aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMax Horn2004-12-25 18:22:55 +0000
committerMax Horn2004-12-25 18:22:55 +0000
commit433711be5e62a4813b3f296568dc51afb98feaf2 (patch)
tree23014fe3fa543d692ef2b0e76c0191c289e5b15b
parentdbe3966624dcdb577653eb7460363fe586865d5b (diff)
downloadscummvm-rg350-433711be5e62a4813b3f296568dc51afb98feaf2.tar.gz
scummvm-rg350-433711be5e62a4813b3f296568dc51afb98feaf2.tar.bz2
scummvm-rg350-433711be5e62a4813b3f296568dc51afb98feaf2.zip
Removing this dead code for now, it only leads to confusion
svn-id: r16314
-rw-r--r--sound/resample.cpp958
-rw-r--r--sound/resample.h93
2 files changed, 0 insertions, 1051 deletions
diff --git a/sound/resample.cpp b/sound/resample.cpp
deleted file mode 100644
index fc87619e03..0000000000
--- a/sound/resample.cpp
+++ /dev/null
@@ -1,958 +0,0 @@
-
-#include "stdafx.h"
-#include <math.h>
-#include "sound/resample.h"
-#include "sound/audiostream.h"
-
-
-#pragma mark -
-
-
-
-/**
- * Calculates the filter coeffs for a Kaiser-windowed low-pass filter with a
- * given roll-off frequency. These coeffs are stored into a array of doubles.
- *
- * reference: "Digital Filters, 2nd edition"
- * R.W. Hamming, pp. 178-179
- *
- * LpFilter() computes the coeffs of a Kaiser-windowed low pass filter with
- * the following characteristics:
- *
- * c[] = array in which to store computed coeffs
- * frq = roll-off frequency of filter
- * N = Half the window length in number of coeffs
- * Beta = parameter of Kaiser window
- * Num = number of coeffs before 1/frq
- *
- * Beta trades the rejection of the lowpass filter against the transition
- * width from passband to stopband. Larger Beta means a slower
- * transition and greater stopband rejection. See Rabiner and Gold
- * (Theory and Application of DSP) under Kaiser windows for more about
- * Beta. The following table from Rabiner and Gold gives some feel
- * for the effect of Beta:
- *
- * All ripples in dB, width of transition band = D*N where N = window length
- *
- * BETA D PB RIP SB RIP
- * 2.120 1.50 +-0.27 -30
- * 3.384 2.23 0.0864 -40
- * 4.538 2.93 0.0274 -50
- * 5.658 3.62 0.00868 -60
- * 6.764 4.32 0.00275 -70
- * 7.865 5.0 0.000868 -80
- * 8.960 5.7 0.000275 -90
- * 10.056 6.4 0.000087 -100
- */
-static void LpFilter(double c[], int N, double frq, double Beta, int Num);
-
-/**
- * Calls LpFilter() to create a filter, then scales the double coeffs into an
- * array of half words.
- * ERROR return codes:
- * 0 - no error
- * 1 - Nwing too large (Nwing is > MAXNWING)
- * 2 - Froll is not in interval [0:1)
- * 3 - Beta is < 1.0
- * 4 - LpScl will not fit in 16-bits
- */
-static int makeFilter(HWORD Imp[], HWORD ImpD[], UHWORD *LpScl, UHWORD Nwing,
- double Froll, double Beta);
-
-static WORD FilterUp(HWORD Imp[], HWORD ImpD[], UHWORD Nwing, bool Interp,
- HWORD *Xp, HWORD Inc, HWORD Ph);
-
-static WORD FilterUD(HWORD Imp[], HWORD ImpD[], UHWORD Nwing, bool Interp,
- HWORD *Xp, HWORD Ph, HWORD Inc, UHWORD dhb);
-
-
-
-#pragma mark -
-
-
-/*
- *
- * The configuration constants below govern
- * the number of bits in the input sample and filter coefficients, the
- * number of bits to the right of the binary-point for fixed-point math, etc.
- *
- */
-
-/* Conversion constants */
-#define Nhc 8
-#define Na 7
-#define Np (Nhc+Na)
-#define Npc (1<<Nhc)
-#define Amask ((1<<Na)-1)
-#define Pmask ((1<<Np)-1)
-#define Nh 16
-#define Nb 16
-#define Nhxn 14
-#define Nhg (Nh-Nhxn)
-#define NLpScl 13
-
-/* Description of constants:
- *
- * Npc - is the number of look-up values available for the lowpass filter
- * between the beginning of its impulse response and the "cutoff time"
- * of the filter. The cutoff time is defined as the reciprocal of the
- * lowpass-filter cut off frequence in Hz. For example, if the
- * lowpass filter were a sinc function, Npc would be the index of the
- * impulse-response lookup-table corresponding to the first zero-
- * crossing of the sinc function. (The inverse first zero-crossing
- * time of a sinc function equals its nominal cutoff frequency in Hz.)
- * Npc must be a power of 2 due to the details of the current
- * implementation. The default value of 512 is sufficiently high that
- * using linear interpolation to fill in between the table entries
- * gives approximately 16-bit accuracy in filter coefficients.
- *
- * Nhc - is log base 2 of Npc.
