1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
|
#include "../gpsp_config.h"
#define defsymbl(symbol) \
.type symbol, %function ;\
.global symbol ; \
.global _##symbol ; \
symbol: \
_##symbol:
.text
.align 2
#define REG_R0 (0 * 4)
#define REG_R1 (1 * 4)
#define REG_R2 (2 * 4)
#define REG_R3 (3 * 4)
#define REG_R4 (4 * 4)
#define REG_R5 (5 * 4)
#define REG_R6 (6 * 4)
#define REG_R7 (7 * 4)
#define REG_R8 (8 * 4)
#define REG_R9 (9 * 4)
#define REG_R10 (10 * 4)
#define REG_R11 (11 * 4)
#define REG_R12 (12 * 4)
#define REG_R13 (13 * 4)
#define REG_R14 (14 * 4)
#define REG_SP (13 * 4)
#define REG_LR (14 * 4)
#define REG_PC (15 * 4)
#define REG_N_FLAG (16 * 4)
#define REG_Z_FLAG (17 * 4)
#define REG_C_FLAG (18 * 4)
#define REG_V_FLAG (19 * 4)
#define REG_CPSR (20 * 4)
#define REG_SAVE (21 * 4)
#define REG_SAVE2 (22 * 4)
#define REG_SAVE3 (23 * 4)
#define CPU_MODE (29 * 4)
#define CPU_HALT_STATE (30 * 4)
#define CHANGED_PC_STATUS (31 * 4)
#define COMPLETED_FRAME (32 * 4)
#define OAM_UPDATED (33 * 4)
#define reg_a0 r0
#define reg_a1 r1
#define reg_a2 r2
#define reg_s0 r9
#define reg_base r11
#define reg_flags r9
#define reg_cycles r12
#define reg_x0 r3
#define reg_x1 r4
#define reg_x2 r5
#define reg_x3 r6
#define reg_x4 r7
#define reg_x5 r8
#define MODE_SUPERVISOR 3
#if __ARM_ARCH >= 6
#define extract_u16(rd, rs) \
uxth rd, rs
#else
#define extract_u16(rd, rs) \
bic rd, rs, #0xff000000 ;\
bic rd, rd, #0x00ff0000
#endif
@ Will load the register set from memory into the appropriate cached registers.
@ See arm_emit.h for listing explanation.
#define load_registers_arm() ;\
ldr reg_x0, [reg_base, #REG_R0] ;\
ldr reg_x1, [reg_base, #REG_R1] ;\
ldr reg_x2, [reg_base, #REG_R6] ;\
ldr reg_x3, [reg_base, #REG_R9] ;\
ldr reg_x4, [reg_base, #REG_R12] ;\
ldr reg_x5, [reg_base, #REG_R14] ;\
#define load_registers_thumb() ;\
ldr reg_x0, [reg_base, #REG_R0] ;\
ldr reg_x1, [reg_base, #REG_R1] ;\
ldr reg_x2, [reg_base, #REG_R2] ;\
ldr reg_x3, [reg_base, #REG_R3] ;\
ldr reg_x4, [reg_base, #REG_R4] ;\
ldr reg_x5, [reg_base, #REG_R5] ;\
@ Will store the register set from cached registers back to memory.
#define store_registers_arm() ;\
str reg_x0, [reg_base, #REG_R0] ;\
str reg_x1, [reg_base, #REG_R1] ;\
str reg_x2, [reg_base, #REG_R6] ;\
str reg_x3, [reg_base, #REG_R9] ;\
str reg_x4, [reg_base, #REG_R12] ;\
str reg_x5, [reg_base, #REG_R14] ;\
#define store_registers_thumb() ;\
str reg_x0, [reg_base, #REG_R0] ;\
str reg_x1, [reg_base, #REG_R1] ;\
str reg_x2, [reg_base, #REG_R2] ;\
str reg_x3, [reg_base, #REG_R3] ;\
str reg_x4, [reg_base, #REG_R4] ;\
str reg_x5, [reg_base, #REG_R5] ;\
@ Returns an updated persistent cpsr with the cached flags register.
