aboutsummaryrefslogtreecommitdiff
path: root/libpcsxcore/new_dynarec/emu_if.c
blob: 22db5d118480955096706b57042017aefb88ebbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
/*
 * (C) Gražvydas "notaz" Ignotas, 2010-2011
 *
 * This work is licensed under the terms of GNU GPL version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include <stdio.h>

#include "emu_if.h"
#include "pcsxmem.h"
#include "../psxhle.h"
#include "../r3000a.h"
#include "../cdrom.h"
#include "../psxdma.h"
#include "../mdec.h"
#include "../gte_arm.h"
#include "../gte_neon.h"
#define FLAGLESS
#include "../gte.h"

#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))

//#define evprintf printf
#define evprintf(...)

char invalid_code[0x100000];
static u32 scratch_buf[8*8*2] __attribute__((aligned(64)));
u32 event_cycles[PSXINT_COUNT];

static void schedule_timeslice(void)
{
	u32 i, c = psxRegs.cycle;
	u32 irqs = psxRegs.interrupt;
	s32 min, dif;

	min = PSXCLK;
	for (i = 0; irqs != 0; i++, irqs >>= 1) {
		if (!(irqs & 1))
			continue;
		dif = event_cycles[i] - c;
		//evprintf("  ev %d\n", dif);
		if (0 < dif && dif < min)
			min = dif;
	}
	next_interupt = c + min;
}

typedef void (irq_func)();

static irq_func * const irq_funcs[] = {
	[PSXINT_SIO]	= sioInterrupt,
	[PSXINT_CDR]	= cdrInterrupt,
	[PSXINT_CDREAD]	= cdrReadInterrupt,
	[PSXINT_GPUDMA]	= gpuInterrupt,
	[PSXINT_MDECOUTDMA] = mdec1Interrupt,
	[PSXINT_SPUDMA]	= spuInterrupt,
	[PSXINT_MDECINDMA] = mdec0Interrupt,
	[PSXINT_GPUOTCDMA] = gpuotcInterrupt,
	[PSXINT_CDRDMA] = cdrDmaInterrupt,
	[PSXINT_CDRLID] = cdrLidSeekInterrupt,
	[PSXINT_CDRPLAY] = cdrPlayInterrupt,
	[PSXINT_SPU_UPDATE] = spuUpdate,
	[PSXINT_RCNT] = psxRcntUpdate,
};

/* local dupe of psxBranchTest, using event_cycles */
static void irq_test(void)
{
	u32 irqs = psxRegs.interrupt;
	u32 cycle = psxRegs.cycle;
	u32 irq, irq_bits;

	// irq_funcs() may queue more irqs
	psxRegs.interrupt = 0;

	for (irq = 0, irq_bits = irqs; irq_bits != 0; irq++, irq_bits >>= 1) {
		if (!(irq_bits & 1))
			continue;
		if ((s32)(cycle - event_cycles[irq]) >= 0) {
			irqs &= ~(1 << irq);
			irq_funcs[irq]();
		}
	}
	psxRegs.interrupt |= irqs;

	if ((psxHu32(0x1070) & psxHu32(0x1074)) && (Status & 0x401) == 0x401) {
		psxException(0x400, 0);
		pending_exception = 1;
	}
}

void gen_interupt()
{
	evprintf("  +ge %08x, %u->%u\n", psxRegs.pc, psxRegs.cycle, next_interupt);

	irq_test();
	//psxBranchTest();
	//pending_exception = 1;

	schedule_timeslice();

	evprintf("  -ge %08x, %u->%u (%d)\n", psxRegs.pc, psxRegs.cycle,
		next_interupt, next_interupt - psxRegs.cycle);
}

// from interpreter
extern void MTC0(int reg, u32 val);

void pcsx_mtc0(u32 reg, u32 val)
{
	evprintf("MTC0 %d #%x @%08x %u\n", reg, val, psxRegs.pc, psxRegs.cycle);
	MTC0(reg, val);
	gen_interupt();
	if (Cause & Status & 0x0300) // possible sw irq
		pending_exception = 1;
}

void pcsx_mtc0_ds(u32 reg, u32 val)
{
	evprintf("MTC0 %d #%x @%08x %u\n", reg, val, psxRegs.pc, psxRegs.cycle);
	MTC0(reg, val);
}

void new_dyna_before_save(void)
{
	psxRegs.interrupt &= ~(1 << PSXINT_RCNT); // old savestate compat