- *
- * Na - is the number of bits devoted to linear interpolation of the
- * filter coefficients.
- *
- * Np - is Na + Nhc, the number of bits to the right of the binary point
- * in the integer "time" variable. To the left of the point, it indexes
- * the input array (X), and to the right, it is interpreted as a number
- * between 0 and 1 sample of the input X. Np must be less than 16 in
- * this implementation.
- *
- * Nh - is the number of bits in the filter coefficients. The sum of Nh and
- * the number of bits in the input data (typically 16) cannot exceed 32.
- * Thus Nh should be 16. The largest filter coefficient should nearly
- * fill 16 bits (32767).
- *
- * Nb - is the number of bits in the input data. The sum of Nb and Nh cannot
- * exceed 32.
- *
- * Nhxn - is the number of bits to right shift after multiplying each input
- * sample times a filter coefficient. It can be as great as Nh and as
- * small as 0. Nhxn = Nh-2 gives 2 guard bits in the multiply-add
- * accumulation. If Nhxn=0, the accumulation will soon overflow 32 bits.
- *
- * Nhg - is the number of guard bits in mpy-add accumulation (equal to Nh-Nhxn)
- *
- * NLpScl - is the number of bits allocated to the unity-gain normalization
- * factor. The output of the lowpass filter is multiplied by LpScl and
- * then right-shifted NLpScl bits. To avoid overflow, we must have
- * Nb+Nhg+NLpScl < 32.
- */
-
-
-#pragma mark -
-
-
-#define IBUFFSIZE 4096 /* Input buffer size */
-
-static inline HWORD WordToHword(WORD v, int scl)
-{
- HWORD out;
-
- v = (v + (1 << (NLpScl-1))) >> NLpScl; // Round & scale
-
- if (v>MAX_HWORD) {
- v = MAX_HWORD;
- } else if (v < MIN_HWORD) {
- v = MIN_HWORD;
- }
- out = (HWORD) v;
- return out;
-}
-
-/* Sampling rate up-conversion only subroutine;
- * Slightly faster than down-conversion;
- */
-static int SrcUp(HWORD X[], HWORD Y[], double factor, UWORD *Time,
- UHWORD Nx, UHWORD Nwing, UHWORD LpScl,
- HWORD Imp[], HWORD ImpD[], bool Interp)
-{
- HWORD *Xp, *Ystart;
- WORD v;
-
- double dt; /* Step through input signal */
- UWORD dtb; /* Fixed-point version of Dt */
- UWORD endTime; /* When Time reaches EndTime, return to user */
-
- dt = 1.0/factor; /* Output sampling period */
- dtb = (UWORD)(dt*(1<<Np) + 0.5); /* Fixed-point representation */
-
- Ystart = Y;
- endTime = *Time + (1<<Np)*(WORD)Nx;
- while (*Time < endTime)
- {
- Xp = &X[*Time>>Np]; /* Ptr to current input sample */
- /* Perform left-wing inner product */
- v = FilterUp(Imp, ImpD, Nwing, Interp, Xp, (HWORD)(*Time&Pmask),-1);
- /* Perform right-wing inner product */
- v += FilterUp(Imp, ImpD, Nwing, Interp, Xp+1,
- /* previous (triggers warning): (HWORD)((-*Time)&Pmask),1); */
- (HWORD)((((*Time)^Pmask)+1)&Pmask),1);
- v >>= Nhg; /* Make guard bits */
- v *= LpScl; /* Normalize for unity filter gain */
- *Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */
- *Time += dtb; /* Move to next sample by time increment */
- }
- return (Y - Ystart); /* Return the number of output samples */
-}
-
-
-/* Sampling rate conversion subroutine */
-
-static int SrcUD(HWORD X[], HWORD Y[], double factor, UWORD *Time,
- UHWORD Nx, UHWORD Nwing, UHWORD LpScl,
- HWORD Imp[], HWORD ImpD[], bool Interp)
-{
- HWORD *Xp, *Ystart;
- WORD v;
-
- double dh; /* Step through filter impulse response */
- double dt; /* Step through input signal */
- UWORD endTime; /* When Time reaches EndTime, return to user */
- UWORD dhb, dtb; /* Fixed-point versions of Dh,Dt */
-
- dt = 1.0/factor; /* Output sampling period */
- dtb = (UWORD)(dt*(1<<Np) + 0.5); /* Fixed-point representation */
-
- dh = MIN((double)Npc, factor*Npc); /* Filter sampling period */
- dhb = (UWORD)(dh*(1<<Na) + 0.5); /* Fixed-point representation */
-
- Ystart = Y;
- endTime = *Time + (1<<Np)*(WORD)Nx;
- while (*Time < endTime)
- {
- Xp = &X[*Time>>Np]; /* Ptr to current input sample */
- v = FilterUD(Imp, ImpD, Nwing, Interp, Xp, (HWORD)(*Time&Pmask),
- -1, dhb); /* Perform left-wing inner product */
- v += FilterUD(Imp, ImpD, Nwing, Interp, Xp+1,
- /* previous (triggers warning): (HWORD)((-*Time)&Pmask), */
- (HWORD)((((*Time)^Pmask)+1)&Pmask),
- 1, dhb); /* Perform right-wing inner product */
- v >>= Nhg; /* Make guard bits */
- v *= LpScl; /* Normalize for unity filter gain */
- *Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */
- *Time += dtb; /* Move to next sample by time increment */
- }
- return (Y - Ystart); /* Return the number of output samples */
-}
-
-
-#pragma mark -
-
-
-#define IzeroEPSILON 1E-21 /* Max error acceptable in Izero */
-
-static double Izero(double x)
-{
- double sum, u, halfx, temp;
- int n;
-
- sum = u = n = 1;
- halfx = x/2.0;
- do {
- temp = halfx/(double)n;
- n += 1;
- temp *= temp;
- u *= temp;
- sum += u;
- } while (u >= IzeroEPSILON*sum);
- return(sum);
-}
-
-
-void LpFilter(double c[], int N, double frq, double Beta, int Num)
-{
- double IBeta, temp, inm1;
- int i;
-
- /* Calculate ideal lowpass filter impulse response coefficients: */
- c[0] = 2.0*frq;
- for (i=1; i<N; i++) {
- temp = M_PI*(double)i/(double)Num;
- c[i] = sin(2.0*temp*frq)/temp; /* Analog sinc function, cutoff = frq */
- }
-
- /*
- * Calculate and Apply Kaiser window to ideal lowpass filter.
