aboutsummaryrefslogtreecommitdiff
path: root/engines
diff options
context:
space:
mode:
authorWillem Jan Palenstijn2012-09-30 18:12:20 +0200
committerWillem Jan Palenstijn2012-09-30 18:18:20 +0200
commit17887e24a24695cb47b33a5d0ea38282ea319d88 (patch)
treee691e7f301d337bfaade9c944063210b4cdb663a /engines
parentafc21941e37a7481f5fe050d220968bdce43c873 (diff)
downloadscummvm-rg350-17887e24a24695cb47b33a5d0ea38282ea319d88.tar.gz
scummvm-rg350-17887e24a24695cb47b33a5d0ea38282ea319d88.tar.bz2
scummvm-rg350-17887e24a24695cb47b33a5d0ea38282ea319d88.zip
SCI: Implement kMergePoly
Thanks to Walter for creating debugging tools for MergePoly and testing.
Diffstat (limited to 'engines')
-rw-r--r--engines/sci/engine/kpathing.cpp636
1 files changed, 619 insertions, 17 deletions
diff --git a/engines/sci/engine/kpathing.cpp b/engines/sci/engine/kpathing.cpp
index 002ef1ff07..ee65d5955d 100644
--- a/engines/sci/engine/kpathing.cpp
+++ b/engines/sci/engine/kpathing.cpp
@@ -31,6 +31,9 @@
#include "common/debug-channels.h"
#include "common/list.h"
#include "common/system.h"
+#include "common/math.h"
+
+//#define DEBUG_MERGEPOLY
namespace Sci {
@@ -71,11 +74,25 @@ enum {
struct FloatPoint {
FloatPoint() : x(0), y(0) {}
FloatPoint(float x_, float y_) : x(x_), y(y_) {}
+ FloatPoint(Common::Point p) : x(p.x), y(p.y) {}
Common::Point toPoint() {
return Common::Point((int16)(x + 0.5), (int16)(y + 0.5));
}
+ float operator*(const FloatPoint &p) const {
+ return x*p.x + y*p.y;
+ }
+ FloatPoint operator*(float l) const {
+ return FloatPoint(l*x, l*y);
+ }
+ FloatPoint operator-(const FloatPoint &p) const {
+ return FloatPoint(x-p.x, y-p.y);
+ }
+ float norm() const {
+ return x*x+y*y;
+ }
+
float x, y;
};
@@ -135,15 +152,20 @@ public:
return _head;
}
- void insertHead(Vertex *elm) {
+ void insertAtEnd(Vertex *elm) {
if (_head == NULL) {
elm->_next = elm->_prev = elm;
+ _head = elm;
} else {
elm->_next = _head;
elm->_prev = _head->_prev;
_head->_prev = elm;
elm->_prev->_next = elm;
}
+ }
+
+ void insertHead(Vertex *elm) {
+ insertAtEnd(elm);
_head = elm;
}
@@ -788,10 +810,10 @@ int PathfindingState::findNearPoint(const Common::Point &p, Polygon *polygon, Co
* including the vertices themselves)
* Parameters: (const Common::Point &) a, b: The line segment (a, b)
* (Vertex *) vertex: The first vertex of the edge
- * Returns : (int) FP_OK on success, PF_ERROR otherwise
+ * Returns : (int) PF_OK on success, PF_ERROR otherwise
* (FloatPoint) *ret: The intersection point
*/
-static int intersection(const Common::Point &a, const Common::Point &b, Vertex *vertex, FloatPoint *ret) {
+static int intersection(const Common::Point &a, const Common::Point &b, const Vertex *vertex, FloatPoint *ret) {
// Parameters of parametric equations
float s, t;
// Numerator and denominator of equations
@@ -1783,39 +1805,619 @@ reg_t kIntersections(EngineState *s, int argc, reg_t *argv) {
}
}
+// ==========================================================================
+// kMergePoly utility functions
+
+// Compute square of the distance of p to the segment a-b.
+static float pointSegDistance(const Common::Point &a, const Common::Point &b,
+ const Common::Point &p) {
+ FloatPoint ba(b-a);
+ FloatPoint pa(p-a);
+ FloatPoint bp(b-p);
+
+ // Check if the projection of p on the line a-b lies between a and b
+ if (ba*pa >= 0.0f && ba*bp >= 0.0f) {
+ // If yes, return the (squared) distance of p to the line a-b:
+ // translate a to origin, project p and subtract
+ float linedist = (ba*((ba*pa)/(ba*ba)) - pa).norm();
+
+ return linedist;
+ } else {
+ // If no, return the (squared) distance to either a or b, whichever
+ // is closest.
