1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
|
/***************************************************************************
adsr.c - description
-------------------
begin : Wed May 15 2002
copyright : (C) 2002 by Pete Bernert
email : BlackDove@addcom.de
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. See also the license.txt file for *
* additional informations. *
* *
***************************************************************************/
#include "stdafx.h"
#define _IN_ADSR
// will be included from spu.c
#ifdef _IN_SPU
////////////////////////////////////////////////////////////////////////
// ADSR func
////////////////////////////////////////////////////////////////////////
static int RateTableAdd[128];
static int RateTableSub[128];
void InitADSR(void) // INIT ADSR
{
int lcv, denom;
// Optimize table - Dr. Hell ADSR math
for (lcv = 0; lcv < 48; lcv++)
{
RateTableAdd[lcv] = (7 - (lcv&3)) << (11 + 16 - (lcv >> 2));
RateTableSub[lcv] = (-8 + (lcv&3)) << (11 + 16 - (lcv >> 2));
}
for (; lcv < 128; lcv++)
{
denom = 1 << ((lcv>>2) - 11);
RateTableAdd[lcv] = ((7 - (lcv&3)) << 16) / denom;
RateTableSub[lcv] = ((-8 + (lcv&3)) << 16) / denom;
// XXX: this is wrong, we need more bits..
if (RateTableAdd[lcv] == 0)
RateTableAdd[lcv] = 1;
}
}
////////////////////////////////////////////////////////////////////////
INLINE void StartADSR(int ch) // MIX ADSR
{
s_chan[ch].ADSRX.State=0; // and init some adsr vars
s_chan[ch].ADSRX.EnvelopeVol=0;
}
////////////////////////////////////////////////////////////////////////
static void MixADSR(int ch, int ns, int ns_to) // MIX ADSR
{
int EnvelopeVol = s_chan[ch].ADSRX.EnvelopeVol;
int val, rto, level;
if (s_chan[ch].bStop) // should be stopped:
{ // do release
val = RateTableSub[s_chan[ch].ADSRX.ReleaseRate * 4];
if (s_chan[ch].ADSRX.ReleaseModeExp)
{
for (; ns < ns_to; ns++)
{
EnvelopeVol += ((long long)val * EnvelopeVol) >> (15+16);
if (EnvelopeVol <= 0)
break;
ChanBuf[ns] *= EnvelopeVol >> 21;
ChanBuf[ns] >>= 10;
}
}
else
{
for (; ns < ns_to; ns++)
{
EnvelopeVol += val;
if (EnvelopeVol <= 0)
break;
ChanBuf[ns] *= EnvelopeVol >> 21;
ChanBuf[ns] >>= 10;
}
}
if (EnvelopeVol <= 0)
goto stop;
goto done;
}
switch (s_chan[ch].ADSRX.State)
{
case 0: // -> attack
rto = 0;
if (s_chan[ch].ADSRX.AttackModeExp && EnvelopeVol >= 0x60000000)
rto = 8;
val = RateTableAdd[s_chan[ch].ADSRX.AttackRate + rto];
for (; ns < ns_to; ns++)
{
EnvelopeVol += val;
if (EnvelopeVol < 0)
break;
ChanBuf[ns] *= EnvelopeVol >> 21;
ChanBuf[ns] >>= 10;
}
if (EnvelopeVol < 0) // overflow
{
EnvelopeVol = 0x7fffffff;
s_chan[ch].ADSRX.State = 1;
ns++; // sample is good already
goto decay;
}
break;
//--------------------------------------------------//
decay:
case 1: // -> decay
val = RateTableSub[s_chan[ch].ADSRX.DecayRate * 4];
level = s_chan[ch].ADSRX.SustainLevel;
for (; ns < ns_to; )
{
EnvelopeVol += ((long long)val * EnvelopeVol) >> (15+16);
if (EnvelopeVol < 0)
EnvelopeVol = 0;
ChanBuf[ns] *= EnvelopeVol >> 21;
ChanBuf[ns] >>= 10;
ns++;
if (((EnvelopeVol >> 27) & 0xf) <= level)
{
s_chan[ch].ADSRX.State = 2;
goto sustain;
}
}
break;
//--------------------------------------------------//
sustain:
case 2: // -> sustain
if (s_chan[ch].ADSRX.SustainIncrease)
{
if (EnvelopeVol >= 0x7fff0000)