- * Note: last window value is IBeta which is NOT zero.
- * You're supposed to really truncate the window here, not ramp
- * it to zero. This helps reduce the first sidelobe.
- */
- IBeta = 1.0/Izero(Beta);
- inm1 = 1.0/((double)(N-1));
- for (i=1; i<N; i++) {
- temp = (double)i * inm1;
- c[i] *= Izero(Beta*sqrt(1.0-temp*temp)) * IBeta;
- }
-}
-
-static double ImpR[MAXNWING];
-
-int makeFilter(HWORD Imp[], HWORD ImpD[], UHWORD *LpScl, UHWORD Nwing,
- double Froll, double Beta)
-{
- double DCgain, Scl, Maxh;
- HWORD Dh;
- int i, temp;
-
- if (Nwing > MAXNWING) /* Check for valid parameters */
- return(1);
- if ((Froll<=0) || (Froll>1))
- return(2);
- if (Beta < 1)
- return(3);
-
- /*
- * Design Kaiser-windowed sinc-function low-pass filter
- */
- LpFilter(ImpR, (int)Nwing, 0.5*Froll, Beta, Npc);
-
- /* Compute the DC gain of the lowpass filter, and its maximum coefficient
- * magnitude. Scale the coefficients so that the maximum coeffiecient just
- * fits in Nh-bit fixed-point, and compute LpScl as the NLpScl-bit (signed)
- * scale factor which when multiplied by the output of the lowpass filter
- * gives unity gain. */
- DCgain = 0;
- Dh = Npc; /* Filter sampling period for factors>=1 */
- for (i=Dh; i<Nwing; i+=Dh)
- DCgain += ImpR[i];
- DCgain = 2*DCgain + ImpR[0]; /* DC gain of real coefficients */
-
- for (Maxh=i=0; i<Nwing; i++)
- Maxh = MAX(Maxh, fabs(ImpR[i]));
-
- Scl = ((1<<(Nh-1))-1)/Maxh; /* Map largest coeff to 16-bit maximum */
- temp = (int)fabs((1<<(NLpScl+Nh))/(DCgain*Scl));
- if (temp >= 1<<16)
- return(4); /* Filter scale factor overflows UHWORD */
- *LpScl = temp;
-
- /* Scale filter coefficients for Nh bits and convert to integer */
- if (ImpR[0] < 0) /* Need pos 1st value for LpScl storage */
- Scl = -Scl;
- for (i=0; i<Nwing; i++) /* Scale them */
- ImpR[i] *= Scl;
- for (i=0; i<Nwing; i++) /* Round them */
- Imp[i] = (HWORD)(ImpR[i] + 0.5);
-
- /* ImpD makes linear interpolation of the filter coefficients faster */
- for (i=0; i<Nwing-1; i++)
- ImpD[i] = Imp[i+1] - Imp[i];
- ImpD[Nwing-1] = - Imp[Nwing-1]; /* Last coeff. not interpolated */
-
- return(0);
-}
-
-
-#pragma mark -
-
-
-WORD FilterUp(HWORD Imp[], HWORD ImpD[],
- UHWORD Nwing, bool Interp,
- HWORD *Xp, HWORD Ph, HWORD Inc)
-{
- HWORD *Hp, *Hdp = NULL, *End;
- HWORD a = 0;
- WORD v, t;
-
- v=0;
- Hp = &Imp[Ph>>Na];
- End = &Imp[Nwing];
- if (Interp) {
- Hdp = &ImpD[Ph>>Na];
- a = Ph & Amask;
- }
- if (Inc == 1) /* If doing right wing... */
- { /* ...drop extra coeff, so when Ph is */
- End--; /* 0.5, we don't do too many mult's */
- if (Ph == 0) /* If the phase is zero... */
- { /* ...then we've already skipped the */
- Hp += Npc; /* first sample, so we must also */
- Hdp += Npc; /* skip ahead in Imp[] and ImpD[] */
- }
- }
- if (Interp)
- while (Hp < End) {
- t = *Hp; /* Get filter coeff */
- t += (((WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
- Hdp += Npc; /* Filter coeff differences step */
- t *= *Xp; /* Mult coeff by input sample */
- if (t & (1<<(Nhxn-1))) /* Round, if needed */
- t += (1<<(Nhxn-1));
- t >>= Nhxn; /* Leave some guard bits, but come back some */
- v += t; /* The filter output */
- Hp += Npc; /* Filter coeff step */
- Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
- }
- else
- while (Hp < End) {
- t = *Hp; /* Get filter coeff */
- t *= *Xp; /* Mult coeff by input sample */
- if (t & (1<<(Nhxn-1))) /* Round, if needed */
- t += (1<<(Nhxn-1));
- t >>= Nhxn; /* Leave some guard bits, but come back some */
- v += t; /* The filter output */
- Hp += Npc; /* Filter coeff step */
- Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
- }
- return(v);
-}
-
-WORD FilterUD( HWORD Imp[], HWORD ImpD[],
- UHWORD Nwing, bool Interp,
- HWORD *Xp, HWORD Ph, HWORD Inc, UHWORD dhb)
-{
- HWORD a;
- HWORD *Hp, *Hdp, *End;
- WORD v, t;
- UWORD Ho;
-
- v=0;
- Ho = (Ph*(UWORD)dhb)>>Np;
- End = &Imp[Nwing];
- if (Inc == 1) /* If doing right wing... */
- { /* ...drop extra coeff, so when Ph is */
- End--; /* 0.5, we don't do too many mult's */
- if (Ph == 0) /* If the phase is zero... */
- Ho += dhb; /* ...then we've already skipped the */
- } /* first sample, so we must also */
- /* skip ahead in Imp[] and ImpD[] */
- if (Interp)
- while ((Hp = &Imp[Ho>>Na]) < End) {
- t = *Hp; /* Get IR sample */
- Hdp = &ImpD[Ho>>Na]; /* get interp (lower Na) bits from diff table*/
- a = Ho & Amask; /* a is logically between 0 and 1 */
- t += (((WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
- t *= *Xp; /* Mult coeff by input sample */
- if (t & 1<<(Nhxn-1)) /* Round, if needed */
- t += 1<<(Nhxn-1);
- t >>= Nhxn; /* Leave some guard bits, but come back some */
- v += t; /* The filter output */
- Ho += dhb; /* IR step */
- Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
- }
- else
- while ((Hp = &Imp[Ho>>Na]) < End) {
- t = *Hp; /* Get IR sample */
- t *= *Xp; /* Mult coeff by input sample */
- if (t & 1<<(Nhxn-1)) /* Round, if needed */
- t += 1<<(Nhxn-1);
- t >>= Nhxn; /* Leave some guard bits, but come back some */
- v += t; /* The filter output */
- Ho += dhb; /* IR step */
- Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
- }
- return(v);
-}
-
-
-#pragma mark -
-
-
-#if 0
-static int resampleWithFilter( /* number of output samples returned */
- double factor, /* factor = outSampleRate/inSampleRate */
- int infd, /* input and output file descriptors */
- int outfd,
- int inCount, /* number of input samples to convert */
- int outCount, /* number of output samples to compute */
- int nChans, /* number of sound channels (1 or 2) */
- bool interpFilt, /* TRUE means interpolate filter coeffs */
- HWORD Imp[], HWORD ImpD[],
- UHWORD LpScl, UHWORD Nmult, UHWORD Nwing)
-{
- UWORD Time, Time2; /* Current time/pos in input sample */
- UHWORD Xp, Ncreep, Xoff, Xread;
- int OBUFFSIZE = (int)(((double)IBUFFSIZE)*factor+2.0);
- HWORD X1[IBUFFSIZE], Y1[OBUFFSIZE]; /* I/O buffers */
- HWORD X2[IBUFFSIZE], Y2[OBUFFSIZE]; /* I/O buffers */
- UHWORD Nout, Nx;
- int i, Ycount, last;
-
- MUS_SAMPLE_TYPE **obufs = sndlib_allocate_buffers(nChans, OBUFFSIZE);
- if (obufs == NULL)
- return err_ret("Can't allocate output buffers");
-
- /* Account for increased filter gain when using factors less than 1 */
- if (factor < 1)
- LpScl = LpScl*factor + 0.5;
-
- /* Calc reach of LP filter wing & give some creeping room */
- Xoff = ((Nmult+1)/2.0) * MAX(1.0,1.0/factor) + 10;
-
- if (IBUFFSIZE < 2*Xoff) /* Check input buffer size */
- return err_ret("IBUFFSIZE (or factor) is too small");
-
- Nx = IBUFFSIZE - 2*Xoff; /* # of samples to process each iteration */
-
- last = 0; /* Have not read last input sample yet */
- Ycount = 0; /* Current sample and length of output file */
- Xp = Xoff; /* Current "now"-sample pointer for input */
- Xread = Xoff; /* Position in input array to read into */
- Time = (Xoff<<Np); /* Current-time pointer for converter */
-
- for (i=0; i<Xoff; X1[i++]=0); /* Need Xoff zeros at begining of sample */
- for (i=0; i<Xoff; X2[i++]=0); /* Need Xoff zeros at begining of sample */
-
- do {
- if (!last) /* If haven't read last sample yet */
- {
- last = readData(infd, inCount, X1, X2, IBUFFSIZE,
