aboutsummaryrefslogtreecommitdiff
path: root/sound/decoders/adpcm.cpp
diff options
context:
space:
mode:
authorMax Horn2010-01-26 22:48:45 +0000
committerMax Horn2010-01-26 22:48:45 +0000
commit1565f14bc13a63aee6a42cc4fac3fe7fa39eda44 (patch)
tree41b4b65eb29718398f148dc6f7a6e131376fcc27 /sound/decoders/adpcm.cpp
parente0d05a482ce93e029888ef388dfb1b90b438f2ee (diff)
downloadscummvm-rg350-1565f14bc13a63aee6a42cc4fac3fe7fa39eda44.tar.gz
scummvm-rg350-1565f14bc13a63aee6a42cc4fac3fe7fa39eda44.tar.bz2
scummvm-rg350-1565f14bc13a63aee6a42cc4fac3fe7fa39eda44.zip
Moved audio stream implementations (for MP3, FLAC, etc.) to new dir sound/decoders/
svn-id: r47579
Diffstat (limited to 'sound/decoders/adpcm.cpp')
-rw-r--r--sound/decoders/adpcm.cpp627
1 files changed, 627 insertions, 0 deletions
diff --git a/sound/decoders/adpcm.cpp b/sound/decoders/adpcm.cpp
new file mode 100644
index 0000000000..898780350b
--- /dev/null
+++ b/sound/decoders/adpcm.cpp
@@ -0,0 +1,627 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL$
+ * $Id$
+ *
+ */
+
+#include "common/endian.h"
+
+#include "sound/decoders/adpcm.h"
+#include "sound/audiostream.h"
+
+
+namespace Audio {
+
+class ADPCMInputStream : public RewindableAudioStream {
+private:
+ Common::SeekableReadStream *_stream;
+ bool _disposeAfterUse;
+ int32 _startpos;
+ int32 _endpos;
+ int _channels;
+ typesADPCM _type;
+ uint32 _blockAlign;
+ uint32 _blockPos[2];
+ uint8 _chunkPos;
+ uint16 _chunkData;
+ int _blockLen;
+ int _rate;
+
+ struct ADPCMChannelStatus {
+ byte predictor;
+ int16 delta;
+ int16 coeff1;
+ int16 coeff2;
+ int16 sample1;
+ int16 sample2;
+ };
+
+ struct adpcmStatus {
+ // OKI/IMA
+ struct {
+ int32 last;
+ int32 stepIndex;
+ } ima_ch[2];
+
+ // Apple QuickTime IMA ADPCM
+ int32 streamPos[2];
+
+ // MS ADPCM
+ ADPCMChannelStatus ch[2];
+
+ // Tinsel
+ double predictor;
+ double K0, K1;
+ double d0, d1;
+ } _status;
+
+ void reset();
+ int16 stepAdjust(byte);
+ int16 decodeOKI(byte);
+ int16 decodeIMA(byte code, int channel = 0); // Default to using the left channel/using one channel
+ int16 decodeMS(ADPCMChannelStatus *c, byte);
+ int16 decodeTinsel(int16, double);
+
+public:
+ ADPCMInputStream(Common::SeekableReadStream *stream, bool disposeAfterUse, uint32 size, typesADPCM type, int rate, int channels, uint32 blockAlign);
+ ~ADPCMInputStream();
+
+ int readBuffer(int16 *buffer, const int numSamples);
+ int readBufferOKI(int16 *buffer, const int numSamples);
+ int readBufferIMA(int16 *buffer, const int numSamples);
+ int readBufferMSIMA1(int16 *buffer, const int numSamples);
+ int readBufferMSIMA2(int16 *buffer, const int numSamples);
+ int readBufferMS(int channels, int16 *buffer, const int numSamples);
+ void readBufferTinselHeader();
+ int readBufferTinsel4(int channels, int16 *buffer, const int numSamples);
+ int readBufferTinsel6(int channels, int16 *buffer, const int numSamples);
+ int readBufferTinsel8(int channels, int16 *buffer, const int numSamples);
+ int readBufferApple(int16 *buffer, const int numSamples);
+
+ bool endOfData() const { return (_stream->eos() || _stream->pos() >= _endpos); }
+ bool isStereo() const { return _channels == 2; }
+ int getRate() const { return _rate; }
+
+ bool rewind();
+};
+
+// Routines to convert 12 bit linear samples to the
+// Dialogic or Oki ADPCM coding format aka VOX.