break;
rto = 0;
if (s_chan[ch].ADSRX.SustainModeExp && EnvelopeVol >= 0x60000000)
rto = 8;
val = RateTableAdd[s_chan[ch].ADSRX.SustainRate + rto];
for (; ns < ns_to; ns++)
{
EnvelopeVol += val;
if ((unsigned int)EnvelopeVol >= 0x7fe00000)
{
EnvelopeVol = 0x7fffffff;
break;
}
ChanBuf[ns] *= EnvelopeVol >> 21;
ChanBuf[ns] >>= 10;
}
}
else
{
val = RateTableSub[s_chan[ch].ADSRX.SustainRate];
if (s_chan[ch].ADSRX.SustainModeExp)
{
for (; ns < ns_to; ns++)
{
EnvelopeVol += ((long long)val * EnvelopeVol) >> (15+16);
if (EnvelopeVol < 0)
goto stop;
ChanBuf[ns] *= EnvelopeVol >> 21;
ChanBuf[ns] >>= 10;
}
}
else
{
for (; ns < ns_to; ns++)
{
EnvelopeVol += val;
if (EnvelopeVol < 0)
goto stop;
ChanBuf[ns] *= EnvelopeVol >> 21;
ChanBuf[ns] >>= 10;
}
}
}
break;
}
done:
s_chan[ch].ADSRX.EnvelopeVol = EnvelopeVol;
return;
stop:
memset(&ChanBuf[ns], 0, (ns_to - ns) * sizeof(ChanBuf[0]));
s_chan[ch].ADSRX.EnvelopeVol = 0;
spu.dwChannelOn &= ~(1<<ch);
}
#endif
/*
James Higgs ADSR investigations:
PSX SPU Envelope Timings
~~~~~~~~~~~~~~~~~~~~~~~~
First, here is an extract from doomed's SPU doc, which explains the basics
of the SPU "volume envelope":
*** doomed doc extract start ***
--------------------------------------------------------------------------
Voices.
--------------------------------------------------------------------------
The SPU has 24 hardware voices. These voices can be used to reproduce sample
data, noise or can be used as frequency modulator on the next voice.
Each voice has it's own programmable ADSR envelope filter. The main volume
can be programmed independently for left and right output.
The ADSR envelope filter works as follows:
Ar = Attack rate, which specifies the speed at which the volume increases
from zero to it's maximum value, as soon as the note on is given. The
slope can be set to lineair or exponential.
Dr = Decay rate specifies the speed at which the volume decreases to the
sustain level. Decay is always decreasing exponentially.
Sl = Sustain level, base level from which sustain starts.
Sr = Sustain rate is the rate at which the volume of the sustained note
increases or decreases. This can be either lineair or exponential.
Rr = Release rate is the rate at which the volume of the note decreases
as soon as the note off is given.
lvl |
^ | /\Dr __
Sl _| _ / _ \__--- \
| / ---__ \ Rr
| /Ar Sr \ \
| / \\
|/___________________\________
->time
The overal volume can also be set to sweep up or down lineairly or
exponentially from it's current value. This can be done seperately
for left and right.
Relevant SPU registers:
-------------------------------------------------------------
$1f801xx8 Attack/Decay/Sustain level
bit |0f|0e 0d 0c 0b 0a 09 08|07 06 05 04|03 02 01 00|
desc.|Am| Ar |Dr |Sl |
Am 0 Attack mode Linear
1 Exponential
Ar 0-7f attack rate
Dr 0-f decay rate
Sl 0-f sustain level
-------------------------------------------------------------
$1f801xxa Sustain rate, Release Rate.
bit |0f|0e|0d|0c 0b 0a 09 08 07 06|05|04 03 02 01 00|
desc.|Sm|Sd| 0| Sr |Rm|Rr |
Sm 0 sustain rate mode linear
1 exponential
Sd 0 sustain rate mode increase
1 decrease
Sr 0-7f Sustain Rate
Rm 0 Linear decrease
1 Exponential decrease
Rr 0-1f Release Rate
Note: decay mode is always Expontial decrease, and thus cannot
be set.