	// psxRegs.intCycle is always maintained, no need to convert
}

void new_dyna_after_save(void)
{
	psxRegs.interrupt |= 1 << PSXINT_RCNT;
}

static void new_dyna_restore(void)
{
	int i;
	for (i = 0; i < PSXINT_COUNT; i++)
		event_cycles[i] = psxRegs.intCycle[i].sCycle + psxRegs.intCycle[i].cycle;

	event_cycles[PSXINT_RCNT] = psxNextsCounter + psxNextCounter;
	psxRegs.interrupt |=  1 << PSXINT_RCNT;
	psxRegs.interrupt &= (1 << PSXINT_COUNT) - 1;

	new_dyna_pcsx_mem_load_state();
}

void new_dyna_freeze(void *f, int mode)
{
	const char header_save[8] = "ariblks";
	uint32_t addrs[1024 * 4];
	int32_t size = 0;
	int bytes;
	char header[8];

	if (mode != 0) { // save
		size = new_dynarec_save_blocks(addrs, sizeof(addrs));
		if (size == 0)
			return;

		SaveFuncs.write(f, header_save, sizeof(header_save));
		SaveFuncs.write(f, &size, sizeof(size));
		SaveFuncs.write(f, addrs, size);
	}
	else {
		new_dyna_restore();

		bytes = SaveFuncs.read(f, header, sizeof(header));
		if (bytes != sizeof(header) || strcmp(header, header_save)) {
			if (bytes > 0)
				SaveFuncs.seek(f, -bytes, SEEK_CUR);
			return;
		}
		SaveFuncs.read(f, &size, sizeof(size));
		if (size <= 0)
			return;
		if (size > sizeof(addrs)) {
			bytes = size - sizeof(addrs);
			SaveFuncs.seek(f, bytes, SEEK_CUR);
			size = sizeof(addrs);
		}
		bytes = SaveFuncs.read(f, addrs, size);
		if (bytes != size)
			return;

		new_dynarec_load_blocks(addrs, size);
	}

	//printf("drc: %d block info entries %s\n", size/8, mode ? "saved" : "loaded");
}

/* GTE stuff */
void *gte_handlers[64];

void *gte_handlers_nf[64] = {
	NULL      , gteRTPS_nf , NULL       , NULL      , NULL     , NULL       , gteNCLIP_nf, NULL      , // 00
	NULL      , NULL       , NULL       , NULL      , gteOP_nf , NULL       , NULL       , NULL      , // 08
	gteDPCS_nf, gteINTPL_nf, gteMVMVA_nf, gteNCDS_nf, gteCDP_nf, NULL       , gteNCDT_nf , NULL      , // 10
	NULL      , NULL       , NULL       , gteNCCS_nf, gteCC_nf , NULL       , gteNCS_nf  , NULL      , // 18
	gteNCT_nf , NULL       , NULL       , NULL      , NULL     , NULL       , NULL       , NULL      , // 20
	gteSQR_nf , gteDCPL_nf , gteDPCT_nf , NULL      , NULL     , gteAVSZ3_nf, gteAVSZ4_nf, NULL      , // 28 
	gteRTPT_nf, NULL       , NULL       , NULL      , NULL     , NULL       , NULL       , NULL      , // 30
	NULL      , NULL       , NULL       , NULL      , NULL     , gteGPF_nf  , gteGPL_nf  , gteNCCT_nf, // 38
};

const char *gte_regnames[64] = {
	NULL  , "RTPS" , NULL   , NULL  , NULL , NULL   , "NCLIP", NULL  , // 00
	NULL  , NULL   , NULL   , NULL  , "OP" , NULL   , NULL   , NULL  , // 08
	"DPCS", "INTPL", "MVMVA", "NCDS", "CDP", NULL   , "NCDT" , NULL  , // 10
	NULL  , NULL   , NULL   , "NCCS", "CC" , NULL   , "NCS"  , NULL  , // 18
	"NCT" , NULL   , NULL   , NULL  , NULL , NULL   , NULL   , NULL  , // 20
	"SQR" , "DCPL" , "DPCT" , NULL  , NULL , "AVSZ3", "AVSZ4", NULL  , // 28 
	"RTPT", NULL   , NULL   , NULL  , NULL , NULL   , NULL   , NULL  , // 30
	NULL  , NULL   , NULL   , NULL  , NULL , "GPF"  , "GPL"  , "NCCT", // 38
};

