diff options
author | Twinaphex | 2019-05-14 11:44:06 +0200 |
---|---|---|
committer | GitHub | 2019-05-14 11:44:06 +0200 |
commit | 80209d1715398a16b6ace1c2e4cd0aab5c00248d (patch) | |
tree | b7f82140860acabb2d0e3a5216f78bf98691c267 /deps/flac-1.3.2/src/libFLAC/fixed_intrin_ssse3.c | |
parent | 5ffd1f23eb970679dfe8b540bc3df8e776dc9e17 (diff) | |
parent | ce188d4d7f3b9ad04867c49b424e8497c2ade92b (diff) | |
download | pcsx_rearmed-80209d1715398a16b6ace1c2e4cd0aab5c00248d.tar.gz pcsx_rearmed-80209d1715398a16b6ace1c2e4cd0aab5c00248d.tar.bz2 pcsx_rearmed-80209d1715398a16b6ace1c2e4cd0aab5c00248d.zip |
Merge pull request #280 from aliaspider/master
add CHD support.
Diffstat (limited to 'deps/flac-1.3.2/src/libFLAC/fixed_intrin_ssse3.c')
-rw-r--r-- | deps/flac-1.3.2/src/libFLAC/fixed_intrin_ssse3.c | 243 |
1 files changed, 243 insertions, 0 deletions
diff --git a/deps/flac-1.3.2/src/libFLAC/fixed_intrin_ssse3.c b/deps/flac-1.3.2/src/libFLAC/fixed_intrin_ssse3.c new file mode 100644 index 0000000..f4d93e8 --- /dev/null +++ b/deps/flac-1.3.2/src/libFLAC/fixed_intrin_ssse3.c @@ -0,0 +1,243 @@ +/* libFLAC - Free Lossless Audio Codec library + * Copyright (C) 2000-2009 Josh Coalson + * Copyright (C) 2011-2016 Xiph.Org Foundation + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * - Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * - Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * - Neither the name of the Xiph.org Foundation nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifdef HAVE_CONFIG_H +# include <config.h> +#endif + +#include "private/cpu.h" + +#ifndef FLAC__INTEGER_ONLY_LIBRARY +#ifndef FLAC__NO_ASM +#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN +#include "private/fixed.h" +#ifdef FLAC__SSSE3_SUPPORTED + +#include <tmmintrin.h> /* SSSE3 */ +#include <math.h> +#include "private/macros.h" +#include "share/compat.h" +#include "FLAC/assert.h" + +#ifdef FLAC__CPU_IA32 +#define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src) +#else +#define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src) +#endif + +FLAC__SSE_TARGET("ssse3") +unsigned FLAC__fixed_compute_best_predictor_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) +{ + FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; + unsigned i, order; + + __m128i total_err0, total_err1, total_err2; + + { + FLAC__int32 itmp; + __m128i last_error; + + last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0 + itmp = data[-2]; + last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); + last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1 + itmp -= data[-3]; + last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); + last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2 + itmp -= data[-3] - data[-4]; + last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); + last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3 + + total_err0 = total_err1 = _mm_setzero_si128(); + for(i = 0; i < data_len; i++) { + __m128i err0, err1; + err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0 + err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0 +#if 1 /* OPT_SSE */ + err1 = _mm_sub_epi32(err1, last_error); + last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2 + err1 = _mm_sub_epi32(err1, last_error); + last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1 + err1 = _mm_sub_epi32(err1, last_error); + last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0 + err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 +#else + last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1 + last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 + err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 +#endif + last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3 + + err0 = _mm_abs_epi32(err0); + err1 = _mm_abs_epi32(err1); + + total_err0 = _mm_add_epi32(total_err0, err0); // 0 0 0 te0 + total_err1 = _mm_add_epi32(total_err1, err1); // te1 te2 te3 te4 + } + } + + total_error_0 = _mm_cvtsi128_si32(total_err0); + total_err2 = total_err1; // te1 te2 te3 te4 + total_err1 = _mm_srli_si128(total_err1, 8); // 0 0 te1 te2 + total_error_4 = _mm_cvtsi128_si32(total_err2); + total_error_2 = _mm_cvtsi128_si32(total_err1); + total_err2 = _mm_srli_si128(total_err2, 4); // 0 te1 te2 te3 + total_err1 = _mm_srli_si128(total_err1, 4); // 0 0 0 te1 + total_error_3 = _mm_cvtsi128_si32(total_err2); + total_error_1 = _mm_cvtsi128_si32(total_err1); + + /* prefer higher order */ + if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) + order = 0; + else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4)) + order = 1; + else if(total_error_2 < flac_min(total_error_3, total_error_4)) + order = 2; + else if(total_error_3 < total_error_4) + order = 3; + else + order = 4; + + /* Estimate the expected number of bits per residual signal sample. */ + /* 'total_error*' is linearly related to the variance of the residual */ + /* signal, so we use it directly to compute E(|x|) */ + FLAC__ASSERT(data_len > 0 || total_error_0 == 0); + FLAC__ASSERT(data_len > 0 || total_error_1 == 0); + FLAC__ASSERT(data_len > 0 || total_error_2 == 0); + FLAC__ASSERT(data_len > 0 || total_error_3 == 0); + FLAC__ASSERT(data_len > 0 || total_error_4 == 0); + + residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); + + return order; +} + +FLAC__SSE_TARGET("ssse3") +unsigned FLAC__fixed_compute_best_predictor_wide_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) +{ + FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; + unsigned i, order; + + __m128i total_err0, total_err1, total_err3; + + { + FLAC__int32 itmp; + __m128i last_error, zero = _mm_setzero_si128(); + + last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0 + itmp = data[-2]; + last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); + last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1 + itmp -= data[-3]; + last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); + last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2 + itmp -= data[-3] - data[-4]; + last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); + last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3 + + total_err0 = total_err1 = total_err3 = _mm_setzero_si128(); + for(i = 0; i < data_len; i++) { + __m128i err0, err1; + err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0 + err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0 +#if 1 /* OPT_SSE */ + err1 = _mm_sub_epi32(err1, last_error); + last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2 + err1 = _mm_sub_epi32(err1, last_error); + last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1 + err1 = _mm_sub_epi32(err1, last_error); + last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0 + err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 +#else + last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1 + last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 + err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 +#endif + last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3 + + err0 = _mm_abs_epi32(err0); + err1 = _mm_abs_epi32(err1); // |e1| |e2| |e3| |e4| + + total_err0 = _mm_add_epi64(total_err0, err0); // 0 te0 + err0 = _mm_unpacklo_epi32(err1, zero); // 0 |e3| 0 |e4| + err1 = _mm_unpackhi_epi32(err1, zero); // 0 |e1| 0 |e2| + total_err3 = _mm_add_epi64(total_err3, err0); // te3 te4 + total_err1 = _mm_add_epi64(total_err1, err1); // te1 te2 + } + } + + m128i_to_i64(total_error_0, total_err0); + m128i_to_i64(total_error_4, total_err3); + m128i_to_i64(total_error_2, total_err1); + total_err3 = _mm_srli_si128(total_err3, 8); // 0 te3 + total_err1 = _mm_srli_si128(total_err1, 8); // 0 te1 + m128i_to_i64(total_error_3, total_err3); + m128i_to_i64(total_error_1, total_err1); + + /* prefer higher order */ + if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) + order = 0; + else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4)) + order = 1; + else if(total_error_2 < flac_min(total_error_3, total_error_4)) + order = 2; + else if(total_error_3 < total_error_4) + order = 3; + else + order = 4; + + /* Estimate the expected number of bits per residual signal sample. */ + /* 'total_error*' is linearly related to the variance of the residual */ + /* signal, so we use it directly to compute E(|x|) */ + FLAC__ASSERT(data_len > 0 || total_error_0 == 0); + FLAC__ASSERT(data_len > 0 || total_error_1 == 0); + FLAC__ASSERT(data_len > 0 || total_error_2 == 0); + FLAC__ASSERT(data_len > 0 || total_error_3 == 0); + FLAC__ASSERT(data_len > 0 || total_error_4 == 0); + + residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); + + return order; +} + +#endif /* FLAC__SSSE3_SUPPORTED */ +#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ +#endif /* FLAC__NO_ASM */ +#endif /* FLAC__INTEGER_ONLY_LIBRARY */ |