+// See also <http://www.comptek.ru/telephony/tnotes/tt1-13.html>
+//
+// IMA ADPCM support is based on
+// <http://wiki.multimedia.cx/index.php?title=IMA_ADPCM>
+//
+// In addition, also MS IMA ADPCM is supported. See
+// <http://wiki.multimedia.cx/index.php?title=Microsoft_IMA_ADPCM>.
+
+ADPCMInputStream::ADPCMInputStream(Common::SeekableReadStream *stream, bool disposeAfterUse, uint32 size, typesADPCM type, int rate, int channels, uint32 blockAlign)
+ : _stream(stream), _disposeAfterUse(disposeAfterUse), _channels(channels), _type(type), _blockAlign(blockAlign), _rate(rate) {
+
+ if (type == kADPCMMSIma && blockAlign == 0)
+ error("ADPCMInputStream(): blockAlign isn't specified for MS IMA ADPCM");
+ if (type == kADPCMMS && blockAlign == 0)
+ error("ADPCMInputStream(): blockAlign isn't specified for MS ADPCM");
+
+ if (type == kADPCMTinsel4 && blockAlign == 0)
+ error("ADPCMInputStream(): blockAlign isn't specified for Tinsel 4-bit ADPCM");
+ if (type == kADPCMTinsel6 && blockAlign == 0)
+ error("ADPCMInputStream(): blockAlign isn't specified for Tinsel 6-bit ADPCM");
+ if (type == kADPCMTinsel8 && blockAlign == 0)
+ error("ADPCMInputStream(): blockAlign isn't specified for Tinsel 8-bit ADPCM");
+
+ if (type == kADPCMTinsel4 && channels != 1)
+ error("ADPCMInputStream(): Tinsel 4-bit ADPCM only supports mono");
+ if (type == kADPCMTinsel6 && channels != 1)
+ error("ADPCMInputStream(): Tinsel 6-bit ADPCM only supports mono");
+ if (type == kADPCMTinsel8 && channels != 1)
+ error("ADPCMInputStream(): Tinsel 8-bit ADPCM only supports mono");
+
+ _startpos = stream->pos();
+ _endpos = _startpos + size;
+ reset();
+}
+
+ADPCMInputStream::~ADPCMInputStream() {
+ if (_disposeAfterUse)
+ delete _stream;
+}
+
+void ADPCMInputStream::reset() {
+ memset(&_status, 0, sizeof(_status));
+ _blockLen = 0;
+ _blockPos[0] = _blockPos[1] = _blockAlign; // To make sure first header is read
+ _status.streamPos[0] = 0;
+ _status.streamPos[1] = _blockAlign;
+ _chunkPos = 0;
+}
+
+bool ADPCMInputStream::rewind() {
+ // TODO: Error checking.