- nChans, (int)Xread);
- if (last && (last-Xoff<Nx)) { /* If last sample has been read... */
- Nx = last-Xoff; /* ...calc last sample affected by filter */
- if (Nx <= 0)
- break;
- }
- }
- /* Resample stuff in input buffer */
- Time2 = Time;
- if (factor >= 1) { /* SrcUp() is faster if we can use it */
- Nout=SrcUp(X1,Y1,factor,&Time,Nx,Nwing,LpScl,Imp,ImpD,interpFilt);
- if (nChans==2)
- Nout=SrcUp(X2,Y2,factor,&Time2,Nx,Nwing,LpScl,Imp,ImpD,
- interpFilt);
- }
- else {
- Nout=SrcUD(X1,Y1,factor,&Time,Nx,Nwing,LpScl,Imp,ImpD,interpFilt);
- if (nChans==2)
- Nout=SrcUD(X2,Y2,factor,&Time2,Nx,Nwing,LpScl,Imp,ImpD,
- interpFilt);
- }
-
- Time -= (Nx<<Np); /* Move converter Nx samples back in time */
- Xp += Nx; /* Advance by number of samples processed */
- Ncreep = (Time>>Np) - Xoff; /* Calc time accumulation in Time */
- if (Ncreep) {
- Time -= (Ncreep<<Np); /* Remove time accumulation */
- Xp += Ncreep; /* and add it to read pointer */
- }
- for (i=0; i<IBUFFSIZE-Xp+Xoff; i++) { /* Copy part of input signal */
- X1[i] = X1[i+Xp-Xoff]; /* that must be re-used */
- if (nChans==2)
- X2[i] = X2[i+Xp-Xoff]; /* that must be re-used */
- }
- if (last) { /* If near end of sample... */
- last -= Xp; /* ...keep track were it ends */
- if (!last) /* Lengthen input by 1 sample if... */
- last++; /* ...needed to keep flag TRUE */
- }
- Xread = i; /* Pos in input buff to read new data into */
- Xp = Xoff;
-
- Ycount += Nout;
- if (Ycount>outCount) {
- Nout -= (Ycount-outCount);
- Ycount = outCount;
- }
-
- if (Nout > OBUFFSIZE) /* Check to see if output buff overflowed */
- return err_ret("Output array overflow");
-
- if (nChans==1) {
- for (i = 0; i < Nout; i++)
- obufs[0][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y1[i]);
- } else {
- for (i = 0; i < Nout; i++) {
- obufs[0][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y1[i]);
- obufs[1][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y2[i]);
- }
- }
- /* NB: errors reported within sndlib */
- mus_file_write(outfd, 0, Nout - 1, nChans, obufs);
-
- printf("."); fflush(stdout);
-
- } while (Ycount<outCount); /* Continue until done */
-
- return(Ycount); /* Return # of samples in output file */
-}
-#endif
-
-
-#pragma mark -
-
-
-#if 0
-/* here for linear interp. might be useful for other things */
-static st_rate_t st_gcd(st_rate_t a, st_rate_t b)
-{
- if (b == 0)
- return a;
- else
- return st_gcd(b, a % b);
-}
-
-
-/*
- * Prepare processing.
- */
-int st_resample_start(resample_t r, st_rate_t inrate, st_rate_t outrate) {
- long Xoff, gcdrate;
- int i;
-
- if (inrate == outrate) {
- st_fail("Input and Output rates must be different to use resample effect");
- return (ST_EOF);
- }
-
- r->Factor = (double)outrate / (double)inrate;
-
- gcdrate = st_gcd(inrate, outrate);
- r->a = inrate / gcdrate;
- r->b = outrate / gcdrate;
-
- if (r->a <= r->b && r->b <= NQMAX) {
- r->quadr = -1; /* exact coeff's */
- r->Nq = r->b; /* MAX(r->a,r->b); */
- } else {
- r->Nq = Nc; /* for now */
- }
-
- /* Check for illegal constants */
-# if 0
- if (Lp >= 16)
- st_fail("Error: Lp>=16");
- if (Nb + Nhg + NLpScl >= 32)
- st_fail("Error: Nb+Nhg+NLpScl>=32");
- if (Nh + Nb > 32)
- st_fail("Error: Nh+Nb>32");
-# endif
-
- /* Nwing: # of filter coeffs in right wing */
- r->Nwing = r->Nq * (r->Nmult / 2 + 1) + 1;
-
- r->Imp = (Float *)malloc(sizeof(Float) * (r->Nwing + 2)) + 1;
- /* need Imp[-1] and Imp[Nwing] for quadratic interpolation */
- /* returns error # <=0, or adjusted wing-len > 0 */
- i = makeFilter(r->Imp, r->Nwing, r->rolloff, r->beta, r->Nq);
- if (i <= 0) {
