summaryrefslogtreecommitdiff
path: root/psp/mips_stub.S
blob: eb672c743ffdce896bf4808c9133482c19d7a7f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# gameplaySP
#
# Copyright (C) 2006 Exophase <exophase@gmail.com>
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

#include "../gpsp_config.h"

// This is also defined in sys/asm.h but doesn't seem portable?
#ifdef __mips64
  .set mips64
  #define SZREG 8
  #define REG_L ld
  #define REG_S sd
#else
  .set mips32r2
  #define SZREG 4
  #define REG_L lw
  #define REG_S sw
#endif

.align 4

.global mips_update_gba
.global mips_indirect_branch_arm
.global mips_indirect_branch_thumb
.global mips_indirect_branch_dual
.global execute_read_cpsr
.global execute_read_spsr
.global execute_swi
.global execute_spsr_restore
.global execute_store_cpsr
.global execute_store_spsr
.global execute_lsl_flags_reg
.global execute_lsr_flags_reg
.global execute_asr_flags_reg
.global execute_arm_translate_internal
.global palette_ram
.global palette_ram_converted
.global oam_ram
.global mips_lookup_pc
.global smc_write
.global mips_cheat_hook

.global write_io_epilogue
.global memory_map_read
.global tmemld
.global tmemst
.global thnjal
.global reg
.global spsr
.global reg_mode
.global oam_update

# MIPS register layout:

# $0 - constant zero
# $1 - temporary
# $2 - temporary / return value
# $3 - ARM r0 (not saved)
# $4 - temporary / function argument 0
# $5 - temporary / function argument 1
# $6 - temporary / function argument 2
# $7 - ARM r1 (not saved)
# $8 - ARM r2 (not saved)
# $9 - ARM r3 (not saved)
# $10 - ARM r4 (not saved)
# $11 - ARM r5 (not saved)
# $12 - ARM r6 (not saved)
# $13 - ARM r7 (not saved)
# $14 - ARM r8 (not saved)
# $15 - ARM r9 (not saved)
# $16 - ARM machine state pointer (saved)
# $17 - cycle counter (saved)
# $18 - ARM r10 (saved)
# $19 - block start address (roughly r15) (saved)
# $20 - ARM negative register (saved)
# $21 - ARM zero register (saved)
# $22 - ARM carry register (saved)
# $23 - ARM overflow register (saved)
# $24 - ARM r11 (not saved)
# $25 - ARM r12 (not saved)
# $26 - kernel temporary 0
# $27 - kernel temporary 1
# $28 - ARM r13 (saved)
# $29 - stack pointer
# $30 - ARM r14 (saved)
# $31 - return address

.equ REG_R0,              (0 * 4)
.equ REG_R1,              (1 * 4)
.equ REG_R2,              (2 * 4)
.equ REG_R3,              (3 * 4)
.equ REG_R4,              (4 * 4)
.equ REG_R5,              (5 * 4)
.equ REG_R6,              (6 * 4)
.equ REG_R7,              (7 * 4)
.equ REG_R8,              (8 * 4)
.equ REG_R9,              (9 * 4)
.equ REG_R10,             (10 * 4)
.equ REG_R11,             (11 * 4)
.equ REG_R12,             (12 * 4)
.equ REG_R13,             (13 * 4)
.equ REG_R14,             (14 * 4)
.equ REG_PC,              (15 * 4)
.equ REG_N_FLAG,          (16 * 4)
.equ REG_Z_FLAG,          (17 * 4)
.equ REG_C_FLAG,          (18 * 4)
.equ REG_V_FLAG,          (19 * 4)
.equ REG_CPSR,            (20 * 4)
.equ REG_SAVE,            (21 * 4)
.equ REG_SAVE2,           (22 * 4)
.equ REG_SAVE3,           (23 * 4)
.equ CPU_MODE,            (29 * 4)
.equ CPU_HALT_STATE,      (30 * 4)
.equ CHANGED_PC_STATUS,   (31 * 4)
.equ COMPLETED_FRAME,     (32 * 4)
.equ OAM_UPDATED,         (33 * 4)
.equ GP_SAVE,             (34 * 4)
.equ GP_SAVE_HI,          (35 * 4)

.equ SPSR_BASE,           (0x100 + 0x400 * 3)
.equ REGMODE_BASE,        (SPSR_BASE + 24)
.equ SUPERVISOR_SPSR,     (3 * 4 + SPSR_BASE)
.equ SUPERVISOR_LR,       ((3 * (7 * 4)) + (6 * 4) + REGMODE_BASE)
.equ FNPTRS_MEMOPS,       (REGMODE_BASE + 196)
.equ FNPTRS_BASE,         (FNPTRS_MEMOPS + 960*2)