/* from gte.txt.. not sure if this is any good. */
const char gte_cycletab[64] = {
	/*   1   2   3   4   5   6   7   8   9   a   b   c   d   e   f */
	 0, 15,  0,  0,  0,  0,  8,  0,  0,  0,  0,  0,  6,  0,  0,  0,
	 8,  8,  8, 19, 13,  0, 44,  0,  0,  0,  0, 17, 11,  0, 14,  0,
	30,  0,  0,  0,  0,  0,  0,  0,  5,  8, 17,  0,  0,  5,  6,  0,
	23,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  5,  5, 39,
};

#define GCBIT(x) \
	(1ll << (32+x))
#define GDBIT(x) \
	(1ll << (x))
#define GCBITS3(b0,b1,b2) \
	(GCBIT(b0) | GCBIT(b1) | GCBIT(b2))
#define GDBITS2(b0,b1) \
	(GDBIT(b0) | GDBIT(b1))
#define GDBITS3(b0,b1,b2) \
	(GDBITS2(b0,b1) | GDBIT(b2))
#define GDBITS4(b0,b1,b2,b3) \
	(GDBITS3(b0,b1,b2) | GDBIT(b3))
#define GDBITS5(b0,b1,b2,b3,b4) \
	(GDBITS4(b0,b1,b2,b3) | GDBIT(b4))
#define GDBITS6(b0,b1,b2,b3,b4,b5) \
	(GDBITS5(b0,b1,b2,b3,b4) | GDBIT(b5))
#define GDBITS7(b0,b1,b2,b3,b4,b5,b6) \
	(GDBITS6(b0,b1,b2,b3,b4,b5) | GDBIT(b6))
#define GDBITS8(b0,b1,b2,b3,b4,b5,b6,b7) \
	(GDBITS7(b0,b1,b2,b3,b4,b5,b6) | GDBIT(b7))
#define GDBITS9(b0,b1,b2,b3,b4,b5,b6,b7,b8) \
	(GDBITS8(b0,b1,b2,b3,b4,b5,b6,b7) | GDBIT(b8))
#define GDBITS10(b0,b1,b2,b3,b4,b5,b6,b7,b8,b9) \
	(GDBITS9(b0,b1,b2,b3,b4,b5,b6,b7,b8) | GDBIT(b9))

const uint64_t gte_reg_reads[64] = {
	[GTE_RTPS]  = 0x1f0000ff00000000ll | GDBITS7(0,1,13,14,17,18,19),
	[GTE_NCLIP] =                        GDBITS3(12,13,14),
	[GTE_OP]    = GCBITS3(0,2,4)       | GDBITS3(9,10,11),
	[GTE_DPCS]  = GCBITS3(21,22,23)    | GDBITS4(6,8,21,22),
	[GTE_INTPL] = GCBITS3(21,22,23)    | GDBITS7(6,8,9,10,11,21,22),
	[GTE_MVMVA] = 0x00ffffff00000000ll | GDBITS9(0,1,2,3,4,5,9,10,11), // XXX: maybe decode further?
	[GTE_NCDS]  = 0x00ffff0000000000ll | GDBITS6(0,1,6,8,21,22),
	[GTE_CDP]   = 0x00ffe00000000000ll | GDBITS7(6,8,9,10,11,21,22),
	[GTE_NCDT]  = 0x00ffff0000000000ll | GDBITS8(0,1,2,3,4,5,6,8),
	[GTE_NCCS]  = 0x001fff0000000000ll | GDBITS5(0,1,6,21,22),
	[GTE_CC]    = 0x001fe00000000000ll | GDBITS6(6,9,10,11,21,22),
	[GTE_NCS]   = 0x001fff0000000000ll | GDBITS5(0,1,6,21,22),
	[GTE_NCT]   = 0x001fff0000000000ll | GDBITS7(0,1,2,3,4,5,6),
	[GTE_SQR]   =                        GDBITS3(9,10,11),
	[GTE_DCPL]  = GCBITS3(21,22,23)    | GDBITS7(6,8,9,10,11,21,22),
	[GTE_DPCT]  = GCBITS3(21,22,23)    | GDBITS4(8,20,21,22),
	[GTE_AVSZ3] = GCBIT(29)            | GDBITS3(17,18,19),
	[GTE_AVSZ4] = GCBIT(30)            | GDBITS4(16,17,18,19),
	[GTE_RTPT]  = 0x1f0000ff00000000ll | GDBITS7(0,1,2,3,4,5,19),
	[GTE_GPF]   =                        GDBITS7(6,8,9,10,11,21,22),
	[GTE_GPL]   =                        GDBITS10(6,8,9,10,11,21,22,25,26,27),
	[GTE_NCCT]  = 0x001fff0000000000ll | GDBITS7(0,1,2,3,4,5,6),
};

