1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
huffman.c
Static Huffman compression and decompression helpers.
****************************************************************************
Maximum codelength is officially (alphabetsize - 1). This would be 255 bits
(since we use 1 byte values). However, it is also dependent upon the number
of samples used, as follows:
2 bits -> 3..4 samples
3 bits -> 5..7 samples
4 bits -> 8..12 samples
5 bits -> 13..20 samples
6 bits -> 21..33 samples
7 bits -> 34..54 samples
8 bits -> 55..88 samples
9 bits -> 89..143 samples
10 bits -> 144..232 samples
11 bits -> 233..376 samples
12 bits -> 377..609 samples
13 bits -> 610..986 samples
14 bits -> 987..1596 samples
15 bits -> 1597..2583 samples
16 bits -> 2584..4180 samples -> note that a 4k data size guarantees codelength <= 16 bits
17 bits -> 4181..6764 samples
18 bits -> 6765..10945 samples
19 bits -> 10946..17710 samples
20 bits -> 17711..28656 samples
21 bits -> 28657..46367 samples
22 bits -> 46368..75024 samples
23 bits -> 75025..121392 samples
24 bits -> 121393..196417 samples
25 bits -> 196418..317810 samples
26 bits -> 317811..514228 samples
27 bits -> 514229..832039 samples
28 bits -> 832040..1346268 samples
29 bits -> 1346269..2178308 samples
30 bits -> 2178309..3524577 samples
31 bits -> 3524578..5702886 samples
32 bits -> 5702887..9227464 samples
Looking at it differently, here is where powers of 2 fall into these buckets:
256 samples -> 11 bits max
512 samples -> 12 bits max
1k samples -> 14 bits max
2k samples -> 15 bits max
4k samples -> 16 bits max
8k samples -> 18 bits max
16k samples -> 19 bits max
32k samples -> 21 bits max
64k samples -> 22 bits max
128k samples -> 24 bits max
256k samples -> 25 bits max
512k samples -> 27 bits max
1M samples -> 28 bits max
2M samples -> 29 bits max
4M samples -> 31 bits max
8M samples -> 32 bits max
****************************************************************************
Delta-RLE encoding works as follows:
Starting value is assumed to be 0. All data is encoded as a delta
from the previous value, such that final[i] = final[i - 1] + delta.
Long runs of 0s are RLE-encoded as follows:
0x100 = repeat count of 8
0x101 = repeat count of 9
0x102 = repeat count of 10
0x103 = repeat count of 11
0x104 = repeat count of 12
0x105 = repeat count of 13
0x106 = repeat count of 14
0x107 = repeat count of 15
0x108 = repeat count of 16
0x109 = repeat count of 32
0x10a = repeat count of 64
0x10b = repeat count of 128
0x10c = repeat count of 256
0x10d = repeat count of 512
0x10e = repeat count of 1024
0x10f = repeat count of 2048
Note that repeat counts are reset at the end of a row, so if a 0 run
extends to the end of a row, a large repeat count may be used.
The reason for starting the run counts at 8 is that 0 is expected to
be the most common symbol, and is typically encoded in 1 or 2 bits.
***************************************************************************/
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "huffman.h"
#define MAX(x,y) ((x) > (y) ? (x) : (y))
//**************************************************************************
// MACROS
//**************************************************************************
#define MAKE_LOOKUP(code,bits) (((code) << 5) | ((bits) & 0x1f))
//**************************************************************************
// IMPLEMENTATION
//**************************************************************************
//-------------------------------------------------
// huffman_context_base - create an encoding/
// decoding context
//-------------------------------------------------
struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
{
struct huffman_decoder* decoder;
/* limit to 24 bits */
if (maxbits > 24)
return NULL;
decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
decoder->numcodes = numcodes;
decoder->maxbits = maxbits;
decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes);
decoder->datahisto = NULL;
decoder->prevdata = 0;
decoder->rleremaining = 0;
return decoder;
}
//-------------------------------------------------
// decode_one - decode a single code from the
// huffman stream
//-------------------------------------------------
uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
/* peek ahead to get maxbits worth of data */
uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits);
/* look it up, then remove the actual number of bits for this code */
lookup_value lookup = decoder->lookup[bits];
bitstream_remove(bitbuf, lookup & 0x1f);
/* return the value */
return lookup >> 5;
}
//-------------------------------------------------
// import_tree_rle - import an RLE-encoded
// huffman tree from a source data stream
//-------------------------------------------------
enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