.set noat
.set noreorder

# make sure $16 has the register base for these macros

#ifdef MIPS_HAS_R2_INSTS
  .macro collapse_flag flag_reg, shift
    ins $2, $\flag_reg, \shift, 1    # insert flag into CPSR
  .endm

  .macro extract_flag shift, flag_reg
    ext $\flag_reg, $1, \shift, 1   # extract flag from CPSR
  .endm
#else
  .macro collapse_flag flag_reg, shift
    sll $1, $\flag_reg, \shift
    or  $2, $2, $1
  .endm

  .macro extract_flag shift, flag_reg
    srl $\flag_reg, $1, \shift
    andi $\flag_reg, $\flag_reg, 1
  .endm
#endif

.macro collapse_flags
  lw $2, REG_CPSR($16)            # load CPSR
  andi $2, $2, 0xFF               # isolate lower 8bits
  collapse_flag 20, 31            # store flags
  collapse_flag 21, 30
  collapse_flag 22, 29
  collapse_flag 23, 28
  sw $2, REG_CPSR($16)            # store CPSR
.endm

.macro extract_flags_body         # extract flags from $1
  extract_flag 31, 20             # load flags
  extract_flag 30, 21
  extract_flag 29, 22
  extract_flag 28, 23
.endm

.macro extract_flags
  lw $1, REG_CPSR($16)            # load CPSR
  extract_flags_body
.endm

.macro save_registers
  sw $3, REG_R0($16)
  sw $7, REG_R1($16)
  sw $8, REG_R2($16)
  sw $9, REG_R3($16)
  sw $10, REG_R4($16)
  sw $11, REG_R5($16)
  sw $12, REG_R6($16)
  sw $13, REG_R7($16)
  sw $14, REG_R8($16)
  sw $15, REG_R9($16)
  sw $24, REG_R11($16)
  sw $25, REG_R12($16)

  sw $18, REG_R10($16)
  sw $28, REG_R13($16)
  sw $30, REG_R14($16)

  REG_L $28, GP_SAVE($16)
.endm

.macro restore_registers
  lw $3, REG_R0($16)
  lw $7, REG_R1($16)
  lw $8, REG_R2($16)
  lw $9, REG_R3($16)
  lw $10, REG_R4($16)
  lw $11, REG_R5($16)
  lw $12, REG_R6($16)
  lw $13, REG_R7($16)
  lw $14, REG_R8($16)
  lw $15, REG_R9($16)
  lw $24, REG_R11($16)
  lw $25, REG_R12($16)

  lw $18, REG_R10($16)
  lw $28, REG_R13($16)
  lw $30, REG_R14($16)
.endm

# PIC ABI mandates to jump to target via $t9

#ifdef PIC
.macro cfncall target, targetid
  lw $t9, (FNPTRS_BASE + \targetid * 4)($16)
  jalr $t9
  nop
.endm
#else
.macro cfncall target, targetid
  jal \target
  nop
.endm
#endif


# Process a hardware event. Since an interrupt might be
# raised we have to check if the PC has changed.

# $4: next address
# $16: register base
# $17: cycle counter

.balign 64

# This gets called every time the cycle counter runs out
# (checked at every branch/jump)
mips_update_gba:
  sw $4, REG_PC($16)              # current PC = $4

  sw $ra, REG_SAVE2($16)          # save return addr
  collapse_flags                  # update cpsr
  save_registers                  # save registers
  sw $0, CHANGED_PC_STATUS($16)
  cfncall update_gba, 0           # process the next event

  lw $1, COMPLETED_FRAME($16)     # Check whether we completed a frame
  bne $1, $0, return_to_main      # Return to main thread now

  addu $17, $2, $0                # $17 = new cycle count (ret value)

  lw $ra, REG_SAVE2($16)          # restore return address

  lw $1, CHANGED_PC_STATUS($16)
  bne $1, $0, lookup_pc
  nop

  restore_registers

  jr $ra                          # if not, go back to caller
  nop


# Processes cheats whenever we hit the master PC
mips_cheat_hook:
  sw $ra, REG_SAVE2($16)
  save_registers
  cfncall process_cheats, 8
  lw $ra, REG_SAVE2($16)
  restore_registers
  jr $ra
  nop