+
+ // distance to a:
+ float adist = pa.norm();
+ // distance to b:
+ float bdist = FloatPoint(p-b).norm();
+
+ return MIN(adist, bdist);
+ }
+}
+
+// find intersection between edges of two polygons.
+// endpoints count, except v2->_next
+static bool segSegIntersect(const Vertex *v1, const Vertex *v2, Common::Point &intp) {
+ const Common::Point &a = v1->v;
+ const Common::Point &b = v1->_next->v;
+ const Common::Point &c = v2->v;
+ const Common::Point &d = v2->_next->v;
+
+ // First handle the endpoint cases manually
+
+ if (collinear(a, b, c) && collinear(a, b, d))
+ return false;
+
+ if (collinear(a, b, c)) {
+ // a, b, c collinear
+ // return true/c if c is between a and b
+ intp = c;
+ if (a.x != b.x) {
+ if ((a.x <= c.x && c.x <= b.x) || (b.x <= c.x && c.x <= a.x))
+ return true;
+ } else {
+ if ((a.y <= c.y && c.y <= b.y) || (b.y <= c.y && c.y <= a.y))
+ return true;
+ }
+ }
+
+ if (collinear(a, b, d)) {
+ intp = d;
+ // a, b, d collinear
+ // return false/d if d is between a and b
+ if (a.x != b.x) {
+ if ((a.x <= d.x && d.x <= b.x) || (b.x <= d.x && d.x <= a.x))
+ return false;
+ } else {
+ if ((a.y <= d.y && d.y <= b.y) || (b.y <= d.y && d.y <= a.y))
+ return false;
+ }
+ }
+
+ int len_dc = c.sqrDist(d);
+
+ if (!len_dc) error("zero length edge in polygon");
+
+ if (pointSegDistance(c, d, a) <= 2.0f) {
+ intp = a;
+ return true;
+ }
+
+ if (pointSegDistance(c, d, b) <= 2.0f) {
+ intp = b;
+ return true;
+ }
+
+ // If not an endpoint, call the generic intersection function
+
+ FloatPoint p;
+ if (intersection(a, b, v2, &p) == PF_OK) {
+ intp = p.toPoint();
+ return true;
+ } else {
+ return false;
+ }
+}
+
+// For intersecting polygon segments, determine if
+// * the v2 edge enters polygon 1 at this intersection: positive return value
+// * the v2 edge and the v1 edges are parallel: zero return value
+// * the v2 edge exits polygon 1 at this intersection: negative return value
+static int intersectDir(const Vertex *v1, const Vertex *v2) {
+ Common::Point p1 = v1->_next->v - v1->v;
+ Common::Point p2 = v2->_next->v - v2->v;
+ return (p1.x*p2.y - p2.x*p1.y);
+}
+
+// Direction of edge in degrees from pos. x-axis, between -180 and 180
+static int edgeDir(const Vertex *v) {
+ Common::Point p = v->_next->v - v->v;
+ int deg = (int)Common::rad2deg(atan2(p.y, p.x));
+ if (deg < -180) deg += 360;
+ if (deg > 180) deg -= 360;
+ return deg;
+}
+
+// For points p1, p2 on the polygon segment v, determine if
+// * p1 lies before p2: negative return value
+// * p1 and p2 are the same: zero return value
+// * p1 lies after p2: positive return value
+static int liesBefore(const Vertex *v, const Common::Point &p1, const Common::Point &p2) {
+ return v->v.sqrDist(p1) - v->v.sqrDist(p2);
+}
+
+// Structure describing an "extension" to the work polygon following edges
+// of the polygon being merged.
+
+// The patch begins on the point intersection1, being the intersection
+// of the edges starting at indexw1/vertexw1 on the work polygon, and at
+// indexp1/vertexp1 on the polygon being merged.
+// It ends with the point intersection2, being the analogous intersection.
+struct Patch {
+ unsigned int indexw1;
+ unsigned int indexp1;
+ const Vertex *vertexw1;
+ const Vertex *vertexp1;
+ Common::Point intersection1;
+
+ unsigned int indexw2;
+ unsigned int indexp2;
+ const Vertex *vertexw2;
+ const Vertex *vertexp2;
+ Common::Point intersection2;
+
+ bool disabled; // If true, this Patch was made superfluous by another Patch
+};
+
+
+// Check if the given vertex on the work polygon is bypassed by this patch.