enum huffman_error error;
int curnode;
// bits per entry depends on the maxbits
int numbits;
if (decoder->maxbits >= 16)
numbits = 5;
else if (decoder->maxbits >= 8)
numbits = 4;
else
numbits = 3;
// loop until we read all the nodes
for (curnode = 0; curnode < decoder->numcodes; )
{
// a non-one value is just raw
int nodebits = bitstream_read(bitbuf, numbits);
if (nodebits != 1)
decoder->huffnode[curnode++].numbits = nodebits;
// a one value is an escape code
else
{
// a double 1 is just a single 1
nodebits = bitstream_read(bitbuf, numbits);
if (nodebits == 1)
decoder->huffnode[curnode++].numbits = nodebits;
// otherwise, we need one for value for the repeat count
else
{
int repcount = bitstream_read(bitbuf, numbits) + 3;
while (repcount--)
decoder->huffnode[curnode++].numbits = nodebits;
}
}
}
// make sure we ended up with the right number
if (curnode != decoder->numcodes)
return HUFFERR_INVALID_DATA;
// assign canonical codes for all nodes based on their code lengths
error = huffman_assign_canonical_codes(decoder);
if (error != HUFFERR_NONE)
return error;
// build the lookup table
huffman_build_lookup_table(decoder);
// determine final input length and report errors
return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
}
//-------------------------------------------------
// import_tree_huffman - import a huffman-encoded
// huffman tree from a source data stream
//-------------------------------------------------
enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
int index;
int start;
int count = 0;
uint8_t rlefullbits = 0;
int last = 0;
int curcode;
enum huffman_error error;
uint32_t temp;
// start by parsing the lengths for the small tree
struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
start = bitstream_read(bitbuf, 3) + 1;
for (index = 1; index < 24; index++)
{
if (index < start || count == 7)
smallhuff->huffnode[index].numbits = 0;
else
{
count = bitstream_read(bitbuf, 3);
smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count;
}
}
// then regenerate the tree
error = huffman_assign_canonical_codes(smallhuff);
if (error != HUFFERR_NONE)
return error;
huffman_build_lookup_table(smallhuff);
// determine the maximum length of an RLE count
temp = decoder->numcodes - 9;
while (temp != 0)
temp >>= 1, rlefullbits++;
// now process the rest of the data
for (curcode = 0; curcode < decoder->numcodes; )
{
int value = huffman_decode_one(smallhuff, bitbuf);
if (value != 0)
decoder->huffnode[curcode++].numbits = last = value - 1;
else
{
int count = bitstream_read(bitbuf, 3) + 2;
if (count == 7+2)
count += bitstream_read(bitbuf, rlefullbits);
for ( ; count != 0 && curcode < decoder->numcodes; count--)
decoder->huffnode[curcode++].numbits = last;
}
}
// make sure we ended up with the right number
if (curcode != decoder->numcodes)
return HUFFERR_INVALID_DATA;
// assign canonical codes for all nodes based on their code lengths
error = huffman_assign_canonical_codes(decoder);
if (error != HUFFERR_NONE)
return error;
// build the lookup table
huffman_build_lookup_table(decoder);
// determine final input length and report errors
return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
}
//-------------------------------------------------
// compute_tree_from_histo - common backend for
// computing a tree based on the data histogram
//-------------------------------------------------
enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
{
int i;
uint32_t upperweight;
uint32_t lowerweight = 0;
// compute the number of data items in the histogram
uint32_t sdatacount = 0;
for (i = 0; i < decoder->numcodes; i++)
sdatacount += decoder->datahisto[i];
// binary search to achieve the optimum encoding
upperweight = sdatacount * 2;
while (1)
{
// build a tree using the current weight
uint32_t curweight = (upperweight + lowerweight) / 2;
int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight);
// apply binary search here
if (curmaxbits <= decoder->maxbits)
{
lowerweight = curweight;
// early out if it worked with the raw weights, or if we're done searching
if (curweight == sdatacount || (upperweight - lowerweight) <= 1)
break;
}
else
upperweight = curweight;
}
// assign canonical codes for all nodes based on their code lengths
return huffman_assign_canonical_codes(decoder);
}
//**************************************************************************
// INTERNAL FUNCTIONS
//**************************************************************************
//-------------------------------------------------
// tree_node_compare - compare two tree nodes
// by weight
//-------------------------------------------------
static int huffman_tree_node_compare(const void *item1, const void *item2)
{
const struct node_t *node1 = *(const struct node_t **)item1;
const struct node_t *node2 = *(const struct node_t **)item2;