- st_fail("resample: Unable to make filter\n");
- return (ST_EOF);
- }
-
- st_report("Nmult: %ld, Nwing: %ld, Nq: %ld\n",r->Nmult,r->Nwing,r->Nq); // FIXME
-
- if (r->quadr < 0) { /* exact coeff's method */
- r->Xh = r->Nwing / r->b;
- st_report("resample: rate ratio %ld:%ld, coeff interpolation not needed\n", r->a, r->b);
- } else {
- r->dhb = Np; /* Fixed-point Filter sampling-time-increment */
- if (r->Factor < 1.0)
- r->dhb = (long)(r->Factor * Np + 0.5);
- r->Xh = (r->Nwing << La) / r->dhb;
- /* (Xh * dhb)>>La is max index into Imp[] */
- }
-
- /* reach of LP filter wings + some creeping room */
- Xoff = r->Xh + 10;
- r->Xoff = Xoff;
-
- /* Current "now"-sample pointer for input to filter */
- r->Xp = Xoff;
- /* Position in input array to read into */
- r->Xread = Xoff;
- /* Current-time pointer for converter */
- r->Time = Xoff;
- if (r->quadr < 0) { /* exact coeff's method */
- r->t = Xoff * r->Nq;
- }
- i = BUFFSIZE - 2 * Xoff;
- if (i < r->Factor + 1.0 / r->Factor) /* Check input buffer size */
- {
- st_fail("Factor is too small or large for BUFFSIZE");
- return (ST_EOF);
- }
-
- r->Xsize = (long)(2 * Xoff + i / (1.0 + r->Factor));
- r->Ysize = BUFFSIZE - r->Xsize;
- st_report("Xsize %ld, Ysize %ld, Xoff %ld",r->Xsize,r->Ysize,r->Xoff); // FIXME
-
- r->X = (Float *) malloc(sizeof(Float) * (BUFFSIZE));
- r->Y = r->X + r->Xsize;
- r->Yposition = 0;
-
- /* Need Xoff zeros at beginning of sample */
- for (i = 0; i < Xoff; i++)
- r->X[i] = 0;
- return (ST_SUCCESS);
-}
-
-/*
- * Processed signed long samples from ibuf to obuf.
- * Return number of samples processed.
- */
-int st_resample_flow(resample_t r, AudioStream &input, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
- long i, k, last;
- long Nout = 0; // The number of bytes we effectively output
- long Nx; // The number of bytes we will read from input
- long Nproc; // The number of bytes we process to generate Nout output bytes
- const long obufSize = *osamp;
-
-/*
-TODO: adjust for the changes made to AudioStream; add support for stereo
-initially, could just average the left/right channel -> bad for quality of course,
-but easiest to implement and would get this going again.
-Next step is to duplicate the X/Y buffers... a lot of computations don't care about
-how many channels there are anyway, they could just be ran twice, e.g. SrcEX and SrcUD.
-But better for efficiency would be to rewrite those to deal with 2 channels, too.
-Because esp in SrcEX/SrcUD, only very few computations depend on the input data,
-and dealing with both channels in parallel should only be a little slower than dealing
-with them alone
-*/
-
- // Constrain amount we actually process
- //fprintf(stderr,"Xp %d, Xread %d\n",r->Xp, r->Xread);
-
- // Initially assume we process the full X buffer starting at the filter
- // start position.
- Nproc = r->Xsize - r->Xp;
-
- // Nproc is bounded indirectly by the size of output buffer, and also by
- // the remaining size of the Y buffer (whichever is smaller).
- // We round up for the output buffer, because we want to generate enough
- // bytes to fill it.
- i = MIN((long)((r->Ysize - r->Yposition) / r->Factor), (long)ceil((obufSize - r->Yposition) / r->Factor));
- if (Nproc > i)
- Nproc = i;
-
- // Now that we know how many bytes we want to process, we determine
- // how many bytes to read. We already have Xread bytes in our input
- // buffer, so we need Nproc - r->Xread more bytes.
- Nx = Nproc - r->Xread + r->Xoff + r->Xp; // FIXME: Fingolfin thinks this is the correct thing, not what's in the next line!