+ reset();
+ _stream->seek(_startpos);
+ return true;
+}
+
+int ADPCMInputStream::readBuffer(int16 *buffer, const int numSamples) {
+ int samplesDecoded = 0;
+ switch (_type) {
+ case kADPCMOki:
+ samplesDecoded = readBufferOKI(buffer, numSamples);
+ break;
+ case kADPCMMSIma:
+ if (_channels == 1)
+ samplesDecoded = readBufferMSIMA1(buffer, numSamples);
+ else
+ samplesDecoded = readBufferMSIMA2(buffer, numSamples);
+ break;
+ case kADPCMMS:
+ samplesDecoded = readBufferMS(_channels, buffer, numSamples);
+ break;
+ case kADPCMTinsel4:
+ samplesDecoded = readBufferTinsel4(_channels, buffer, numSamples);
+ break;
+ case kADPCMTinsel6:
+ samplesDecoded = readBufferTinsel6(_channels, buffer, numSamples);
+ break;
+ case kADPCMTinsel8:
+ samplesDecoded = readBufferTinsel8(_channels, buffer, numSamples);
+ break;
+ case kADPCMIma:
+ samplesDecoded = readBufferIMA(buffer, numSamples);
+ break;
+ case kADPCMApple:
+ samplesDecoded = readBufferApple(buffer, numSamples);
+ break;
+ default:
+ error("Unsupported ADPCM encoding");
+ break;
+ }
+
+ return samplesDecoded;
+}
+
+int ADPCMInputStream::readBufferOKI(int16 *buffer, const int numSamples) {
+ int samples;
+ byte data;
+
+ assert(numSamples % 2 == 0);
+
+ for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos; samples += 2) {
+ data = _stream->readByte();
+ buffer[samples] = decodeOKI((data >> 4) & 0x0f);
+ buffer[samples + 1] = decodeOKI(data & 0x0f);
+ }
+ return samples;
+}
+
+int ADPCMInputStream::readBufferIMA(int16 *buffer, const int numSamples) {
+ int samples;
+ byte data;
+
+ assert(numSamples % 2 == 0);
+
+ for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos; samples += 2) {
+ data = _stream->readByte();
+ buffer[samples] = decodeIMA((data >> 4) & 0x0f);
+ buffer[samples + 1] = decodeIMA(data & 0x0f, _channels == 2 ? 1 : 0);
+ }
+ return samples;
+}
+
+int ADPCMInputStream::readBufferApple(int16 *buffer, const int numSamples) {
+ // Need to write 2 samples per channel
+ assert(numSamples % (2 * _channels) == 0);
+
+ // Current sample positions
+ int samples[2] = { 0, 0};
+ // Current data bytes
+ byte data[2] = { 0, 0};
+ // Current nibble selectors
+ bool lowNibble[2] = {true, true};
+
+ // Number of samples per channel
+ int chanSamples = numSamples / _channels;
+
+ for (int i = 0; i < _channels; i++) {
+ _stream->seek(_status.streamPos[i]);
+
+ while ((samples[i] < chanSamples) &&
+ // Last byte read and a new one needed
+ !((_stream->eos() || (_stream->pos() >= _endpos)) && lowNibble[i])) {
+
+ if (_blockPos[i] == _blockAlign) {
+ // 2 byte header per block
+ uint16 temp = _stream->readUint16BE();
+
+ // First 9 bits are the upper bits of the predictor
+ _status.ima_ch[i].last = (int16) (temp & 0xFF80);
+ // Lower 7 bits are the step index
+ _status.ima_ch[i].stepIndex = temp & 0x007F;
+
+ // Clip the step index
+ _status.ima_ch[i].stepIndex = CLIP<int32>(_status.ima_ch[i].stepIndex, 0, 88);
+
+ _blockPos[i] = 2;
+ }
+
+ // First decode the lower nibble, then the upper
+ if (lowNibble[i])
+ data[i] = _stream->readByte();
+
+ int16 sample;
+ if (lowNibble[i])
+ sample = decodeIMA(data[i] & 0x0F, i);
+ else
+ sample = decodeIMA(data[i] >> 4, i);
+
+ // The original is interleaved block-wise, we want it sample-wise
+ buffer[_channels * samples[i] + i] = sample;
+
+ samples[i]++;
+
+ // Different nibble
+ lowNibble[i] = !lowNibble[i];
+
+ // We're about to decode a new lower nibble again, so advance the block position
+ if (lowNibble[i])
+ _blockPos[i]++;
+
+ if (_channels == 2)
+ if (_blockPos[i] == _blockAlign)
+ // We're at the end of the block.