+static bool isVertexCovered(const Patch &p, unsigned int wi) {
+
+ // / v (outside)
+ // ---w1--1----p----w2--2----
+ // ^ \ (inside)
+ if (wi > p.indexw1 && wi <= p.indexw2)
+ return true;
+
+ // v / (outside)
+ // ---w2--2----p----w1--1----
+ // \ ^ (inside)
+ if (p.indexw1 > p.indexw2 && (wi <= p.indexw2 || wi > p.indexw1))
+ return true;
+
+ // v / (outside)
+ // ---w1--2--1-------p-----
+ // w2 \ ^ (inside)
+ if (p.indexw1 == p.indexw2 && liesBefore(p.vertexw1, p.intersection1, p.intersection2) > 0)
+ return true; // This patch actually covers _all_ vertices on work
+
+ return false;
+}
+
+// Check if patch p1 makes patch p2 superfluous.
+static bool isPatchCovered(const Patch &p1, const Patch &p2) {
+
+ // Same exit and entry points
+ if (p1.intersection1 == p2.intersection1 && p1.intersection2 == p2.intersection2)
+ return true;
+
+ // / * v (outside)
+ // ---p1w1--1----p2w1-1---p1w2--2----
+ // ^ * \ (inside)
+ if (p1.indexw1 < p2.indexw1 && p2.indexw1 < p1.indexw2)
+ return true;
+ if (p1.indexw1 > p1.indexw2 && (p2.indexw1 > p1.indexw1 || p2.indexw1 < p1.indexw2))
+ return true;
+
+
+ // / * v (outside)
+ // ---p1w1--11----p2w2-2---p1w2--12----
+ // ^ * \ (inside)
+ if (p1.indexw1 < p2.indexw2 && p2.indexw2 < p1.indexw2)
+ return true;
+ if (p1.indexw1 > p1.indexw2 && (p2.indexw2 > p1.indexw1 || p2.indexw2 < p1.indexw2))
+ return true;
+
+ // Opposite of two above situations
+ if (p2.indexw1 < p1.indexw1 && p1.indexw1 < p2.indexw2)
+ return false;
+ if (p2.indexw1 > p2.indexw2 && (p1.indexw1 > p2.indexw1 || p1.indexw1 < p2.indexw2))
+ return false;
+
+ if (p2.indexw1 < p1.indexw2 && p1.indexw2 < p2.indexw2)
+ return false;
+ if (p2.indexw1 > p2.indexw2 && (p1.indexw2 > p2.indexw1 || p1.indexw2 < p2.indexw2))
+ return false;
+
+
+ // The above checks covered the cases where one patch covers the other and
+ // the intersections of the patches are on different edges.
+
+ // So, if we passed the above checks, we have to check the order of
+ // intersections on edges.
+
+
+ if (p1.indexw1 != p1.indexw2) {
+
+ // / * v (outside)
+ // ---p1w1--11---21--------p1w2--2----
+ // p2w1 ^ * \ (inside)
+ if (p1.indexw1 == p2.indexw1)
+ return (liesBefore(p1.vertexw1, p1.intersection1, p2.intersection1) < 0);
+
+ // / * v (outside)
+ // ---p1w1--11---------p1w2--21---12----
+ // ^ p2w1 * \ (inside)
+ if (p1.indexw2 == p2.indexw1)
+ return (liesBefore(p1.vertexw2, p1.intersection2, p2.intersection1) > 0);
+
+ // If neither of the above, then the intervals of the polygon
+ // covered by patch1 and patch2 are disjoint
+ return false;
+ }
+
+ // p1w1 == p1w2
+ // Also, p1w1/p1w2 isn't strictly between p2
+
+
+ // v / * (outside)
+ // ---p1w1--12--11-------p2w1-21----
+ // p1w2 \ ^ * (inside)
+
+ // v / / (outside)
+ // ---p1w1--12--21--11---------
+ // p1w2 \ ^ ^ (inside)
+ // p2w1
+ if (liesBefore(p1.vertexw1, p1.intersection1, p1.intersection2) > 0)
+ return (p1.indexw1 != p2.indexw1);
+
+ // CHECKME: This is meaningless if p2w1 != p2w2 ??
+ if (liesBefore(p2.vertexw1, p2.intersection1, p2.intersection2) > 0)
+ return false;
+
+ // CHECKME: This is meaningless if p1w1 != p2w1 ??