-// Nx = Nproc - r->Xread; /* space for right-wing future-data */
- if (Nx <= 0) {
- st_fail("resample: Can not handle this sample rate change. Nx not positive: %d", Nx);
- return (ST_EOF);
- }
-
- // Read in up to Nx bytes
- for (i = r->Xread; i < Nx + r->Xread && !input.eos(); i++) {
- r->X[i] = (Float)input.read();
- }
- Nx = i - r->Xread; // Compute how many samples we actually read
-
- fprintf(stderr,"Nx %d\n",Nx);
-
-
- last = Nx + r->Xread; // 'last' is the idx after the last valid byte in X (i.e. number of bytes are in buffer X right now)
-
- // Finally compute the effective number of bytes to process
- Nproc = last - r->Xoff - r->Xp;
-
- if (Nproc <= 0) {
- /* fill in starting here next time */
- r->Xread = last;
- /* leave *isamp alone, we consumed it */
- *osamp = 0;
- return (ST_SUCCESS);
- }
- if (r->quadr < 0) { /* exact coeff's method */
- long creep;
- Nout = SrcEX(r, Nproc) + r->Yposition;
- fprintf(stderr,"Nproc %d --> %d\n",Nproc,Nout);
- /* Move converter Nproc samples back in time */
- r->t -= Nproc * r->b;
- /* Advance by number of samples processed */
- r->Xp += Nproc;
- /* Calc time accumulation in Time */
- creep = r->t / r->b - r->Xoff;
- if (creep) {
- r->t -= creep * r->b; /* Remove time accumulation */
- r->Xp += creep; /* and add it to read pointer */
- fprintf(stderr,"Nproc %ld, creep %ld\n",Nproc,creep);
- }
- } else { /* approx coeff's method */
- long creep;
- Nout = SrcUD(r, Nproc) + r->Yposition;
- fprintf(stderr,"Nproc %d --> %d\n",Nproc,Nout);
- /* Move converter Nproc samples back in time */
- r->Time -= Nproc;
- /* Advance by number of samples processed */
- r->Xp += Nproc;
- /* Calc time accumulation in Time */
- creep = (long)(r->Time - r->Xoff);
- if (creep) {
- r->Time -= creep; /* Remove time accumulation */
- r->Xp += creep; /* and add it to read pointer */
- fprintf(stderr,"Nproc %ld, creep %ld\n",Nproc,creep);
- }
- }
-
- /* Copy back portion of input signal that must be re-used */
- k = r->Xp - r->Xoff;
- //fprintf(stderr,"k %d, last %d\n",k,last);
- for (i = 0; i < last - k; i++)
- r->X[i] = r->X[i + k];
-
- /* Pos in input buff to read new data into */
- r->Xread = i;
- r->Xp = r->Xoff;
-
-printf("osamp = %ld, Nout = %ld\n", obufSize, Nout);
- long numOutSamples = MIN(obufSize, Nout);
- for (i = 0; i < numOutSamples; i++) {
- int sample = (int)(r->Y[i] * vol / 256);
- clampedAdd(*obuf++, sample);
-#if 1 // FIXME: Hack to generate stereo output
-// clampedAdd(*obuf++, sample);
- *obuf++;
-#endif
- }
-
- // Move down the remaining Y bytes
- for (i = numOutSamples; i < Nout; i++) {
- r->Y[i-numOutSamples] = r->Y[i];
- }
- if (Nout > numOutSamples)
- r->Yposition = Nout - numOutSamples;
- else
- r->Yposition = 0;
-
- // Finally set *osamp to the number of samples we put into the output buffer
- *osamp = numOutSamples;
-
- return (ST_SUCCESS);
-}
-
-/*
- * Process tail of input samples.
- */
-int st_resample_drain(resample_t r, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) {
- long osamp_res;
- st_sample_t *Obuf;
- int rc;
-
- /*fprintf(stderr,"Xoff %d, Xt %d <--- DRAIN\n",r->Xoff, r->Xt);*/
-
- /* stuff end with Xoff zeros */
- ZeroInputStream zero(r->Xoff);
- osamp_res = *osamp;
- Obuf = obuf;
- while (!zero.eos() && osamp_res > 0) {
- st_sample_t Osamp;
- Osamp = osamp_res;
- rc = st_resample_flow(r, zero, Obuf, (st_size_t *) & Osamp, vol);
- if (rc)
- return rc;
- /*fprintf(stderr,"DRAIN isamp,osamp (%d,%d) -> (%d,%d)\n",
- isamp_res,osamp_res,Isamp,Osamp);*/
- Obuf += Osamp;
- osamp_res -= Osamp;
- }
- *osamp -= osamp_res;
- fprintf(stderr,"DRAIN osamp %d\n", *osamp);
- if (!zero.eos())
- st_warn("drain overran obuf\n");
- fflush(stderr);
- return (ST_SUCCESS);
-}
-
-/*
- * Do anything required when you stop reading samples.
- * Don't close input file!