-------------------------------------------------------------
$1f801xxc Current ADSR volume
bit |0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00|
desc.|ADSRvol |
ADSRvol Returns the current envelope volume when
read.
-- James' Note: return range: 0 -> 32767
*** doomed doc extract end ***
By using a small PSX proggie to visualise the envelope as it was played,
the following results for envelope timing were obtained:
1. Attack rate value (linear mode)
Attack value range: 0 -> 127
Value | 48 | 52 | 56 | 60 | 64 | 68 | 72 | | 80 |
-----------------------------------------------------------------
Frames | 11 | 21 | 42 | 84 | 169| 338| 676| |2890|
Note: frames is no. of PAL frames to reach full volume (100%
amplitude)
Hmm, noticing that the time taken to reach full volume doubles
every time we add 4 to our attack value, we know the equation is
of form:
frames = k * 2 ^ (value / 4)
(You may ponder about envelope generator hardware at this point,
or maybe not... :)
By substituting some stuff and running some checks, we get:
k = 0.00257 (close enuf)
therefore,
frames = 0.00257 * 2 ^ (value / 4)
If you just happen to be writing an emulator, then you can probably
use an equation like:
%volume_increase_per_tick = 1 / frames
------------------------------------
Pete:
ms=((1<<(value>>2))*514)/10000
------------------------------------
2. Decay rate value (only has log mode)
Decay value range: 0 -> 15
Value | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
------------------------------------------------
frames | | | | | 6 | 12 | 24 | 47 |
Note: frames here is no. of PAL frames to decay to 50% volume.
formula: frames = k * 2 ^ (value)
Substituting, we get: k = 0.00146
Further info on logarithmic nature:
frames to decay to sustain level 3 = 3 * frames to decay to
sustain level 9
Also no. of frames to 25% volume = roughly 1.85 * no. of frames to
50% volume.
Frag it - just use linear approx.
------------------------------------
Pete:
ms=((1<<value)*292)/10000
------------------------------------
3. Sustain rate value (linear mode)
Sustain rate range: 0 -> 127
Value | 48 | 52 | 56 | 60 | 64 | 68 | 72 |
-------------------------------------------
frames | 9 | 19 | 37 | 74 | 147| 293| 587|
Here, frames = no. of PAL frames for volume amplitude to go from 100%
to 0% (or vice-versa).
Same formula as for attack value, just a different value for k:
k = 0.00225
ie: frames = 0.00225 * 2 ^ (value / 4)
For emulation purposes:
%volume_increase_or_decrease_per_tick = 1 / frames
------------------------------------
Pete:
ms=((1<<(value>>2))*450)/10000
------------------------------------
4. Release rate (linear mode)
Release rate range: 0 -> 31
Value | 13 | 14 | 15 | 16 | 17 |
---------------------------------------------------------------
frames | 18 | 36 | 73 | 146| 292|
Here, frames = no. of PAL frames to decay from 100% vol to 0% vol
after "note-off" is triggered.
Formula: frames = k * 2 ^ (value)
And so: k = 0.00223
------------------------------------
Pete:
ms=((1<<value)*446)/10000
------------------------------------
Other notes:
Log stuff not figured out. You may get some clues from the "Decay rate"
stuff above. For emu purposes it may not be important - use linear
approx.
To get timings in millisecs, multiply frames by 20.