// note: this excludes gteFLAG that is always written to
const uint64_t gte_reg_writes[64] = {
	[GTE_RTPS]  = 0x0f0f7f00ll,
	[GTE_NCLIP] = GDBIT(24),
	[GTE_OP]    = GDBITS6(9,10,11,25,26,27),
	[GTE_DPCS]  = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_INTPL] = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_MVMVA] = GDBITS6(9,10,11,25,26,27),
	[GTE_NCDS]  = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_CDP]   = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_NCDT]  = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_NCCS]  = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_CC]    = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_NCS]   = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_NCT]   = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_SQR]   = GDBITS6(9,10,11,25,26,27),
	[GTE_DCPL]  = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_DPCT]  = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_AVSZ3] = GDBITS2(7,24),
	[GTE_AVSZ4] = GDBITS2(7,24),
	[GTE_RTPT]  = 0x0f0f7f00ll,
	[GTE_GPF]   = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_GPL]   = GDBITS9(9,10,11,20,21,22,25,26,27),
	[GTE_NCCT]  = GDBITS9(9,10,11,20,21,22,25,26,27),
};

static int ari64_init()
{
	extern void (*psxCP2[64])();
	extern void psxNULL();
	extern unsigned char *out;
	size_t i;

	new_dynarec_init();
	new_dyna_pcsx_mem_init();

	for (i = 0; i < ARRAY_SIZE(gte_handlers); i++)
		if (psxCP2[i] != psxNULL)
			gte_handlers[i] = psxCP2[i];

#if defined(__arm__) && !defined(DRC_DBG)
	gte_handlers[0x06] = gteNCLIP_arm;
#ifdef HAVE_ARMV5
	gte_handlers_nf[0x01] = gteRTPS_nf_arm;
	gte_handlers_nf[0x30] = gteRTPT_nf_arm;
#endif
#ifdef __ARM_NEON__
	// compiler's _nf version is still a lot slower than neon
	// _nf_arm RTPS is roughly the same, RTPT slower
	gte_handlers[0x01] = gte_handlers_nf[0x01] = gteRTPS_neon;
	gte_handlers[0x30] = gte_handlers_nf[0x30] = gteRTPT_neon;
#endif
#endif
#ifdef DRC_DBG
	memcpy(gte_handlers_nf, gte_handlers, sizeof(gte_handlers_nf));
#endif
	psxH_ptr = psxH;
	zeromem_ptr = zero_mem;
	scratch_buf_ptr = scratch_buf;

	SysPrintf("Mapped (RAM/scrp/ROM/LUTs/TC):\n");
	SysPrintf("%08x/%08x/%08x/%08x/%08x\n",
		psxM, psxH, psxR, mem_rtab, out);

	return 0;
}

static void ari64_reset()
{
	printf("ari64_reset\n");
	new_dyna_pcsx_mem_reset();
	invalidate_all_pages();
	new_dyna_restore();
	pending_exception = 1;
}