if (node2->weight != node1->weight)
return node2->weight - node1->weight;
if (node2->bits - node1->bits == 0)
fprintf(stderr, "identical node sort keys, should not happen!\n");
return (int)node1->bits - (int)node2->bits;
}
//-------------------------------------------------
// build_tree - build a huffman tree based on the
// data distribution
//-------------------------------------------------
int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
{
int curcode;
int nextalloc;
int maxbits = 0;
// make a list of all non-zero nodes
struct node_t** list = (struct node_t**)malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
int listitems = 0;
memset(decoder->huffnode, 0, decoder->numcodes * sizeof(decoder->huffnode[0]));
for (curcode = 0; curcode < decoder->numcodes; curcode++)
if (decoder->datahisto[curcode] != 0)
{
list[listitems++] = &decoder->huffnode[curcode];
decoder->huffnode[curcode].count = decoder->datahisto[curcode];
decoder->huffnode[curcode].bits = curcode;
// scale the weight by the current effective length, ensuring we don't go to 0
decoder->huffnode[curcode].weight = ((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata);
if (decoder->huffnode[curcode].weight == 0)
decoder->huffnode[curcode].weight = 1;
}
/*
fprintf(stderr, "Pre-sort:\n");
for (int i = 0; i < listitems; i++) {
fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
}
*/
// sort the list by weight, largest weight first
qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare);
/*
fprintf(stderr, "Post-sort:\n");
for (int i = 0; i < listitems; i++) {
fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
}
fprintf(stderr, "===================\n");
*/
// now build the tree
nextalloc = decoder->numcodes;
while (listitems > 1)
{
int curitem;
// remove lowest two items
struct node_t* node1 = &(*list[--listitems]);
struct node_t* node0 = &(*list[--listitems]);
// create new node
struct node_t* newnode = &decoder->huffnode[nextalloc++];
newnode->parent = NULL;
node0->parent = node1->parent = newnode;
newnode->weight = node0->weight + node1->weight;
// insert into list at appropriate location
for (curitem = 0; curitem < listitems; curitem++)
if (newnode->weight > list[curitem]->weight)
{
memmove(&list[curitem+1], &list[curitem], (listitems - curitem) * sizeof(list[0]));
break;
}
list[curitem] = newnode;
listitems++;
}
// compute the number of bits in each code, and fill in another histogram
for (curcode = 0; curcode < decoder->numcodes; curcode++)
{
struct node_t* node = &decoder->huffnode[curcode];
node->numbits = 0;
node->bits = 0;
// if we have a non-zero weight, compute the number of bits
if (node->weight > 0)
{
struct node_t *curnode;
// determine the number of bits for this node
for (curnode = node; curnode->parent != NULL; curnode = curnode->parent)
node->numbits++;
if (node->numbits == 0)
node->numbits = 1;
// keep track of the max
maxbits = MAX(maxbits, ((int)node->numbits));
}
}
return maxbits;
}
//-------------------------------------------------
// assign_canonical_codes - assign canonical codes
// to all the nodes based on the number of bits
// in each
//-------------------------------------------------
enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
{
int curcode, codelen;
uint32_t curstart = 0;
// build up a histogram of bit lengths
uint32_t bithisto[33] = { 0 };
for (curcode = 0; curcode < decoder->numcodes; curcode++)
{
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > decoder->maxbits)
return HUFFERR_INTERNAL_INCONSISTENCY;
if (node->numbits <= 32)
bithisto[node->numbits]++;
}
// for each code length, determine the starting code number
for (codelen = 32; codelen > 0; codelen--)
{
uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
return HUFFERR_INTERNAL_INCONSISTENCY;
bithisto[codelen] = curstart;
curstart = nextstart;
}
// now assign canonical codes
for (curcode = 0; curcode < decoder->numcodes; curcode++)
{
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > 0)
node->bits = bithisto[node->numbits]++;
}
return HUFFERR_NONE;
}
//-------------------------------------------------
// build_lookup_table - build a lookup table for
// fast decoding
//-------------------------------------------------
void huffman_build_lookup_table(struct huffman_decoder* decoder)
{
int curcode;
// iterate over all codes
for (curcode = 0; curcode < decoder->numcodes; curcode++)
{
// process all nodes which have non-zero bits
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > 0)
{
int shift;
lookup_value *dest;
lookup_value *destend;
// set up the entry
lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
// fill all matching entries
shift = decoder->maxbits - node->numbits;
dest = &decoder->lookup[node->bits << shift];
destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
while (dest <= destend)
*dest++ = value;
}
}
}
|