- James Higgs 17/6/2000
james7780@yahoo.com
//---------------------------------------------------------------
OLD adsr mixing according to james' rules... has to be called
every one millisecond
long v,v2,lT,l1,l2,l3;
if(s_chan[ch].bStop) // psx wants to stop? -> release phase
{
if(s_chan[ch].ADSR.ReleaseVal!=0) // -> release not 0: do release (if 0: stop right now)
{
if(!s_chan[ch].ADSR.ReleaseVol) // --> release just started? set up the release stuff
{
s_chan[ch].ADSR.ReleaseStartTime=s_chan[ch].ADSR.lTime;
s_chan[ch].ADSR.ReleaseVol=s_chan[ch].ADSR.lVolume;
s_chan[ch].ADSR.ReleaseTime = // --> calc how long does it take to reach the wanted sus level
(s_chan[ch].ADSR.ReleaseTime*
s_chan[ch].ADSR.ReleaseVol)/1024;
}
// -> NO release exp mode used (yet)
v=s_chan[ch].ADSR.ReleaseVol; // -> get last volume
lT=s_chan[ch].ADSR.lTime- // -> how much time is past?
s_chan[ch].ADSR.ReleaseStartTime;
l1=s_chan[ch].ADSR.ReleaseTime;
if(lT<l1) // -> we still have to release
{
v=v-((v*lT)/l1); // --> calc new volume
}
else // -> release is over: now really stop that sample
{v=0;s_chan[ch].bOn=0;s_chan[ch].ADSR.ReleaseVol=0;s_chan[ch].bNoise=0;}
}
else // -> release IS 0: release at once
{
v=0;s_chan[ch].bOn=0;s_chan[ch].ADSR.ReleaseVol=0;s_chan[ch].bNoise=0;
}
}
else
{//--------------------------------------------------// not in release phase:
v=1024;
lT=s_chan[ch].ADSR.lTime;
l1=s_chan[ch].ADSR.AttackTime;
if(lT<l1) // attack
{ // no exp mode used (yet)
// if(s_chan[ch].ADSR.AttackModeExp)
// {
// v=(v*lT)/l1;
// }
// else
{
v=(v*lT)/l1;
}
if(v==0) v=1;
}
else // decay
{ // should be exp, but who cares? ;)
l2=s_chan[ch].ADSR.DecayTime;
v2=s_chan[ch].ADSR.SustainLevel;
lT-=l1;
if(lT<l2)
{
v-=(((v-v2)*lT)/l2);
}
else // sustain
{ // no exp mode used (yet)
l3=s_chan[ch].ADSR.SustainTime;
lT-=l2;
if(s_chan[ch].ADSR.SustainModeDec>0)
{
if(l3!=0) v2+=((v-v2)*lT)/l3;
else v2=v;
}
else
{
if(l3!=0) v2-=(v2*lT)/l3;
else v2=v;
}
if(v2>v) v2=v;
if(v2<=0) {v2=0;s_chan[ch].bOn=0;s_chan[ch].ADSR.ReleaseVol=0;s_chan[ch].bNoise=0;}
v=v2;
}
}
}
//----------------------------------------------------//
// ok, done for this channel, so increase time
s_chan[ch].ADSR.lTime+=1; // 1 = 1.020408f ms;
if(v>1024) v=1024; // adjust volume
if(v<0) v=0;
s_chan[ch].ADSR.lVolume=v; // store act volume
return v; // return the volume factor
*/
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
/*
-----------------------------------------------------------------------------
Neill Corlett
Playstation SPU envelope timing notes
-----------------------------------------------------------------------------
This is preliminary. This may be wrong. But the model described herein fits
all of my experimental data, and it's just simple enough to sound right.
ADSR envelope level ranges from 0x00000000 to 0x7FFFFFFF internally.
The value returned by channel reg 0xC is (envelope_level>>16).
Each sample, an increment or decrement value will be added to or
subtracted from this envelope level.
Create the rate log table. The values double every 4 entries.
entry #0 = 4
4, 5, 6, 7,
8,10,12,14,
16,20,24,28, ...
entry #40 = 4096...
entry #44 = 8192...
entry #48 = 16384...
entry #52 = 32768...
entry #56 = 65536...
increments and decrements are in terms of ratelogtable[n]
n may exceed the table bounds (plan on n being between -32 and 127).
table values are all clipped between 0x00000000 and 0x3FFFFFFF
when you "voice on", the envelope is always fully reset.
