler)(); +typedef Channel* (*SynthHandler)(Channel *self, Chip* chip, Bit32u samples, Bit32s* output ); + +//Different synth modes that can generate blocks of data +typedef enum { + sm2AM, + sm2FM, + sm3AM, + sm3FM, + sm4Start, + sm3FMFM, + sm3AMFM, + sm3FMAM, + sm3AMAM, + sm6Start, + sm2Percussion, + sm3Percussion, +} SynthMode; + +//Shifts for the values contained in chandata variable +enum { + SHIFT_KSLBASE = 16, + SHIFT_KEYCODE = 24, +}; + +//Masks for operator 20 values +enum { + MASK_KSR = 0x10, + MASK_SUSTAIN = 0x20, + MASK_VIBRATO = 0x40, + MASK_TREMOLO = 0x80, +}; + +typedef enum { + OFF, + RELEASE, + SUSTAIN, + DECAY, + ATTACK, +} OperatorState; + +struct _Operator { + VolumeHandler volHandler; + +#if (DBOPL_WAVE == WAVE_HANDLER) + WaveHandler waveHandler; //Routine that generate a wave +#else + Bit16s* waveBase; + Bit32u waveMask; + Bit32u waveStart; +#endif + Bit32u waveIndex; //WAVE_BITS shifted counter of the frequency index + Bit32u waveAdd; //The base frequency without vibrato + Bit32u waveCurrent; //waveAdd + vibratao + + Bit32u chanData; //Frequency/octave and derived data coming from whatever channel controls this + Bit32u freqMul; //Scale channel frequency with this, TODO maybe remove? + Bit32u vibrato; //Scaled up vibrato strength + Bit32s sustainLevel; //When stopping at sustain level stop here + Bit32s totalLevel; //totalLevel is added to every generated volume + Bit32u currentLevel; //totalLevel + tremolo + Bit32s volume; //The currently active volume + + Bit32u attackAdd; //Timers for the different states of the envelope + Bit32u decayAdd; + Bit32u releaseAdd; + Bit32u rateIndex; //Current position of the evenlope + + Bit8u rateZero; //Bits for the different states of the envelope having no changes + Bit8u keyOn; //Bitmask of different values that can generate keyon + //Registers, also used to check for changes + Bit8u reg20, reg40, reg60, reg80, regE0; + //Active part of the envelope we're in + Bit8u state; + //0xff when tremolo is enabled + Bit8u tremoloMask; + //Strength of the vibrato + Bit8u vibStrength; + //Keep track of the calculated KSR so we can check for changes + Bit8u ksr; +}; + +struct _Channel { + Operator op[2]; + SynthHandler synthHandler; + Bit32u chanData; //Frequency/octave and derived values + Bit32s old[2]; //Old data for feedback + + Bit8u feedback; //Feedback shift + Bit8u regB0; //Register values to check for changes + Bit8u regC0; + //This should correspond with reg104, bit 6 indicates a Percussion channel, bit 7 indicates a silent channel + Bit8u fourMask; + Bit8s maskLeft; //Sign extended values for both channel's panning + Bit8s maskRight; + +}; + +struct _Chip { + //This is used as the base counter for vibrato and tremolo + Bit32u lfoCounter; + Bit32u lfoAdd; + + + Bit32u noiseCounter; + Bit32u noiseAdd; + Bit32u noiseValue; + + //Frequency scales for the different multiplications + Bit32u freqMul[16]; + //Rates for decay and release for rate of this chip + Bit32u linearRates[76]; + //Best match attack rates for the rate of this chip + Bit32u attackRates[76]; + + //18 channels with 2 operators each + Channel chan[18]; + + Bit8u reg104; + Bit8u reg08; + Bit8u reg04; + Bit8u regBD; + Bit8u vibratoIndex; + Bit8u tremoloIndex; + Bit8s vibratoSign; + Bit8u vibratoShift; + Bit8u tremoloValue; + Bit8u vibratoStrength; + Bit8u tremoloStrength; + //Mask for allowed wave forms + Bit8u waveFormMask; + //0 or -1 when enabled + Bit8s opl3Active; + +}; + +/* +struct Handler : public Adlib::Handler { + DBOPL::Chip chip; + virtual Bit32u WriteAddr( Bit32u port, Bit8u val ); + virtual void WriteReg( Bit32u addr, Bit8u val ); + virtual void Generate( MixerChannel* chan, Bitu samples ); + virtual void Init( Bitu rate ); +}; +*/ + + |