@ Uses reg as a temporary register and returns the CPSR here.
#define collapse_flags_no_update(reg) ;\
ldr reg, [reg_base, #REG_CPSR] /* reg = cpsr */;\
bic reg, reg, #0xF0000000 /* clear ALU flags in cpsr */;\
and reg_flags, reg_flags, #0xF0000000 /* clear non-ALU flags */;\
orr reg, reg, reg_flags /* update cpsr with ALU flags */;\
@ Updates cpsr using the above macro.
#define collapse_flags(reg) ;\
collapse_flags_no_update(reg) ;\
str reg, [reg_base, #REG_CPSR] ;\
@ Loads the saved flags register from the persistent cpsr.
#define extract_flags() ;\
ldr reg_flags, [reg_base, #REG_CPSR] ;\
msr cpsr_f, reg_flags ;\
#define save_flags() ;\
mrs reg_flags, cpsr ;\
#define restore_flags() ;\
msr cpsr_f, reg_flags ;\
@ Align the stack to 64 bits (ABIs that don't require it, still recommend so)
#define call_c_saved_regs r2, r3, r12, lr
@ Calls a C function - reloads the stack pointer and saves all caller save
@ registers which are important to the dynarec.
#define call_c_function(function) ;\
stmdb sp!, { call_c_saved_regs } ;\
bl function ;\
ldmia sp!, { call_c_saved_regs } ;\
@ Jumps to PC (ARM or Thumb modes)
@ This is really two functions/routines in one
@ r0 contains the PC
.align 2
#define execute_pc_builder(mode, align) ;\
defsymbl(arm_indirect_branch_##mode) ;\
save_flags() ;\
execute_pc_##mode: ;\
bic r0, r0, #(align) /* Align PC */;\
mov r1, r0, lsr #24 /* Get region */;\
ldr pc, [pc, r1, lsl #2] ;\
nop ;\
.long 3f /* 0 BIOS (like ROM) */;\
.long 3f /* 1 Bad region */;\
.long 1f /* 2 EWRAM */;\
.long 2f /* 3 IWRAM */;\
.long 3f /* 4 Not supported */;\
.long 3f /* 5 Not supported */;\
.long 3f /* 6 Not supported */;\
.long 3f /* 7 Not supported */;\
.long 3f /* 8 ROM */;\
.long 3f /* 9 ROM */;\
.long 3f /* A ROM */;\
.long 3f /* B ROM */;\
.long 3f /* C ROM */;\
.long 3f /* D ROM */;\
.long 3f /* E ROM */;\
.long 3f /* F Bad region */;\
;\
3: ;\
call_c_function(block_lookup_address_##mode) ;\
restore_flags() ;\
bx r0 ;\
1: ;\
ldr r1, =(ewram+0x40000) /* Load base addr */;\
mov r2, r0, lsl #14 /* addr &= 0x3ffff */;\
mov r2, r2, lsr #14 ;\
ldrh r2, [r1, r2] /* Load half word there */;\
ldr r1, =(ram_block_ptrs) ;\
ldr r1, [r1, r2, lsl #2] /* Pointer to the cache */;\
cmp r1, #0 /* NULL means not translated */;\
beq 3b /* Need to translate */;\
restore_flags() ;\
bx r1 ;\
2: ;\
ldr r1, =(iwram) /* Load base addr */;\
mov r2, r0, lsl #17 /* addr &= 0x7fff */;\
mov r2, r2, lsr #17 ;\
ldrh r2, [r1, r2] /* Load half word there */;\
ldr r1, =(ram_block_ptrs) ;\
ldr r1, [r1, r2, lsl #2] /* Pointer to the cache */;\
cmp r1, #0 /* NULL means not translated */;\
beq 3b /* Need to translate */;\
restore_flags() ;\
bx r1 ;\
.size arm_indirect_branch_##mode, .-arm_indirect_branch_##mode
execute_pc_builder(arm, 0x3)
execute_pc_builder(thumb, 0x1)
@ Resumes execution from saved PC, in any mode
execute_pc:
ldr r0, [reg_base, #REG_PC] @ load new PC
ldr r1, [reg_base, #REG_CPSR] @ r1 = flags
tst r1, #0x20 @ see if Thumb bit is set
bne 2f
load_registers_arm()