// execute until predefined leave points
// (HLE softcall exit and BIOS fastboot end)
static void ari64_execute_until()
{
	schedule_timeslice();

	evprintf("ari64_execute %08x, %u->%u (%d)\n", psxRegs.pc,
		psxRegs.cycle, next_interupt, next_interupt - psxRegs.cycle);

	new_dyna_start();

	evprintf("ari64_execute end %08x, %u->%u (%d)\n", psxRegs.pc,
		psxRegs.cycle, next_interupt, next_interupt - psxRegs.cycle);
}

static void ari64_execute()
{
	while (!stop) {
		ari64_execute_until();
		evprintf("drc left @%08x\n", psxRegs.pc);
	}
}

static void ari64_clear(u32 addr, u32 size)
{
	u32 start, end, main_ram;

	size *= 4; /* PCSX uses DMA units (words) */

	evprintf("ari64_clear %08x %04x\n", addr, size);

	/* check for RAM mirrors */
	main_ram = (addr & 0xffe00000) == 0x80000000;

	start = addr >> 12;
	end = (addr + size) >> 12;

	for (; start <= end; start++)
		if (!main_ram || !invalid_code[start])
			invalidate_block(start);
}

static void ari64_shutdown()
{
	new_dynarec_cleanup();
	new_dyna_pcsx_mem_shutdown();
}

extern void intExecute();
extern void intExecuteT();
extern void intExecuteBlock();
extern void intExecuteBlockT();
#ifndef DRC_DBG
#define intExecuteT intExecute
#define intExecuteBlockT intExecuteBlock
#endif

R3000Acpu psxRec = {
	ari64_init,
	ari64_reset,
#ifndef DRC_DISABLE
	ari64_execute,
	ari64_execute_until,
#else
	intExecuteT,
	intExecuteBlockT,
#endif
	ari64_clear,
	ari64_shutdown
};

// TODO: rm
#ifndef DRC_DBG
void do_insn_trace() {}
void do_insn_cmp() {}
#endif

#ifdef DRC_DISABLE
unsigned int address;
int pending_exception, stop;
unsigned int next_interupt;
int new_dynarec_did_compile;
int cycle_multiplier;
int new_dynarec_hacks;
void *psxH_ptr;
void *zeromem_ptr;
u8 zero_mem[0x1000];
unsigned char *out;
void *mem_rtab;
void *scratch_buf_ptr;
void new_dynarec_init() { (void)ari64_execute; }
void new_dyna_start() {}
void new_dynarec_cleanup() {}
void new_dynarec_clear_full() {}
void invalidate_all_pages() {}
void invalidate_block(unsigned int block) {}
void new_dyna_pcsx_mem_init(void) {}
void new_dyna_pcsx_mem_reset(void) {}
void new_dyna_pcsx_mem_load_state(void) {}
void new_dyna_pcsx_mem_shutdown(void) {}
int  new_dynarec_save_blocks(void *save, int size) { return 0; }
void new_dynarec_load_blocks(const void *save, int size) {}
#endif

#ifdef DRC_DBG

#include <stddef.h>
static FILE *f;
extern u32 last_io_addr;

static void dump_mem(const char *fname, void *mem, size_t size)
{
	FILE *f1 = fopen(fname, "wb");
	if (f1 == NULL)
		f1 = fopen(strrchr(fname, '/') + 1, "wb");
	fwrite(mem, 1, size, f1);
	fclose(f1);
}

static u32 memcheck_read(u32 a)
{
	if ((a >> 16) == 0x1f80)
		// scratchpad/IO
		return *(u32 *)(psxH + (a & 0xfffc));

	if ((a >> 16) == 0x1f00)
		// parallel
		return *(u32 *)(psxP + (a & 0xfffc));

//	if ((a & ~0xe0600000) < 0x200000)
	// RAM
	return *(u32 *)(psxM + (a & 0x1ffffc));
}

void do_insn_trace(void)
{
	static psxRegisters oldregs;
	static u32 old_io_addr = (u32)-1;
	static u32 old_io_data = 0xbad0c0de;
	static u32 event_cycles_o[PSXINT_COUNT];
	u32 *allregs_p = (void *)&psxRegs;
	u32 *allregs_o = (void *)&oldregs;
	u32 io_data;
	int i;
	u8 byte;