+ if (liesBefore(p2.vertexw1, p2.intersection1, p1.intersection1) <= 0)
+ return false;
+
+ // CHECKME: This is meaningless if p1w2 != p2w1 ??
+ if (liesBefore(p2.vertexw1, p2.intersection1, p1.intersection2) >= 0)
+ return false;
+
+ return true;
+}
+
+// Merge a single polygon into the work polygon.
+// If there is an intersection between work and polygon, this function
+// returns true, and replaces the vertex list of work by an extended version,
+// that covers polygon.
+//
+// NOTE: The strategy used matches qfg1new closely, and is a bit error-prone.
+// A more robust strategy would be inserting all intersection points directly
+// into both vertex lists as a first pass. This would make finding the merged
+// polygon a much more straightforward edge-walk, and avoid cases where SSCI's
+// algorithm mixes up the order of multiple intersections on a single edge.
+bool mergeSinglePolygon(Polygon &work, const Polygon &polygon) {
+#ifdef DEBUG_MERGEPOLY
+ const Vertex *vertex;
+ debugN("work:");
+ CLIST_FOREACH(vertex, &(work.vertices)) {
+ debugN(" (%d,%d) ", vertex->v.x, vertex->v.y);
+ }
+ debugN("\n");
+ debugN("poly:");
+ CLIST_FOREACH(vertex, &(polygon.vertices)) {
+ debugN(" (%d,%d) ", vertex->v.x, vertex->v.y);
+ }
+ debugN("\n");
+#endif
+ uint workSize = work.vertices.size();
+ uint polygonSize = polygon.vertices.size();
+
+ int patchCount = 0;
+ Patch patchList[8];
+
+ const Vertex *workv = work.vertices._head;
+ const Vertex *polyv = polygon.vertices._head;
+ for (uint wi = 0; wi < workSize; ++wi, workv = workv->_next) {
+ for (uint pi = 0; pi < polygonSize; ++pi, polyv = polyv->_next) {
+ Common::Point intersection1;
+ Common::Point intersection2;
+
+ bool intersects = segSegIntersect(workv, polyv, intersection1);
+ if (!intersects)
+ continue;
+
+#ifdef DEBUG_MERGEPOLY
+ debug("mergePoly: intersection at work %d, poly %d", wi, pi);
+#endif
+
+ if (intersectDir(workv, polyv) >= 0)
+ continue;
+
+#ifdef DEBUG_MERGEPOLY
+ debug("mergePoly: intersection in right direction");
+#endif
+
+ int angle = 0;
+ int baseAngle = edgeDir(workv);
+
+ // We now found the point where an edge of 'polygon' left 'work'.
+ // Now find the re-entry point.
+
+ // NOTE: The order in which this searches does not always work
+ // properly if the correct patch would only use a single partial
+ // edge of poly. Because it starts at polyv->_next, it will skip
+ // the correct re-entry and proceed to the next.
+
+ const Vertex *workv2;
+ const Vertex *polyv2 = polyv->_next;
+
+ intersects = false;
+
+ uint pi2, wi2;
+ for (pi2 = 0; pi2 < polygonSize; ++pi2, polyv2 = polyv2->_next) {
+
+ int newAngle = edgeDir(polyv2);
+
+ int relAngle = newAngle - baseAngle;
+ if (relAngle > 180) relAngle -= 360;
+ if (relAngle < -180) relAngle += 360;
+
+ angle += relAngle;
+ baseAngle = newAngle;
+
+ workv2 = workv;
+ for (wi2 = 0; wi2 < workSize; ++wi2, workv2 = workv2->_next) {
+ intersects = segSegIntersect(workv2, polyv2, intersection2);
+ if (!intersects)
+ continue;
+#ifdef DEBUG_MERGEPOLY
+ debug("mergePoly: re-entry intersection at work %d, poly %d", (wi + wi2) % workSize, (pi + 1 + pi2) % polygonSize);
+#endif
+
+ if (intersectDir(workv2, polyv2) > 0) {
+#ifdef DEBUG_MERGEPOLY
+ debug("mergePoly: re-entry intersection in right direction, angle = %d", angle);
+#endif
+ break; // found re-entry point
+ }
+
+ }
+
+ if (intersects)
+ break;
+
+ }
+
+ if (!intersects || angle < 0)