b execute_pc_arm
2:
load_registers_thumb()
b execute_pc_thumb
@ Update the GBA hardware (video, sound, input, etc)
@ Input:
@ r0: current PC
#define return_straight() ;\
bx lr ;\
#define return_add() ;\
add pc, lr, #4 ;\
#define load_pc_straight() ;\
ldr r0, [lr, #-8] ;\
#define load_pc_add() ;\
ldr r0, [lr] ;\
#define arm_update_gba_builder(name, mode, return_op) ;\
;\
.align 2 ;\
defsymbl(arm_update_gba_##name) ;\
load_pc_##return_op() ;\
str r0, [reg_base, #REG_PC] /* write out the PC */;\
;\
save_flags() ;\
collapse_flags(r0) /* update the flags */;\
;\
store_registers_##mode() /* save out registers */;\
wait_halt_##name: ;\
call_c_function(update_gba) /* update GBA state */;\
;\
ldr r1, [reg_base, #COMPLETED_FRAME] /* return if new frame */;\
cmp r1, #0 ;\
bne return_to_main ;\
;\
ldr r1, [reg_base, #CPU_HALT_STATE] /* keep iterating if halted */;\
cmp r1, #0 ;\
bne wait_halt_##name ;\
;\
mvn reg_cycles, r0 /* load new cycle count */;\
;\
ldr r0, [reg_base, #CHANGED_PC_STATUS] /* load PC changed status */;\
cmp r0, #0 /* see if PC has changed */;\
bne execute_pc /* go jump/translate */;\
;\
load_registers_##mode() /* reload registers */;\
restore_flags() ;\
return_##return_op() /* continue, no PC change */;\
.size arm_update_gba_##mode, .-arm_update_gba_##mode
arm_update_gba_builder(arm, arm, straight)
arm_update_gba_builder(thumb, thumb, straight)
arm_update_gba_builder(idle_arm, arm, add)
arm_update_gba_builder(idle_thumb, thumb, add)
@ Cheat hooks for master function
@ This is called whenever PC == cheats-master-function
@ Just calls the C function to process cheats
#define cheat_hook_builder(mode) ;\
defsymbl(mode##_cheat_hook) ;\
save_flags() ;\
store_registers_##mode() ;\
call_c_function(process_cheats) ;\
load_registers_##mode() ;\
restore_flags() ;\
bx lr ;\
cheat_hook_builder(arm)
cheat_hook_builder(thumb)
@ These are b stubs for performing indirect branches. They are not
@ linked to and don't return, instead they link elsewhere.
@ Input:
@ r0: PC to branch to
.align 2
defsymbl(arm_indirect_branch_dual_arm)
save_flags()
tst r0, #0x01 @ check lower bit
beq execute_pc_arm @ Keep executing ARM code
bic r0, r0, #0x01 @ Switch to Thumb mode
store_registers_arm() @ save out ARM registers
load_registers_thumb() @ load in Thumb registers
ldr r1, [reg_base, #REG_CPSR] @ load cpsr
orr r1, r1, #0x20 @ set Thumb mode
str r1, [reg_base, #REG_CPSR] @ store flags
b execute_pc_thumb @ Now execute Thumb
.size arm_indirect_branch_dual_arm, .-arm_indirect_branch_dual_arm
.align 2
defsymbl(arm_indirect_branch_dual_thumb)
save_flags()
tst r0, #0x01 @ check lower bit
bne execute_pc_thumb @ Keep executing Thumb mode
store_registers_thumb() @ save out Thumb registers
load_registers_arm() @ load in ARM registers
ldr r1, [reg_base, #REG_CPSR] @ load cpsr
bic r1, r1, #0x20 @ clear Thumb mode
str r1, [reg_base, #REG_CPSR] @ store flags
b execute_pc_arm @ Now execute ARM
.size arm_indirect_branch_dual_thumb, .-arm_indirect_branch_dual_thumb
@ Update the cpsr.