	//last_io_addr = 0x5e2c8;
	if (f == NULL)
		f = fopen("tracelog", "wb");

	// log reg changes
	oldregs.code = psxRegs.code; // don't care
	for (i = 0; i < offsetof(psxRegisters, intCycle) / 4; i++) {
		if (allregs_p[i] != allregs_o[i]) {
			fwrite(&i, 1, 1, f);
			fwrite(&allregs_p[i], 1, 4, f);
			allregs_o[i] = allregs_p[i];
		}
	}
	// log event changes
	for (i = 0; i < PSXINT_COUNT; i++) {
		if (event_cycles[i] != event_cycles_o[i]) {
			byte = 0xfc;
			fwrite(&byte, 1, 1, f);
			fwrite(&i, 1, 1, f);
			fwrite(&event_cycles[i], 1, 4, f);
			event_cycles_o[i] = event_cycles[i];
		}
	}
	// log last io
	if (old_io_addr != last_io_addr) {
		byte = 0xfd;
		fwrite(&byte, 1, 1, f);
		fwrite(&last_io_addr, 1, 4, f);
		old_io_addr = last_io_addr;
	}
	io_data = memcheck_read(last_io_addr);
	if (old_io_data != io_data) {
		byte = 0xfe;
		fwrite(&byte, 1, 1, f);
		fwrite(&io_data, 1, 4, f);
		old_io_data = io_data;
	}
	byte = 0xff;
	fwrite(&byte, 1, 1, f);

#if 0
	if (psxRegs.cycle == 190230) {
		dump_mem("/mnt/ntz/dev/pnd/tmp/psxram_i.dump", psxM, 0x200000);
		dump_mem("/mnt/ntz/dev/pnd/tmp/psxregs_i.dump", psxH, 0x10000);
		printf("dumped\n");
		exit(1);
	}
#endif
}

static const char *regnames[offsetof(psxRegisters, intCycle) / 4] = {
	"r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
	"r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
	"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
	"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
	"lo",  "hi",
	"C0_0",  "C0_1",  "C0_2",  "C0_3",  "C0_4",  "C0_5",  "C0_6",  "C0_7",
	"C0_8",  "C0_9",  "C0_10", "C0_11", "C0_12", "C0_13", "C0_14", "C0_15",
	"C0_16", "C0_17", "C0_18", "C0_19", "C0_20", "C0_21", "C0_22", "C0_23",
	"C0_24", "C0_25", "C0_26", "C0_27", "C0_28", "C0_29", "C0_30", "C0_31",

	"C2D0",  "C2D1",  "C2D2",  "C2D3",  "C2D4",  "C2D5",  "C2D6",  "C2D7",
	"C2D8",  "C2D9",  "C2D10", "C2D11", "C2D12", "C2D13", "C2D14", "C2D15",
	"C2D16", "C2D17", "C2D18", "C2D19", "C2D20", "C2D21", "C2D22", "C2D23",
	"C2D24", "C2D25", "C2D26", "C2D27", "C2D28", "C2D29", "C2D30", "C2D31",

	"C2C0",  "C2C1",  "C2C2",  "C2C3",  "C2C4",  "C2C5",  "C2C6",  "C2C7",
	"C2C8",  "C2C9",  "C2C10", "C2C11", "C2C12", "C2C13", "C2C14", "C2C15",
	"C2C16", "C2C17", "C2C18", "C2C19", "C2C20", "C2C21", "C2C22", "C2C23",
	"C2C24", "C2C25", "C2C26", "C2C27", "C2C28", "C2C29", "C2C30", "C2C31",