# Loads the main context and returns to it.
# ARM regs must be saved before branching here
return_to_main:
  REG_L $28, GP_SAVE($16)            # Restore previous state
  REG_L $s0,  4*SZREG($sp)
  REG_L $s1,  5*SZREG($sp)
  REG_L $s2,  6*SZREG($sp)
  REG_L $s3,  7*SZREG($sp)
  REG_L $s4,  8*SZREG($sp)
  REG_L $s5,  9*SZREG($sp)
  REG_L $s6, 10*SZREG($sp)
  REG_L $s7, 11*SZREG($sp)
  REG_L $fp, 12*SZREG($sp)
  REG_L $ra, 13*SZREG($sp)
  jr $ra                          # Return to main
  addiu $sp, $sp, 112             # Restore stack pointer (delay slot)

# Perform an indirect branch.

# $4: GBA address to branch to

mips_indirect_branch_arm:
  save_registers
  cfncall block_lookup_address_arm, 1
  restore_registers
  jr $2                           # $2 = value returned
  nop

mips_indirect_branch_thumb:
  save_registers
  cfncall block_lookup_address_thumb, 2
  restore_registers
  jr $2                           # $2 = value returned
  nop

mips_indirect_branch_dual:
  save_registers
  cfncall block_lookup_address_dual, 3
  nop
  restore_registers
  jr $2                           # $2 = value returned
  nop


write_io_epilogue:
  beq $2, $0, no_alert            # 0 means nothing happened
  addiu $4, $2, -2                # see if return value is 2 (delay slot)
  beq $4, $0, smc_dma             # is it an SMC alert? (return value = 2)
  nop
  addiu $4, $2, -3                # see if return value is 3
  beq $4, $0, irq_alert           # is it an IRQ alert? (return value = 3)
  nop
  collapse_flags                  # make sure flags are good for update_gba



alert_loop:
  cfncall update_gba, 0           # process the next event

  lw $1, COMPLETED_FRAME($16)     # Check whether we completed a frame
  bne $1, $0, return_to_main      # Return to main thread now

  lw $1, CPU_HALT_STATE($16)      # check if CPU is sleeping
  bne $1, $0, alert_loop          # see if it hasn't changed
  nop

  addu $17, $2, $0                # $17 = new cycle counter
  lw $4, REG_PC($16)              # $4 = new PC

  j lookup_pc
  nop

irq_alert:
  restore_registers
  j lookup_pc                     # PC has changed, get a new one
  nop

no_alert:
  restore_registers
  lw $ra, REG_SAVE3($16)          # restore return
  jr $ra                          # we can return
  nop

smc_dma:
  cfncall flush_translation_cache_ram, 4
  j lookup_pc
  nop

smc_write:
  save_registers
  sw $6, REG_PC($16)              # save PC
  cfncall flush_translation_cache_ram, 4

mips_lookup_pc:
lookup_pc:
  lw $2, REG_CPSR($16)            # $2 = cpsr
  andi $2, $2, 0x20               # isolate mode bit
  beq $2, $0, lookup_pc_arm       # if T bit is zero use arm handler
  nop

lookup_pc_thumb:
  lw $4, REG_PC($16)                     # load PC as arg 0
  cfncall block_lookup_address_thumb, 2  # get Thumb address
  restore_registers
  jr $2                                  # jump to result
  nop

lookup_pc_arm:
  lw $4, REG_PC($16)                   # load PC as arg 0
  cfncall block_lookup_address_arm, 1  # get ARM address
  restore_registers
  jr $2                                # jump to result
  nop

# Return the current cpsr

execute_read_cpsr:
  collapse_flags                  # fold flags into cpsr, put cpsr into $2
  jr $ra                          # return
  nop

# Return the current spsr

execute_read_spsr:
  lw $1, CPU_MODE($16)            # $1 = cpu_mode
  sll $1, $1, 2                   # adjust to word offset size
  addu $2, $1, $16
  jr $ra                          # return
  lw $2, SPSR_BASE($2)            # $2 = spsr[cpu_mode] (delay slot)

# Switch into SWI, has to collapse flags
# $4: Current pc

execute_swi:
  sw $ra, REG_SAVE3($16)
  sw $4, SUPERVISOR_LR($16)       # store next PC in the supervisor's LR
  collapse_flags                  # get cpsr in $2
  sw $2, SUPERVISOR_SPSR($16)     # save cpsr in SUPERVISOR_CPSR
  srl $2, $2, 6                   # zero out bottom 6 bits of CPSR
  sll $2, $2, 6
  ori $2, 0x13                    # set mode to supervisor
  sw $2, REG_CPSR($16)            # write back CPSR
  save_registers
  li $4, 3                        # 3 is supervisor mode
  cfncall set_cpu_mode, 5         # set the CPU mode to supervisor
  lw $ra, REG_SAVE3($16)
  restore_registers
  jr $ra                          # return
  nop