@ Input:
@ r0: new cpsr value
@ r1: bitmask of which bits in cpsr to update
@ r2: current PC
.align 2
defsymbl(execute_store_cpsr)
save_flags()
and reg_flags, r0, r1 @ reg_flags = new_cpsr & store_mask
ldr r0, [reg_base, #REG_CPSR] @ r0 = cpsr
bic r0, r0, r1 @ r0 = cpsr & ~store_mask
orr reg_flags, reg_flags, r0 @ reg_flags = new_cpsr | cpsr
mov r0, reg_flags @ also put new cpsr in r0
store_registers_arm() @ save ARM registers
ldr r2, [lr] @ r2 = pc
call_c_function(execute_store_cpsr_body)
load_registers_arm() @ restore ARM registers
cmp r0, #0 @ check new PC
beq 1f @ if it's zero, return
b execute_pc_arm
1:
restore_flags()
add pc, lr, #4 @ return
.size execute_store_cpsr, .-execute_store_cpsr
@ Update the current spsr.
@ Input:
@ r0: new cpsr value
@ r1: bitmask of which bits in spsr to update
.align 2
defsymbl(execute_store_spsr)
ldr r1, =spsr @ r1 = spsr
ldr r2, [reg_base, #CPU_MODE] @ r2 = CPU_MODE
str r0, [r1, r2, lsl #2] @ spsr[CPU_MODE] = new_spsr
bx lr
.size execute_store_spsr, .-execute_store_spsr
@ Read the current spsr.
@ Output:
@ r0: spsr
.align 2
defsymbl(execute_read_spsr)
ldr r0, =spsr @ r0 = spsr
ldr r1, [reg_base, #CPU_MODE] @ r1 = CPU_MODE
ldr r0, [r0, r1, lsl #2] @ r0 = spsr[CPU_MODE]
bx lr @ return
.size execute_read_spsr, .-execute_read_spsr
@ Restore the cpsr from the mode spsr and mode shift.
@ Input:
@ r0: current pc
.align 2
defsymbl(execute_spsr_restore)
save_flags()
ldr r1, =spsr @ r1 = spsr
ldr r2, [reg_base, #CPU_MODE] @ r2 = cpu_mode
ldr r1, [r1, r2, lsl #2] @ r1 = spsr[cpu_mode] (new cpsr)
str r1, [reg_base, #REG_CPSR] @ update cpsr
mov reg_flags, r1 @ also, update shadow flags
@ This function call will pass r0 (address) and return it.
store_registers_arm() @ save ARM registers
call_c_function(execute_spsr_restore_body)
ldr r1, [reg_base, #REG_CPSR] @ r1 = cpsr
tst r1, #0x20 @ see if Thumb mode is set
bne 2f @ if so handle it
load_registers_arm() @ restore ARM registers
b execute_pc_arm
2:
load_registers_thumb() @ load Thumb registers
b execute_pc_thumb
@ Setup the mode transition work for calling an SWI.