(yes, it may click. the real thing does this too.)
envelope level begins at zero.
each state happens for at least 1 cycle
(transitions are not instantaneous)
this may result in some oddness: if the decay rate is uberfast, it will cut
the envelope from full down to half in one sample, potentially skipping over
the sustain level
ATTACK
------
- if the envelope level has overflowed past the max, clip to 0x7FFFFFFF and
proceed to DECAY.
Linear attack mode:
- line extends upward to 0x7FFFFFFF
- increment per sample is ratelogtable[(Ar^0x7F)-0x10]
Logarithmic attack mode:
if envelope_level < 0x60000000:
- line extends upward to 0x60000000
- increment per sample is ratelogtable[(Ar^0x7F)-0x10]
else:
- line extends upward to 0x7FFFFFFF
- increment per sample is ratelogtable[(Ar^0x7F)-0x18]
DECAY
-----
- if ((envelope_level>>27)&0xF) <= Sl, proceed to SUSTAIN.
Do not clip to the sustain level.
- current line ends at (envelope_level & 0x07FFFFFF)
- decrement per sample depends on (envelope_level>>28)&0x7
0: ratelogtable[(4*(Dr^0x1F))-0x18+0]
1: ratelogtable[(4*(Dr^0x1F))-0x18+4]
2: ratelogtable[(4*(Dr^0x1F))-0x18+6]
3: ratelogtable[(4*(Dr^0x1F))-0x18+8]
4: ratelogtable[(4*(Dr^0x1F))-0x18+9]
5: ratelogtable[(4*(Dr^0x1F))-0x18+10]
6: ratelogtable[(4*(Dr^0x1F))-0x18+11]
7: ratelogtable[(4*(Dr^0x1F))-0x18+12]
(note that this is the same as the release rate formula, except that
decay rates 10-1F aren't possible... those would be slower in theory)
SUSTAIN
-------
- no terminating condition except for voice off
- Sd=0 (increase) behavior is identical to ATTACK for both log and linear.
- Sd=1 (decrease) behavior:
Linear sustain decrease:
- line extends to 0x00000000
- decrement per sample is ratelogtable[(Sr^0x7F)-0x0F]
Logarithmic sustain decrease:
- current line ends at (envelope_level & 0x07FFFFFF)
- decrement per sample depends on (envelope_level>>28)&0x7
0: ratelogtable[(Sr^0x7F)-0x1B+0]
1: ratelogtable[(Sr^0x7F)-0x1B+4]
2: ratelogtable[(Sr^0x7F)-0x1B+6]
3: ratelogtable[(Sr^0x7F)-0x1B+8]
4: ratelogtable[(Sr^0x7F)-0x1B+9]
5: ratelogtable[(Sr^0x7F)-0x1B+10]
6: ratelogtable[(Sr^0x7F)-0x1B+11]
7: ratelogtable[(Sr^0x7F)-0x1B+12]
RELEASE
-------
- if the envelope level has overflowed to negative, clip to 0 and QUIT.
Linear release mode:
- line extends to 0x00000000
- decrement per sample is ratelogtable[(4*(Rr^0x1F))-0x0C]
Logarithmic release mode:
- line extends to (envelope_level & 0x0FFFFFFF)
- decrement per sample depends on (envelope_level>>28)&0x7
0: ratelogtable[(4*(Rr^0x1F))-0x18+0]
1: ratelogtable[(4*(Rr^0x1F))-0x18+4]
2: ratelogtable[(4*(Rr^0x1F))-0x18+6]
3: ratelogtable[(4*(Rr^0x1F))-0x18+8]
4: ratelogtable[(4*(Rr^0x1F))-0x18+9]
5: ratelogtable[(4*(Rr^0x1F))-0x18+10]
6: ratelogtable[(4*(Rr^0x1F))-0x18+11]
7: ratelogtable[(4*(Rr^0x1F))-0x18+12]
-----------------------------------------------------------------------------
*/
// vim:shiftwidth=1:expandtab
|