# $4: pc to restore to
# returns in $4

execute_spsr_restore:
  lw $1, CPU_MODE($16)            # $1 = cpu_mode

  beq $1, $0, no_spsr_restore     # only restore if the cpu isn't usermode
  sll $2, $1, 2                   # adjust to word offset size (delay)

  addu $2, $2, $16
  lw $1, SPSR_BASE($2)            # $1 = spsr[cpu_mode]
  sw $1, REG_CPSR($16)            # cpsr = spsr[cpu_mode]
  extract_flags_body              # extract flags from $1
  sw $ra, REG_SAVE3($16)
  save_registers
  cfncall execute_spsr_restore_body, 6  # do the dirty work in this C function
  restore_registers
  lw $ra, REG_SAVE3($16)
  jr $ra
  addu $4, $2, $0                 # move return value to $4

no_spsr_restore:
  jr $ra
  nop

# $4: new cpsr
# $5: store mask
# $6: current PC

execute_store_cpsr:
  and $1, $4, $5                  # $1 = new_cpsr & store_mask
  lw $2, REG_CPSR($16)            # $2 = current cpsr
  nor $4, $5, $0                  # $4 = ~store_mask
  and $2, $2, $4                  # $2 = (cpsr & (~store_mask))
  or $1, $1, $2                   # $1 = new cpsr combined with old
  extract_flags_body              # extract flags from $1
  sw $ra, REG_SAVE3($16)
  save_registers
  addu $4, $1, $0                 # load the new CPSR
  cfncall execute_store_cpsr_body, 7   # do the dirty work in this C function

  bne $2, $0, changed_pc_cpsr     # this could have changed the pc
  nop

  restore_registers

  lw $ra, REG_SAVE3($16)
  jr $ra
  nop

changed_pc_cpsr:
  addu $4, $2, $0                      # load new address in $4
  cfncall block_lookup_address_arm, 1  # GBA address is in $4
  restore_registers                    # restore registers
  jr $2                                # jump to the new address
  nop


# $4: new spsr
# $5: store mask

execute_store_spsr:
  lw $1, CPU_MODE($16)            # $1 = cpu_mode
  sll $1, $1, 2                   # adjust to word offset size
  addu $1, $1, $16
  lw $2, SPSR_BASE($1)            # $2 = spsr[cpu_mode]
  and $4, $4, $5                  # $4 = new_spsr & store_mask
  nor $5, $5, $0                  # $5 = ~store_mask
  and $2, $2, $5                  # $2 = (spsr & (~store_mask))
  or $4, $4, $2                   # $4 = new spsr combined with old
  jr $ra                          # return
  sw $4, SPSR_BASE($1)            # spsr[cpu_mode] = $4 (delay slot)

# $4: value
# $5: shift

execute_lsl_flags_reg:
  beq $5, $0, lsl_shift_zero      # is the shift zero?
  sltiu $1, $5, 32                # $1 = (shift < 32) (delay)
  beq $1, $0, lsl_shift_high      # is the shift >= 32?
  li $2, 32

  subu $2, $2, $5                 # $2 = (32 - shift)
  srlv $2, $4, $2                 # $2 = (value >> (32 - shift))
  andi $22, $2, 1                 # c flag = (value >> (32 - shift)) & 0x01

lsl_shift_zero:
  jr $ra                          # return
  sllv $4, $4, $5                 # return (value << shift) (delay)

lsl_shift_high:
  sltiu $1, $5, 33                # $1 = (shift < 33) (delay)
  bne $1, $0, lsl_shift_done      # jump if shift == 32
  andi $22, $4, 1                 # c flag = value & 0x01 (delay)

  addu $22, $0, $0                # c flag = 0 otherwise

lsl_shift_done:
  jr $ra                          # return
  addu $4, $0, $0                 # value = 0 no matter what


execute_lsr_flags_reg:
  beq $5, $0, lsr_shift_zero      # is the shift zero?
  sltiu $1, $5, 32                # $1 = (shift < 32) (delay)
  beq $1, $0, lsr_shift_high      # is the shift >= 32?
  addiu $2, $5, -1                # $2 = shift - 1 (delay)

  srlv $2, $4, $2                 # $2 = (value >> (shift - 1))
  andi $22, $2, 1                 # c flag = (value >> (32 - shift)) & 0x01