@ Input:
@ r0: current pc
#define execute_swi_builder(mode) ;\
;\
.align 2 ;\
defsymbl(execute_swi_##mode) ;\
save_flags() ;\
ldr r1, =reg_mode /* r1 = reg_mode */;\
/* reg_mode[MODE_SUPERVISOR][6] = pc */;\
ldr r0, [lr] /* load PC */;\
str r0, [r1, #((MODE_SUPERVISOR * (7 * 4)) + (6 * 4))] ;\
collapse_flags_no_update(r0) /* r0 = cpsr */;\
ldr r1, =spsr /* r1 = spsr */;\
str r0, [r1, #(MODE_SUPERVISOR * 4)] /* spsr[MODE_SUPERVISOR] = cpsr */;\
bic r0, r0, #0x3F /* clear mode flag in r0 */;\
orr r0, r0, #0x13 /* set to supervisor mode */;\
str r0, [reg_base, #REG_CPSR] /* update cpsr */;\
;\
call_c_function(bios_region_read_allow) ;\
;\
mov r0, #MODE_SUPERVISOR ;\
;\
store_registers_##mode() /* store regs for mode */;\
call_c_function(set_cpu_mode) /* set the CPU mode to svsr */;\
load_registers_arm() /* load ARM regs */;\
;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
execute_swi_builder(arm)
execute_swi_builder(thumb)
@ Wrapper for calling SWI functions in C (or can implement some in ASM if
@ desired)
#define execute_swi_function_builder(swi_function, mode) ;\
;\
.align 2 ;\
defsymbl(execute_swi_hle_##swi_function##_##mode) ;\
save_flags() ;\
store_registers_##mode() ;\
call_c_function(execute_swi_hle_##swi_function##_c) ;\
load_registers_##mode() ;\
restore_flags() ;\
bx lr ;\
execute_swi_function_builder(div, arm)
execute_swi_function_builder(div, thumb)
@ Start program execution. Normally the mode should be Thumb and the
@ PC should be 0x8000000, however if a save state is preloaded this
@ will be different.
@ Input:
@ r0: initial value for cycle counter
@ Uses sp as reg_base; must hold consistently true.
.align 2
defsymbl(execute_arm_translate)
@ save the registers to be able to return later
stmdb sp!, { r4, r5, r6, r7, r8, r9, r10, r11, r12, lr }
ldr reg_base, =reg @ init base_reg
mvn reg_cycles, r0 @ load cycle counter
@ Check whether the CPU is sleeping already, we should just wait for IRQs
ldr r1, [reg_base, #CPU_HALT_STATE]
cmp r1, #0
bne alert_loop
ldr r0, [reg_base, #REG_PC] @ r0 = current pc
ldr r1, [reg_base, #REG_CPSR] @ r1 = flags
tst r1, #0x20 @ see if Thumb bit is set
bne 1f @ if so lookup thumb
load_registers_arm() @ load ARM registers
call_c_function(block_lookup_address_arm)
extract_flags() @ load flags
bx r0 @ jump to first ARM block
1:
load_registers_thumb() @ load Thumb registers
call_c_function(block_lookup_address_thumb)
extract_flags() @ load flags
bx r0 @ jump to first Thumb block
@ Epilogue to return to the main thread (whatever called execute_arm_translate)
return_to_main:
@ restore the saved regs and return
ldmia sp!, { r4, r5, r6, r7, r8, r9, r10, r11, r12, lr }
bx lr
#define store_align_8() ;\
and r1, r1, #0xff ;\
#define store_align_16() ;\
bic r0, r0, #0x01 ;\
extract_u16(r1, r1) ;\
#define store_align_32() ;\
bic r0, r0, #0x03 ;\
#define mask_addr_8(nbits) ;\
mov r0, r0, lsl #(32 - nbits) /* isolate bottom n bits in top */;\
mov r0, r0, lsr #(32 - nbits) /* high bits are now clear */;\
#define mask_addr_16(nbits) ;\
mov r0, r0, lsl #(32 - nbits) /* isolate bottom n bits in top */;\
mov r0, r0, lsr #(32 - nbits + 1) /* high bits are now clear */;\
mov r0, r0, lsl #1 /* LSB is also zero */;\
#define mask_addr_32(nbits) ;\
mov r0, r0, lsl #(32 - nbits) /* isolate bottom n bits in top */;\
mov r0, r0, lsr #(32 - nbits + 2) /* high bits are now clear */;\
mov r0, r0, lsl #2 /* 2 LSB are also zero */;\
@ Vram, OAM and palette memories can only be accessed at a 16 bit boundary
#define mask_addr_bus16_32(nbits) mask_addr_32(nbits)
#define mask_addr_bus16_16(nbits) mask_addr_16(nbits)
#define mask_addr_bus16_8(nbits) \
mask_addr_16(nbits) \
extract_u16(r1, r1)
@ Write out to memory.