+ continue;
+
+
+ if (patchCount >= 8)
+ error("kMergePoly: Too many patches");
+
+ // convert relative to absolute vertex indices
+ pi2 = (pi + 1 + pi2) % polygonSize;
+ wi2 = (wi + wi2) % workSize;
+
+ Patch &newPatch = patchList[patchCount];
+ newPatch.indexw1 = wi;
+ newPatch.vertexw1 = workv;
+ newPatch.indexp1 = pi;
+ newPatch.vertexp1 = polyv;
+ newPatch.intersection1 = intersection1;
+
+ newPatch.indexw2 = wi2;
+ newPatch.vertexw2 = workv2;
+ newPatch.indexp2 = pi2;
+ newPatch.vertexp2 = polyv2;
+ newPatch.intersection2 = intersection2;
+ newPatch.disabled = false;
+
+#ifdef DEBUG_MERGEPOLY
+ debug("mergePoly: adding patch at work %d, poly %d", wi, pi);
+#endif
+
+ if (patchCount == 0) {
+ patchCount++;
+ continue;
+ }
+
+ bool necessary = true;
+ for (int i = 0; i < patchCount; ++i) {
+ if (isPatchCovered(patchList[i], newPatch)) {
+ necessary = false;
+ break;
+ }
+ }
+
+ if (!necessary)
+ continue;
+
+ patchCount++;
+
+ if (patchCount > 1) {
+ // check if this patch makes other patches superfluous
+ for (int i = 0; i < patchCount-1; ++i)
+ if (isPatchCovered(newPatch, patchList[i]))
+ patchList[i].disabled = true;
+ }
+ }
+ }
+
+
+ if (patchCount == 0)
+ return false; // nothing changed
+
+
+ // Determine merged work by doing a walk over the edges
+ // of work, crossing over to polygon when encountering a patch.
+
+ Polygon output(0);
+
+ workv = work.vertices._head;
+ for (uint wi = 0; wi < workSize; ++wi, workv = workv->_next) {
+
+ bool covered = false;
+ for (int p = 0; p < patchCount; ++p) {
+ if (patchList[p].disabled) continue;
+ if (isVertexCovered(patchList[p], wi)) {
+ covered = true;
+ break;
+ }
+ }
+
+ if (!covered) {
+ // Add vertex to output
+ output.vertices.insertAtEnd(new Vertex(workv->v));
+ }
+
+
+ // CHECKME: Why is this the correct order in which to process
+ // the patches? (What if two of them start on this line segment
+ // in the opposite order?)
+
+ for (int p = 0; p < patchCount; ++p) {
+
+ const Patch &patch = patchList[p];
+ if (patch.disabled) continue;
+ if (patch.indexw1 != wi) continue;
+ if (patch.intersection1 != workv->v) {
+ // Add intersection point to output
+ output.vertices.insertAtEnd(new Vertex(patch.intersection1));
+ }
+
+ // Add vertices from polygon between vertexp1 (excl) and vertexp2 (incl)
+ for (polyv = patch.vertexp1->_next; polyv != patch.vertexp2; polyv = polyv->_next)
+ output.vertices.insertAtEnd(new Vertex(polyv->v));
+
+ output.vertices.insertAtEnd(new Vertex(patch.vertexp2->v));
+
+ if (patch.intersection2 != patch.vertexp2->v) {
+ // Add intersection point to output
+ output.vertices.insertAtEnd(new Vertex(patch.intersection2));
+ }
+
+ // TODO: We could continue after the re-entry point here?
+ }
+ }
+ // Remove last vertex if it's the same as the first vertex
+ if (output.vertices._head->v == output.vertices._head->_prev->v)
+ output.vertices.remove(output.vertices._head->_prev);
+
+
+ // Slight hack: swap vertex lists of output and work polygons.
+ SWAP(output.vertices._head, work.vertices._head);
+
+ return true;
+}
+
+
/**
* This is a quite rare kernel function. An example of when it's called
* is in QFG1VGA, after killing any monster.
+ *
+ * It takes a polygon, and extends it to also cover any polygons from the
+ * input list with which it intersects. Any of those polygons so covered
+ * from the input list are marked by adding 0x10 to their type field.