+ // Since the channels are interleaved, skip the next block
+ _stream->skip(MIN<uint32>(_blockAlign, _endpos - _stream->pos()));
+
+ _status.streamPos[i] = _stream->pos();
+ }
+ }
+
+ return samples[0] + samples[1];
+}
+
+int ADPCMInputStream::readBufferMSIMA1(int16 *buffer, const int numSamples) {
+ int samples = 0;
+ byte data;
+
+ assert(numSamples % 2 == 0);
+
+ while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) {
+ if (_blockPos[0] == _blockAlign) {
+ // read block header
+ _status.ima_ch[0].last = _stream->readSint16LE();
+ _status.ima_ch[0].stepIndex = _stream->readSint16LE();
+ _blockPos[0] = 4;
+ }
+
+ for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples += 2) {
+ data = _stream->readByte();
+ _blockPos[0]++;
+ buffer[samples] = decodeIMA(data & 0x0f);
+ buffer[samples + 1] = decodeIMA((data >> 4) & 0x0f);
+ }
+ }
+ return samples;
+}
+
+
+// Microsoft as usual tries to implement it differently. This method
+// is used for stereo data.
+int ADPCMInputStream::readBufferMSIMA2(int16 *buffer, const int numSamples) {
+ int samples;
+ uint32 data;
+ int nibble;
+ byte k;
+
+ for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos;) {
+ for (int channel = 0; channel < 2; channel++) {
+ data = _stream->readUint32LE();
+
+ for (nibble = 0; nibble < 8; nibble++) {
+ k = ((data & 0xf0000000) >> 28);
+ buffer[samples + channel + nibble * 2] = decodeIMA(k);
+ data <<= 4;
+ }
+ }
+ samples += 16;
+ }
+ return samples;
+}
+
+static const int MSADPCMAdaptCoeff1[] = {
+ 256, 512, 0, 192, 240, 460, 392
+};
+
+static const int MSADPCMAdaptCoeff2[] = {
+ 0, -256, 0, 64, 0, -208, -232
+};
+
+int ADPCMInputStream::readBufferMS(int channels, int16 *buffer, const int numSamples) {
+ int samples;
+ byte data;
+ int i = 0;
+
+ samples = 0;
+
+ while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) {
+ if (_blockPos[0] == _blockAlign) {
+ // read block header
+ for (i = 0; i < channels; i++) {
+ _status.ch[i].predictor = CLIP(_stream->readByte(), (byte)0, (byte)6);
+ _status.ch[i].coeff1 = MSADPCMAdaptCoeff1[_status.ch[i].predictor];
+ _status.ch[i].coeff2 = MSADPCMAdaptCoeff2[_status.ch[i].predictor];
+ }
+
+ for (i = 0; i < channels; i++)
+ _status.ch[i].delta = _stream->readSint16LE();
+
+ for (i = 0; i < channels; i++)
+ _status.ch[i].sample1 = _stream->readSint16LE();
+
+ for (i = 0; i < channels; i++)
+ buffer[samples++] = _status.ch[i].sample2 = _stream->readSint16LE();
+
+ for (i = 0; i < channels; i++)
+ buffer[samples++] = _status.ch[i].sample1;
+
+ _blockPos[0] = channels * 7;
+ }
+
+ for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples += 2) {
+ data = _stream->readByte();
+ _blockPos[0]++;
+ buffer[samples] = decodeMS(&_status.ch[0], (data >> 4) & 0x0f);
+ buffer[samples + 1] = decodeMS(&_status.ch[channels - 1], data & 0x0f);
+ }
+ }
+
+ return samples;
+}
+
+static const double TinselFilterTable[4][2] = {
+ {0, 0 },
+ {0.9375, 0},
+ {1.796875, -0.8125},
+ {1.53125, -0.859375}
+};
+
+void ADPCMInputStream::readBufferTinselHeader() {
+ uint8 start = _stream->readByte();
+ uint8 filterVal = (start & 0xC0) >> 6;
+
+ if ((start & 0x20) != 0) {
+ //Lower 6 bit are negative
+
+ // Negate
+ start = ~(start | 0xC0) + 1;
+
+ _status.predictor = 1 << start;
+ } else {