- */
-int st_resample_stop(resample_t r) {
- free(r->Imp - 1);
- free(r->X);
- /* free(r->Y); Y is in same block starting at X */
- return (ST_SUCCESS);
-}
-
-#endif
-
-#pragma mark -
-
-
-ResampleRateConverter::ResampleRateConverter(st_rate_t inrate, st_rate_t outrate, int quality) {
- // FIXME: quality is for now a nasty hack. Valid values are 0,1,2,3
-
- double rolloff; /* roll-off frequency */
- double beta; /* passband/stopband tuning magic */
-
- switch (quality) {
- case 0:
- /* These defaults are conservative with respect to aliasing. */
- rolloff = 0.80;
- beta = 16;
- quadr = 0;
- Nmult = 45;
- break;
- case 1:
- rolloff = 0.80;
- beta = 16;
- quadr = 1;
- Nmult = 45;
- break;
- case 2:
- rolloff = 0.875;
- beta = 16;
- quadr = 1;
- Nmult = 75;
- break;
- case 3:
- rolloff = 0.94;
- beta = 16;
- quadr = 1;
- Nmult = 149;
- break;
- default:
- error("Illegal quality level %d\n", quality);
- break;
- }
-
- makeFilter(Imp, ImpD, &LpScl, Nmult, rolloff, beta);
-
- int OBUFFSIZE = (IBUFFSIZE * outrate / inrate + 2);
- X1 = (HWORD *)malloc(IBUFFSIZE);
- X2 = (HWORD *)malloc(IBUFFSIZE);
- Y1 = (HWORD *)malloc(OBUFFSIZE);
- Y2 = (HWORD *)malloc(OBUFFSIZE);
-
- // HACK this is invalid code but "fixes" a compiler warning for now
- double factor = outrate / (double)inrate;
- UHWORD Xp, /*Ncreep,*/ Xoff, Xread;
- UHWORD Nout, Nx;
- int Ycount, last;
-
- /* Account for increased filter gain when using factors less than 1 */
- if (factor < 1)
- LpScl = (UHWORD)(LpScl*factor + 0.5);
-
- /* Calc reach of LP filter wing & give some creeping room */
- Xoff = (UHWORD)(((Nmult+1)/2.0) * MAX(1.0,1.0/factor) + 10);
-
- if (IBUFFSIZE < 2*Xoff) /* Check input buffer size */
- error("IBUFFSIZE (or factor) is too small");
-
- Nx = IBUFFSIZE - 2*Xoff; /* # of samples to process each iteration */
-
- last = 0; /* Have not read last input sample yet */
- Ycount = 0; /* Current sample and length of output file */
- Xp = Xoff; /* Current "now"-sample pointer for input */
- Xread = Xoff; /* Position in input array to read into */
- Time = (Xoff<<Np); /* Current-time pointer for converter */
-
- Nout = SrcUp(X1, Y1, factor, &Time, Nx, Nwing, LpScl, Imp, ImpD, quadr);
- Nout = SrcUD(X1, Y1, factor, &Time, Nx, Nwing, LpScl, Imp, ImpD, quadr);
-
-// st_resample_start(&rstuff, inrate, outrate);
-}
-
-ResampleRateConverter::~ResampleRateConverter() {
-// st_resample_stop(&rstuff);
- free(X1);
- free(X2);
- free(Y1);
- free(Y2);
-}
-
-int ResampleRateConverter::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
-// return st_resample_flow(&rstuff, input, obuf, &osamp, vol);
- return 0;
-}
-
-int ResampleRateConverter::drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
-// return st_resample_drain(&rstuff, obuf, &osamp, vol);
- return 0;
-}
-
diff --git a/sound/resample.h b/sound/resample.h
deleted file mode 100644
index 744a4d7ecf..0000000000
--- a/sound/resample.h
+++ /dev/null
@@ -1,93 +0,0 @@
-/* ScummVM - Scumm Interpreter
- * Copyright (C) 2001-2004 The ScummVM project
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
- * $Header$
- *
- */
-
-#ifndef SOUND_RESAMPLE_H
-#define SOUND_RESAMPLE_H
-
-#include "sound/rate.h"
-
-
-/* this Float MUST match that in filter.c */
-#define Float double/*float*/
-
-// From resample's stddef.h
-typedef int16 HWORD;
-typedef uint16 UHWORD;
-typedef int32 WORD;
-typedef uint32 UWORD;
-
-#define MAX_HWORD (32767)
-#define MIN_HWORD (-32768)
-
-
-#define MAXNWING 8192
-
-
-/* Private data for Lerp via LCM file */
-typedef struct resamplestuff {
- double Factor; /* Factor = Fout/Fin sample rates */
- int quadr; /* non-zero to use qprodUD quadratic interpolation */
-
-
- long Nq;
-
- long dhb;
-
- long a, b; /* gcd-reduced input,output rates */
- long t; /* Current time/pos for exact-coeff's method */
-
- long Xh; /* number of past/future samples needed by filter */
- long Xoff; /* Xh plus some room for creep */
- long Xread; /* X[Xread] is start-position to enter new samples */
- long Xp; /* X[Xp] is position to start filter application */
- long Xsize, Ysize; /* size (Floats) of X[],Y[] */
- long Yposition; /* FIXME: offset into Y buffer */
- Float *X, *Y; /* I/O buffers */
-} *resample_t;
-
-
-/** High quality rate conversion algorithm, based on SoX (http://sox.sourceforge.net). */
-class ResampleRateConverter : public RateConverter {
-protected:
- resamplestuff rstuff;
-
- int quadr; /* non-zero to use qprodUD quadratic interpolation */
-
- UHWORD LpScl; /* Unity-gain scale factor */
- UHWORD Nwing; /* Filter table size */
- UHWORD Nmult; /* Filter length for up-conversions */
- HWORD Imp[MAXNWING]; /* Filter coefficients */
- HWORD ImpD[MAXNWING]; /* ImpD[n] = Imp[n+1]-Imp[n] */
-
- HWORD *X1, *Y1;
- HWORD *X2, *Y2;
-
- UWORD Time; /* Current time/pos in input sample */
-
-public:
- ResampleRateConverter(st_rate_t inrate, st_rate_t outrate, int quality);
- ~ResampleRateConverter();
- virtual int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol);
- virtual int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol);
-};
-
-
-#endif