*/
reg_t kMergePoly(EngineState *s, int argc, reg_t *argv) {
-#if 0
// 3 parameters: raw polygon data, polygon list, list size
reg_t polygonData = argv[0];
List *list = s->_segMan->lookupList(argv[1]);
- Node *node = s->_segMan->lookupNode(list->first);
- // List size is not needed
- Polygon *polygon;
- int count = 0;
+ // The size of the "work" point list SSCI uses. We use a dynamic one instead
+ //reg_t listSize = argv[2];
+
+ SegmentRef pointList = s->_segMan->dereference(polygonData);
+ if (!pointList.isValid() || pointList.skipByte) {
+ warning("kMergePoly: Polygon data pointer is invalid");
+ return make_reg(0, 0);
+ }
+
+ Node *node;
+
+#ifdef DEBUG_MERGEPOLY
+ node = s->_segMan->lookupNode(list->first);
+ while (node) {
+ draw_polygon(s, node->value, 320, 190);
+ node = s->_segMan->lookupNode(node->succ);
+ }
+ Common::Point prev, first;
+ prev = first = readPoint(pointList, 0);
+ for (int i = 1; readPoint(pointList, i).x != 0x7777; i++) {
+ Common::Point point = readPoint(pointList, i);
+ draw_line(s, prev, point, 1, 320, 190);
+ prev = point;
+ }
+ draw_line(s, prev, first, 1, 320, 190);
+ // Update the whole screen
+ g_sci->_gfxScreen->copyToScreen();
+ g_system->updateScreen();
+ g_system->delayMillis(1000);
+#endif
+
+ // The work polygon which we're going to merge with the polygons in list
+ Polygon work(0);
+
+ for (int i = 0; true; ++i) {
+ Common::Point p = readPoint(pointList, i);
+ if (p.x == POLY_LAST_POINT)
+ break;
+ Vertex *vertex = new Vertex(p);
+ work.vertices.insertAtEnd(vertex);
+ }
+
+ // TODO: Check behaviour for single-vertex polygons
+ node = s->_segMan->lookupNode(list->first);
while (node) {
- polygon = convert_polygon(s, node->value);
+ Polygon *polygon = convert_polygon(s, node->value);
if (polygon) {
- count += readSelectorValue(s->_segMan, node->value, SELECTOR(size));
+ // CHECKME: Confirm vertex order that convert_polygon and
+ // fix_vertex_order output. For now, we re-reverse the order since
+ // convert_polygon reads the vertices reversed, and fix up head.
+ polygon->vertices.reverse();
+ polygon->vertices._head = polygon->vertices._head->_next;
+
+ // Merge this polygon into the work polygon if there is an
+ // intersection.
+ bool intersected = mergeSinglePolygon(work, *polygon);
+
+ // If so, flag it
+ if (intersected) {
+ writeSelectorValue(s->_segMan, node->value,
+ SELECTOR(type), polygon->type + 0x10);
+#ifdef DEBUG_MERGEPOLY
+ debugN("Merged polygon: ");
+ // Iterate over edges
+ Vertex *vertex;
+ CLIST_FOREACH(vertex, &(work.vertices)) {
+ debugN(" (%d,%d) ", vertex->v.x, vertex->v.y);
+ }
+ debugN("\n");
+#endif
+ }
}
node = s->_segMan->lookupNode(node->succ);
}
-#endif
- // TODO: actually merge the polygon. We return an empty polygon for now.
- // In QFG1VGA, you can walk over enemy bodies after killing them, since
- // this is a stub.
- reg_t output = allocateOutputArray(s->_segMan, 1);
+
+ // Allocate output array
+ reg_t output = allocateOutputArray(s->_segMan, work.vertices.size()+1);
SegmentRef arrayRef = s->_segMan->dereference(output);
- writePoint(arrayRef, 0, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));
- warning("Stub: kMergePoly");
+
+ // Copy work.vertices into arrayRef
+ Vertex *vertex;
+ unsigned int n = 0;
+ CLIST_FOREACH(vertex, &work.vertices) {
+ if (vertex == work.vertices._head || vertex->v != vertex->_prev->v)
+ writePoint(arrayRef, n++, vertex->v);
+ }
+
+ writePoint(arrayRef, n, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));
+
+#ifdef DEBUG_MERGEPOLY
+ prev = first = readPoint(arrayRef, 0);
+ for (int i = 1; readPoint(arrayRef, i).x != 0x7777; i++) {
+ Common::Point point = readPoint(arrayRef, i);
+ draw_line(s, prev, point, 3, 320, 190);
+ prev = point;
+ }
+
+ draw_line(s, prev, first, 3, 320, 190);
+
+ // Update the whole screen
+ g_sci->_gfxScreen->copyToScreen();
+ g_system->updateScreen();
+ if (!g_sci->_gfxPaint16)
+ g_system->delayMillis(1000);
+
+ debug("kMergePoly done");
+#endif
+
return output;
}