+ // Lower 6 bit are positive
+
+ // Truncate
+ start &= 0x1F;
+
+ _status.predictor = ((double) 1.0) / (1 << start);
+ }
+
+ _status.K0 = TinselFilterTable[filterVal][0];
+ _status.K1 = TinselFilterTable[filterVal][1];
+}
+
+int ADPCMInputStream::readBufferTinsel4(int channels, int16 *buffer, const int numSamples) {
+ int samples;
+ uint16 data;
+ const double eVal = 1.142822265;
+
+ samples = 0;
+
+ assert(numSamples % 2 == 0);
+
+ while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) {
+ if (_blockPos[0] == _blockAlign) {
+ readBufferTinselHeader();
+ _blockPos[0] = 0;
+ }
+
+ for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples += 2, _blockPos[0]++) {
+ // Read 1 byte = 8 bits = two 4 bit blocks
+ data = _stream->readByte();
+ buffer[samples] = decodeTinsel((data << 8) & 0xF000, eVal);
+ buffer[samples+1] = decodeTinsel((data << 12) & 0xF000, eVal);
+ }
+ }
+
+ return samples;
+}
+
+int ADPCMInputStream::readBufferTinsel6(int channels, int16 *buffer, const int numSamples) {
+ int samples;
+ const double eVal = 1.032226562;
+
+ samples = 0;
+
+ while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) {
+ if (_blockPos[0] == _blockAlign) {
+ readBufferTinselHeader();
+ _blockPos[0] = 0;
+ _chunkPos = 0;
+ }
+
+ for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples++, _chunkPos = (_chunkPos + 1) % 4) {
+
+ switch (_chunkPos) {
+ case 0:
+ _chunkData = _stream->readByte();
+ buffer[samples] = decodeTinsel((_chunkData << 8) & 0xFC00, eVal);
+ break;
+ case 1:
+ _chunkData = (_chunkData << 8) | (_stream->readByte());
+ buffer[samples] = decodeTinsel((_chunkData << 6) & 0xFC00, eVal);
+ _blockPos[0]++;
+ break;
+ case 2:
+ _chunkData = (_chunkData << 8) | (_stream->readByte());
+ buffer[samples] = decodeTinsel((_chunkData << 4) & 0xFC00, eVal);
+ _blockPos[0]++;
+ break;
+ case 3:
+ _chunkData = (_chunkData << 8);
+ buffer[samples] = decodeTinsel((_chunkData << 2) & 0xFC00, eVal);
+ _blockPos[0]++;
+ break;
+ }
+
+ }
+
+ }
+
+ return samples;
+}
+
+int ADPCMInputStream::readBufferTinsel8(int channels, int16 *buffer, const int numSamples) {
+ int samples;
+ byte data;
+ const double eVal = 1.007843258;
+
+ samples = 0;
+
+ while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) {
+ if (_blockPos[0] == _blockAlign) {
+ readBufferTinselHeader();
+ _blockPos[0] = 0;
+ }
+
+ for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples++, _blockPos[0]++) {
+ // Read 1 byte = 8 bits = one 8 bit block
+ data = _stream->readByte();
+ buffer[samples] = decodeTinsel(data << 8, eVal);
+ }
+ }
+
+ return samples;
+}
+
+static const int MSADPCMAdaptationTable[] = {
+ 230, 230, 230, 230, 307, 409, 512, 614,
+ 768, 614, 512, 409, 307, 230, 230, 230
+};
+
+
+int16 ADPCMInputStream::decodeMS(ADPCMChannelStatus *c, byte code) {
+ int32 predictor;
+
+ predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
+ predictor += (signed)((code & 0x08) ? (code - 0x10) : (code)) * c->delta;
+
+ predictor = CLIP<int32>(predictor, -32768, 32767);
+
+ c->sample2 = c->sample1;
+ c->sample1 = predictor;
+ c->delta = (MSADPCMAdaptationTable[(int)code] * c->delta) >> 8;
+
+ if (c->delta < 16)
+ c->delta = 16;
+
+ return (int16)predictor;
+}
+
+// adjust the step for use on the next sample.