@ Input:
@ r0: address
@ r1: value
@ r2: current pc
@
@ The instruction at LR is not an inst but a u32 data that contains the PC
@ Used for SMC. That's why return is essentially `pc = lr + 4`
#define execute_store_body(store_type, tblnum) ;\
save_flags() ;\
str lr, [reg_base, #REG_SAVE3] /* save lr */;\
;\
mov lr, r0, lsr #24 /* lr = region number */;\
cmp lr, #15 ;\
movcs lr, #15 /* lr = min(lr, 15) */;\
;\
add lr, lr, #(16*tblnum + 64) /* lr += table offset */;\
ldr pc, [reg_base, lr, lsl #2] /* jump to handler */;\
#define store_fnptr_table(store_type) ;\
ptr_tbl_##store_type: ;\
.word ext_store_ignore /* 0x00: BIOS, ignore */;\
.word ext_store_ignore /* 0x01: ignore */;\
.word ext_store_ewram_u##store_type /* 0x02: ewram */;\
.word ext_store_iwram_u##store_type /* 0x03: iwram */;\
.word ext_store_u##store_type /* 0x04: I/O regs */;\
.word ext_store_u##store_type /* 0x05: palette RAM */;\
.word ext_store_vram_u##store_type /* 0x06: vram */;\
.word ext_store_oam_ram_u##store_type /* 0x07: oam ram */;\
.word ext_store_u##store_type /* 0x08: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x09: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x0A: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x0B: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x0C: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x0D: EEPROM */;\
.word ext_store_u##store_type /* 0x0E: backup */;\
.word ext_store_ignore /* 0x0F: ignore */;\
@ for ignored areas, just return
ext_store_ignore:
ldr lr, [reg_base, #REG_SAVE3] @ pop lr off of stack
restore_flags()
add pc, lr, #4 @ return
#define execute_store_builder(store_type, store_op, store_op16, load_op, tn) ;\
;\
.align 2 ;\
defsymbl(execute_store_u##store_type) ;\
execute_store_body(store_type, tn) ;\
;\
ext_store_u##store_type: ;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
ldr r2, [lr] /* load PC */;\
str r2, [reg_base, #REG_PC] /* write out PC */;\
store_align_##store_type() ;\
call_c_function(write_memory##store_type) ;\
b write_epilogue /* handle additional write stuff */;\
;\
ext_store_iwram_u##store_type: ;\
mask_addr_##store_type(15) /* Mask to mirror memory (+align)*/;\
ldr r2, =(iwram+0x8000) /* r2 = iwram base */;\
store_op r1, [r0, r2] /* store data */;\
sub r2, r2, #0x8000 /* r2 = iwram smc base */;\
load_op r1, [r0, r2] /* r1 = SMC sentinel */;\
cmp r1, #0 /* see if it's not 0 */;\
bne 3f /* if so perform smc write */;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
ext_store_ewram_u##store_type: ;\
mask_addr_##store_type(18) /* Mask to mirror memory (+align)*/;\
ldr r2, =(ewram) /* r2 = ewram base */;\
store_op r1, [r0, r2] /* store data */;\
add r2, r2, #0x40000 /* r2 = ewram smc base */;\
load_op r1, [r0, r2] /* r1 = SMC sentinel */;\
cmp r1, #0 /* see if it's not 0 */;\
bne 3f /* if so perform smc write */;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
ext_store_vram_u##store_type: ;\
mask_addr_bus16_##store_type(17) /* Mask to mirror memory (+align)*/;\
cmp r0, #0x18000 /* Check if exceeds 96KB */;\
subcs r0, r0, #0x8000 /* Mirror to the last bank */;\
ldr r2, =(vram) /* r2 = vram base */;\
store_op16 r1, [r0, r2] /* store data */;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
ext_store_oam_ram_u##store_type: ;\
mask_addr_bus16_##store_type(10) /* Mask to mirror memory (+align)*/;\
sub r2, reg_base, #0x400 /* r2 = oam ram base */;\
store_op16 r1, [r0, r2] /* store data */;\
str r2, [reg_base, #OAM_UPDATED] /* write non zero to signal */;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
3: ;\
ldr lr, [reg_base, #REG_SAVE3] /* restore lr */;\
ldr r0, [lr] /* load PC */;\
str r0, [reg_base, #REG_PC] /* write out PC */;\
b smc_write /* perform smc write */;\
.size execute_store_u##store_type, .-execute_store_u##store_type
execute_store_builder(8, strb, strh, ldrb, 0)
execute_store_builder(16, strh, strh, ldrh, 1)
execute_store_builder(32, str, str, ldr, 2)
@ This is a store that is executed in a strm case (so no SMC checks in-between)
defsymbl(execute_store_u32_safe)
execute_store_body(32_safe, 3)
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
ext_store_u32_safe:
ldr lr, [reg_base, #REG_SAVE3] @ Restore lr
call_c_function(write_memory32) @ Perform 32bit store
restore_flags()
bx lr @ Return
ext_store_iwram_u32_safe:
mask_addr_8(15) @ Mask to mirror memory (no need to align!)