	"PC", "code", "cycle", "interrupt",
};

static struct {
	int reg;
	u32 val, val_expect;
	u32 pc, cycle;
} miss_log[64];
static int miss_log_i;
#define miss_log_len (sizeof(miss_log)/sizeof(miss_log[0]))
#define miss_log_mask (miss_log_len-1)

static void miss_log_add(int reg, u32 val, u32 val_expect, u32 pc, u32 cycle)
{
	miss_log[miss_log_i].reg = reg;
	miss_log[miss_log_i].val = val;
	miss_log[miss_log_i].val_expect = val_expect;
	miss_log[miss_log_i].pc = pc;
	miss_log[miss_log_i].cycle = cycle;
	miss_log_i = (miss_log_i + 1) & miss_log_mask;
}

void breakme() {}

void do_insn_cmp(void)
{
	static psxRegisters rregs;
	static u32 mem_addr, mem_val;
	u32 *allregs_p = (void *)&psxRegs;
	u32 *allregs_e = (void *)&rregs;
	static u32 ppc, failcount;
	int i, ret, bad = 0, which_event = -1;
	u32 ev_cycles = 0;
	u8 code;

	if (f == NULL)
		f = fopen("tracelog", "rb");

	while (1) {
		if ((ret = fread(&code, 1, 1, f)) <= 0)
			break;
		if (ret <= 0)
			break;
		if (code == 0xff)
			break;
		switch (code) {
		case 0xfc:
			which_event = 0;
			fread(&which_event, 1, 1, f);
			fread(&ev_cycles, 1, 4, f);
			continue;
		case 0xfd:
			fread(&mem_addr, 1, 4, f);
			continue;
		case 0xfe:
			fread(&mem_val, 1, 4, f);
			continue;
		}
		fread(&allregs_e[code], 1, 4, f);
	}

	if (ret <= 0) {
		printf("EOF?\n");
		goto end;
	}

	psxRegs.code = rregs.code; // don't care
	psxRegs.cycle = rregs.cycle;
	psxRegs.CP0.r[9] = rregs.CP0.r[9]; // Count

	//if (psxRegs.cycle == 166172) breakme();

	if (memcmp(&psxRegs, &rregs, offsetof(psxRegisters, intCycle)) == 0 &&
			mem_val == memcheck_read(mem_addr)
	   ) {
		failcount = 0;
		goto ok;
	}

	for (i = 0; i < offsetof(psxRegisters, intCycle) / 4; i++) {
		if (allregs_p[i] != allregs_e[i]) {
			miss_log_add(i, allregs_p[i], allregs_e[i], psxRegs.pc, psxRegs.cycle);
			bad++;
		}
	}

	if (mem_val != memcheck_read(mem_addr)) {
		printf("bad mem @%08x: %08x %08x\n", mem_addr, memcheck_read(mem_addr), mem_val);
		goto end;
	}

	if (which_event >= 0 && event_cycles[which_event] != ev_cycles) {
		printf("bad ev_cycles #%d: %08x %08x\n", which_event, event_cycles[which_event], ev_cycles);
		goto end;
	}

	if (psxRegs.pc == rregs.pc && bad < 6 && failcount < 32) {
		static int last_mcycle;
		if (last_mcycle != psxRegs.cycle >> 20) {
			printf("%u\n", psxRegs.cycle);
			last_mcycle = psxRegs.cycle >> 20;
		}
		failcount++;
		goto ok;
	}

end:
	for (i = 0; i < miss_log_len; i++, miss_log_i = (miss_log_i + 1) & miss_log_mask)
		printf("bad %5s: %08x %08x, pc=%08x, cycle %u\n",
			regnames[miss_log[miss_log_i].reg], miss_log[miss_log_i].val,
			miss_log[miss_log_i].val_expect, miss_log[miss_log_i].pc, miss_log[miss_log_i].cycle);
	printf("-- %d\n", bad);
	for (i = 0; i < 8; i++)
		printf("r%d=%08x r%2d=%08x r%2d=%08x r%2d=%08x\n", i, allregs_p[i],
			i+8, allregs_p[i+8], i+16, allregs_p[i+16], i+24, allregs_p[i+24]);
	printf("PC: %08x/%08x, cycle %u\n", psxRegs.pc, ppc, psxRegs.cycle);
	dump_mem("/mnt/ntz/dev/pnd/tmp/psxram.dump", psxM, 0x200000);
	dump_mem("/mnt/ntz/dev/pnd/tmp/psxregs.dump", psxH, 0x10000);
	exit(1);
ok:
	psxRegs.cycle = rregs.cycle + 2; // sync timing
	ppc = psxRegs.pc;
}

#endif