1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
//
// Copyright(C) 2005-2014 Simon Howard
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// DESCRIPTION:
// Queue of waiting callbacks, stored in a binary min heap, so that we
// can always get the first callback.
//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "opl_queue.h"
#define MAX_OPL_QUEUE 64
typedef struct
{
opl_callback_t callback;
void *data;
uint64_t time;
} opl_queue_entry_t;
struct opl_callback_queue_s
{
opl_queue_entry_t entries[MAX_OPL_QUEUE];
unsigned int num_entries;
};
opl_callback_queue_t *OPL_Queue_Create(void)
{
opl_callback_queue_t *queue;
queue = malloc(sizeof(opl_callback_queue_t));
queue->num_entries = 0;
return queue;
}
void OPL_Queue_Destroy(opl_callback_queue_t *queue)
{
free(queue);
}
int OPL_Queue_IsEmpty(opl_callback_queue_t *queue)
{
return queue->num_entries == 0;
}
void OPL_Queue_Clear(opl_callback_queue_t *queue)
{
queue->num_entries = 0;
}
void OPL_Queue_Push(opl_callback_queue_t *queue,
opl_callback_t callback, void *data,
uint64_t time)
{
int entry_id;
int parent_id;
if (queue->num_entries >= MAX_OPL_QUEUE)
{
fprintf(stderr, "OPL_Queue_Push: Exceeded maximum callbacks\n");
return;
}
// Add to last queue entry.
entry_id = queue->num_entries;
++queue->num_entries;
// Shift existing entries down in the heap.
while (entry_id > 0)
{
parent_id = (entry_id - 1) / 2;
// Is the heap condition satisfied?
if (time >= queue->entries[parent_id].time)
{
break;
}
// Move the existing entry down in the heap.
memcpy(&queue->entries[entry_id],
&queue->entries[parent_id],
sizeof(opl_queue_entry_t));
// Advance to the parent.
entry_id = parent_id;
}
// Insert new callback data.
queue->entries[entry_id].callback = callback;
queue->entries[entry_id].data = data;
queue->entries[entry_id].time = time;
}
int OPL_Queue_Pop(opl_callback_queue_t *queue,
opl_callback_t *callback, void **data)
{
opl_queue_entry_t *entry;
int child1, child2;
int i, next_i;
// Empty?
if (queue->num_entries <= 0)
{
return 0;
}
// Store the result:
*callback = queue->entries[0].callback;
*data = queue->entries[0].data;
// Decrease the heap size, and keep pointer to the last entry in
// the heap, which must now be percolated down from the top.
--queue->num_entries;
entry = &queue->entries[queue->num_entries];
// Percolate down.
i = 0;
for (;;)
{
child1 = i * 2 + 1;
child2 = i * 2 + 2;
if (child1 < queue->num_entries
&& queue->entries[child1].time < entry->time)
{
// Left child is less than entry.
// Use the minimum of left and right children.
if (child2 < queue->num_entries
&& queue->entries[child2].time < queue->entries[child1].time)
{
next_i = child2;
}
else
{
next_i = child1;
}
}
else if (child2 < queue->num_entries
&& queue->entries[child2].time < entry->time)
{
// Right child is less than entry. Go down the right side.
next_i = child2;
}
else
{
// Finished percolating.
break;
}
// Percolate the next value up and advance.
memcpy(&queue->entries[i],
&queue->entries[next_i],
sizeof(opl_queue_entry_t));
i = next_i;
}
// Store the old last-entry at its new position.
memcpy(&queue->entries[i], entry, sizeof(opl_queue_entry_t));
return 1;
}
uint64_t OPL_Queue_Peek(opl_callback_queue_t *queue)
{
if (queue->num_entries > 0)
{
return queue->entries[0].time;
}
else
{
return 0;
}
}
void OPL_Queue_AdjustCallbacks(opl_callback_queue_t *queue,
uint64_t time, float factor)
{
int64_t offset;
int i;
for (i = 0; i < queue->num_entries; ++i)
{
offset = queue->entries[i].time - time;
queue->entries[i].time = time + (uint64_t) (offset * factor);
}
}
#ifdef TEST
#include <assert.h>
static void PrintQueueNode(opl_callback_queue_t *queue, int node, int depth)
{
int i;
if (node >= queue->num_entries)
{
return;
}
for (i=0; i<depth * 3; ++i)
{
printf(" ");
}
printf("%i\n", queue->entries[node].time);
PrintQueueNode(queue, node * 2 + 1, depth + 1);
PrintQueueNode(queue, node * 2 + 2, depth + 1);
}
static void PrintQueue(opl_callback_queue_t *queue)
{
PrintQueueNode(queue, 0, 0);
}
int main()
{
opl_callback_queue_t *queue;
int iteration;
queue = OPL_Queue_Create();
for (iteration=0; iteration<5000; ++iteration)
{
opl_callback_t callback;
void *data;
unsigned int time;
unsigned int newtime;
int i;
for (i=0; i<MAX_OPL_QUEUE; ++i)
{
time = rand() % 0x10000;
OPL_Queue_Push(queue, NULL, NULL, time);
}
time = 0;
for (i=0; i<MAX_OPL_QUEUE; ++i)
{
assert(!OPL_Queue_IsEmpty(queue));
newtime = OPL_Queue_Peek(queue);
assert(OPL_Queue_Pop(queue, &callback, &data));
assert(newtime >= time);
time = newtime;
}
assert(OPL_Queue_IsEmpty(queue));
assert(!OPL_Queue_Pop(queue, &callback, &data));
}
}
#endif
|