ldr r2, =(iwram+0x8000) @ r2 = iwram base
str r1, [r0, r2] @ store data
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
ext_store_ewram_u32_safe:
mask_addr_8(18) @ Mask to mirror memory (no need to align!)
ldr r2, =(ewram) @ r2 = ewram base
str r1, [r0, r2] @ store data
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
ext_store_vram_u32_safe:
mask_addr_8(17) @ Mask to mirror memory (no need to align!)
ldr r2, =(vram) @ r2 = vram base
cmp r0, #0x18000 @ Check if exceeds 96KB
subcs r0, r0, #0x8000 @ Mirror to the last bank
str r1, [r0, r2] @ store data
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
ext_store_oam_ram_u32_safe:
mask_addr_8(10) @ Mask to mirror memory (no need to align!)
sub r2, reg_base, #0x400 @ r2 = oam ram base
str r1, [r0, r2] @ store data
str r2, [reg_base, #OAM_UPDATED] @ store anything non zero here
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
.size execute_store_u32_safe, .-execute_store_u32_safe
write_epilogue:
cmp r0, #0 @ check if the write rose an alert
beq 4f @ if not we can exit
collapse_flags(r1) @ interrupt needs current flags
cmp r0, #2 @ see if the alert is due to SMC
beq smc_write @ if so, goto SMC handler
ldr r1, [reg_base, #REG_CPSR] @ r1 = cpsr
tst r1, #0x20 @ see if Thumb bit is set
bne 1f @ if so do Thumb update
store_registers_arm() @ save ARM registers
b alert_loop
1:
store_registers_thumb() @ save Thumb registers
alert_loop:
call_c_function(update_gba) @ update GBA until CPU isn't halted
ldr r1, [reg_base, #COMPLETED_FRAME] @ Check whether a frame was completed
cmp r1, #0
bne return_to_main
ldr r1, [reg_base, #CPU_HALT_STATE] @ Check whether the CPU is halted
cmp r1, #0
bne alert_loop @ Keep looping until it is
mvn reg_cycles, r0 @ load new cycle count
b execute_pc @ restart execution at PC
4:
restore_flags()
add pc, lr, #4 @ return
smc_write:
call_c_function(flush_translation_cache_ram)
lookup_pc:
ldr r0, [reg_base, #REG_PC] @ r0 = new pc
ldr r1, [reg_base, #REG_CPSR] @ r1 = flags
tst r1, #0x20 @ see if Thumb bit is set
beq execute_pc_arm @ if not lookup ARM
b execute_pc_thumb
#define sign_extend_u8(reg)
#define sign_extend_u16(reg)
#define sign_extend_u32(reg)
#if __ARM_ARCH >= 6
#define sign_extend_s8(reg) ;\
sxtb reg, reg
#define sign_extend_s16(reg) ;\
sxth reg, reg
#else
#define sign_extend_s8(reg) ;\
mov reg, reg, lsl #24 /* shift reg into upper 8bits */;\
mov reg, reg, asr #24 /* shift down, sign extending */;\
#define sign_extend_s16(reg) ;\
mov reg, reg, lsl #16 /* shift reg into upper 16bits */;\
mov reg, reg, asr #16 /* shift down, sign extending */;\
#endif
#define execute_load_op_u8(load_op) ;\
mov r0, r0, lsl #17 ;\
load_op r0, [r2, r0, lsr #17] ;\
#define execute_load_op_s8(load_op) ;\