+int16 ADPCMInputStream::stepAdjust(byte code) {
+ static const int16 adjusts[] = {-1, -1, -1, -1, 2, 4, 6, 8};
+
+ return adjusts[code & 0x07];
+}
+
+static const int16 okiStepSize[49] = {
+ 16, 17, 19, 21, 23, 25, 28, 31,
+ 34, 37, 41, 45, 50, 55, 60, 66,
+ 73, 80, 88, 97, 107, 118, 130, 143,
+ 157, 173, 190, 209, 230, 253, 279, 307,
+ 337, 371, 408, 449, 494, 544, 598, 658,
+ 724, 796, 876, 963, 1060, 1166, 1282, 1411,
+ 1552
+};
+
+// Decode Linear to ADPCM
+int16 ADPCMInputStream::decodeOKI(byte code) {
+ int16 diff, E, samp;
+
+ E = (2 * (code & 0x7) + 1) * okiStepSize[_status.ima_ch[0].stepIndex] / 8;
+ diff = (code & 0x08) ? -E : E;
+ samp = _status.ima_ch[0].last + diff;
+ // Clip the values to +/- 2^11 (supposed to be 12 bits)
+ samp = CLIP<int16>(samp, -2048, 2047);
+
+ _status.ima_ch[0].last = samp;
+ _status.ima_ch[0].stepIndex += stepAdjust(code);
+ _status.ima_ch[0].stepIndex = CLIP<int32>(_status.ima_ch[0].stepIndex, 0, ARRAYSIZE(okiStepSize) - 1);
+
+ // * 16 effectively converts 12-bit input to 16-bit output
+ return samp * 16;
+}
+
+static const uint16 imaStepTable[89] = {
+ 7, 8, 9, 10, 11, 12, 13, 14,
+ 16, 17, 19, 21, 23, 25, 28, 31,
+ 34, 37, 41, 45, 50, 55, 60, 66,
+ 73, 80, 88, 97, 107, 118, 130, 143,
+ 157, 173, 190, 209, 230, 253, 279, 307,
+ 337, 371, 408, 449, 494, 544, 598, 658,
+ 724, 796, 876, 963, 1060, 1166, 1282, 1411,
+ 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
+ 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
+ 7132, 7845, 8630, 9493,10442,11487,12635,13899,
+ 15289,16818,18500,20350,22385,24623,27086,29794,
+ 32767
+};
+
+int16 ADPCMInputStream::decodeIMA(byte code, int channel) {
+ int32 E = (2 * (code & 0x7) + 1) * imaStepTable[_status.ima_ch[channel].stepIndex] / 8;
+ int32 diff = (code & 0x08) ? -E : E;
+ int32 samp = CLIP<int32>(_status.ima_ch[channel].last + diff, -32768, 32767);
+
+ _status.ima_ch[channel].last = samp;
+ _status.ima_ch[channel].stepIndex += stepAdjust(code);
+ _status.ima_ch[channel].stepIndex = CLIP<int32>(_status.ima_ch[channel].stepIndex, 0, ARRAYSIZE(imaStepTable) - 1);
+
+ return samp;
+}
+
+int16 ADPCMInputStream::decodeTinsel(int16 code, double eVal) {
+ double sample;
+
+ sample = (double) code;
+ sample *= eVal * _status.predictor;
+ sample += (_status.d0 * _status.K0) + (_status.d1 * _status.K1);
+
+ _status.d1 = _status.d0;
+ _status.d0 = sample;
+
+ return (int16) CLIP<double>(sample, -32768.0, 32767.0);
+}
+
+RewindableAudioStream *makeADPCMStream(Common::SeekableReadStream *stream, bool disposeAfterUse, uint32 size, typesADPCM type, int rate, int channels, uint32 blockAlign) {
+ return new ADPCMInputStream(stream, disposeAfterUse, size, type, rate, channels, blockAlign);
+}
+
+} // End of namespace Audio