lsr_shift_zero:
  jr $ra                          # return
  srlv $4, $4, $5                 # return (value >> shift) (delay)

lsr_shift_high:
  sltiu $1, $5, 33                # $1 = (shift < 33) (delay)
  bne $1, $0, lsr_shift_done      # jump if shift == 32
  srl $22, $4, 31                 # c flag = value >> 31 (delay)

  addu $22, $0, $0                # c flag = 0 otherwise

lsr_shift_done:
  jr $ra                          # return
  addu $4, $0, $0                 # value = 0 no matter what


execute_asr_flags_reg:
  beq $5, $0, asr_shift_zero      # is the shift zero?
  sltiu $1, $5, 32                # $1 = (shift < 32) (delay)
  beq $1, $0, asr_shift_high      # is the shift >= 32?
  addiu $2, $5, -1                # $2 = shift - 1 (delay)

  srlv $2, $4, $2                 # $2 = (value >> (shift - 1))
  andi $22, $2, 1                 # c flag = (value >> (32 - shift)) & 0x01

asr_shift_zero:
  jr $ra                          # return
  srav $4, $4, $5                 # return (value >> shift) (delay)

asr_shift_high:
  sra $4, $4, 31                  # value >>= 31
  jr $ra                          # return
  andi $22, $4, 1                 # c flag = value & 0x01


# $4: cycle counter argument
# $5: pointer to reg

execute_arm_translate_internal:

  addiu $sp, $sp, -112            # Store the main thread context
  REG_S $s0,  4*SZREG($sp)
  REG_S $s1,  5*SZREG($sp)
  REG_S $s2,  6*SZREG($sp)
  REG_S $s3,  7*SZREG($sp)
  REG_S $s4,  8*SZREG($sp)
  REG_S $s5,  9*SZREG($sp)
  REG_S $s6, 10*SZREG($sp)
  REG_S $s7, 11*SZREG($sp)
  REG_S $fp, 12*SZREG($sp)
  REG_S $ra, 13*SZREG($sp)

  move $16, $5
  REG_S $28, GP_SAVE($16)

  addu $17, $4, $0                # load cycle counter register

  extract_flags                   # load flag variables

  # CPU might be sleeping, do not wake ip up!
  lw $1, CPU_HALT_STATE($16)      # check if CPU is sleeping
  bne $1, $0, alert_loop          # see if it hasn't changed

  lw $1, REG_CPSR($16)
  and $1, $1, 0x20                # see if Thumb bit is set in flags

  bne $1, $0, 1f
  lw $4, REG_PC($16)              # load PC into $4 (delay)

  cfncall block_lookup_address_arm, 1
  restore_registers               # load initial register values
  jr $2                           # jump to return
  nop

1:
  cfncall block_lookup_address_thumb, 2
  restore_registers               # load initial register values
  jr $2                           # jump to return
  nop


.data
.align 6

memory_map_read:
  .space 0x8000

# memory_map_read is immediately before arm_reg on purpose (offset used
# to access it, via lw op). We do not use write though.
reg:
  .space 0x100

# Placed here for easy access
palette_ram:
  .space 0x400
palette_ram_converted:
  .space 0x400
oam_ram:
  .space 0x400
spsr:
  .space 24     # u32[6]
reg_mode:
  .space 196    # u32[7][7];

# Here we store:
#  void *tmemld[11][16];  # 10 types of loads
#  void *tmemst[ 4][16];  #  3 types of stores
# Essentially a list of pointers to the different mem load handlers
# Keep them close for a fast patcher.
tmemld:
  .space 704
tmemst:
  .space 256
thnjal:
  .space 960
fnptrs:
  .long update_gba                     # 0
  .long block_lookup_address_arm       # 1
  .long block_lookup_address_thumb     # 2
  .long block_lookup_address_dual      # 3
  .long flush_translation_cache_ram    # 4
  .long set_cpu_mode                   # 5
  .long execute_spsr_restore_body      # 6
  .long execute_store_cpsr_body        # 7
  .long process_cheats                 # 8

#if !defined(HAVE_MMAP)

# Make this section executable!
.text
.section .jit,"awx",%nobits
.align 2
.global stub_arena
.global rom_translation_cache
.global ram_translation_cache
.global bios_translation_cache

stub_arena:
  .space STUB_ARENA_SIZE
rom_translation_cache:
  .space ROM_TRANSLATION_CACHE_SIZE
ram_translation_cache:
  .space RAM_TRANSLATION_CACHE_SIZE
bios_translation_cache:
  .space BIOS_TRANSLATION_CACHE_SIZE

#endif