mov r0, r0, lsl #17 ;\
mov r0, r0, lsr #17 ;\
load_op r0, [r2, r0] ;\
#define execute_load_op_u16(load_op) ;\
execute_load_op_s8(load_op) ;\
#define execute_load_op_s16(load_op) ;\
execute_load_op_s8(load_op) ;\
#define execute_load_op_u16(load_op) ;\
execute_load_op_s8(load_op) ;\
#define execute_load_op_u32(load_op) ;\
execute_load_op_u8(load_op) ;\
#define execute_load_builder(load_type, load_function, load_op, mask) ;\
;\
.align 2 ;\
defsymbl(execute_load_##load_type) ;\
save_flags() ;\
tst r0, mask /* make sure address is in range */;\
bne ext_load_##load_type /* if not do ext load */;\
;\
ldr r2, =memory_map_read /* r2 = memory_map_read */;\
mov r1, r0, lsr #15 /* r1 = page index of address */;\
ldr r2, [r2, r1, lsl #2] /* r2 = memory page */;\
;\
cmp r2, #0 /* see if map is ext */;\
beq ext_load_##load_type /* if so do ext load */;\
;\
execute_load_op_##load_type(load_op) ;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
ext_load_##load_type: ;\
ldr r1, [lr] /* r1 = PC */;\
str r1, [reg_base, #REG_PC] /* update PC */;\
call_c_function(read_memory##load_function) ;\
sign_extend_##load_type(r0) /* sign extend result */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
.size execute_load_##load_type, .-execute_load_##load_type
.pool
execute_load_builder(u8, 8, ldrb, #0xF0000000)
execute_load_builder(s8, 8, ldrsb, #0xF0000000)
execute_load_builder(u16, 16, ldrh, #0xF0000001)
execute_load_builder(s16, 16_signed, ldrsh, #0xF0000001)
execute_load_builder(u32, 32, ldr, #0xF0000003)
.data
defsymbl(memory_map_read)
.space 0x8000
defsymbl(palette_ram)
.space 0x400
defsymbl(palette_ram_converted)
.space 0x400
defsymbl(spsr)
.space 24
defsymbl(reg_mode)
.space 196
defsymbl(oam_ram)
.space 0x400
defsymbl(reg)
.space 0x100, 0
@ Store pointer tables down here
store_fnptr_table(8)
store_fnptr_table(16)
store_fnptr_table(32)
store_fnptr_table(32_safe)
@ Vita and 3DS (and of course mmap) map their own cache sections through some
@ platform-speficic mechanisms.
#if !defined(HAVE_MMAP) && !defined(VITA) && !defined(_3DS)
@ Make this section executable!
.text
#ifdef __ANDROID__
@ Unfortunately Android builds don't like nobits, so we ship a ton of zeros
@ TODO: Revisit this whenever we upgrade to the latest clang NDK
.section .jit,"awx",%progbits
#else
.section .jit,"awx",%nobits
#endif
.align 4
defsymbl(rom_translation_cache)
.space ROM_TRANSLATION_CACHE_SIZE
.size rom_translation_cache, .-rom_translation_cache
defsymbl(ram_translation_cache)
.space RAM_TRANSLATION_CACHE_SIZE
.size ram_translation_cache, .-ram_translation_cache
defsymbl(bios_translation_cache)
.space BIOS_TRANSLATION_CACHE_SIZE
.size bios_translation_cache, .-bios_translation_cache
#endif
|