aboutsummaryrefslogtreecommitdiff
path: root/sound/softsynth/opl/dbopl.cpp
diff options
context:
space:
mode:
authorJohannes Schickel2010-03-08 00:33:36 +0000
committerJohannes Schickel2010-03-08 00:33:36 +0000
commitf7b1faedc251348692942b7cffbabea6959b7827 (patch)
tree51a046c0878644b85ba13b42b4e04b6bf3b9bc9d /sound/softsynth/opl/dbopl.cpp
parent4dafbcd924b8c9a21461341e85eda4acf6b25e14 (diff)
downloadscummvm-rg350-f7b1faedc251348692942b7cffbabea6959b7827.tar.gz
scummvm-rg350-f7b1faedc251348692942b7cffbabea6959b7827.tar.bz2
scummvm-rg350-f7b1faedc251348692942b7cffbabea6959b7827.zip
Switch to the other DOSBox OPL emulator as suggested by the DOSBox developers.
svn-id: r48179
Diffstat (limited to 'sound/softsynth/opl/dbopl.cpp')
-rw-r--r--sound/softsynth/opl/dbopl.cpp1511
1 files changed, 1511 insertions, 0 deletions
diff --git a/sound/softsynth/opl/dbopl.cpp b/sound/softsynth/opl/dbopl.cpp
new file mode 100644
index 0000000000..3e0ef7bfb1
--- /dev/null
+++ b/sound/softsynth/opl/dbopl.cpp
@@ -0,0 +1,1511 @@
+/*
+ * Copyright (C) 2002-2010 The DOSBox Team
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+/*
+ DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
+ Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
+ Except for the table generation it's all integer math
+ Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
+ The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
+ MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
+
+ //TODO Don't delay first operator 1 sample in opl3 mode
+ //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
+ //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
+ //TODO Check if having the same accuracy in all frequency multipliers sounds better or not
+
+ //DUNNO Keyon in 4op, switch to 2op without keyoff.
+*/
+
+/* $Id: dbopl.cpp,v 1.10 2009-06-10 19:54:51 harekiet Exp $ */
+
+
+#include "dbopl.h"
+
+#ifndef DISABLE_DOSBOX_OPL
+
+namespace OPL {
+namespace DOSBox {
+
+#ifndef PI
+#define PI 3.14159265358979323846
+#endif
+
+namespace DBOPL {
+
+#define OPLRATE ((double)(14318180.0 / 288.0))
+#define TREMOLO_TABLE 52
+
+//Try to use most precision for frequencies
+//Else try to keep different waves in synch
+//#define WAVE_PRECISION 1
+#ifndef WAVE_PRECISION
+//Wave bits available in the top of the 32bit range
+//Original adlib uses 10.10, we use 10.22
+#define WAVE_BITS 10
+#else
+//Need some extra bits at the top to have room for octaves and frequency multiplier
+//We support to 8 times lower rate
+//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
+#define WAVE_BITS 14
+#endif
+#define WAVE_SH ( 32 - WAVE_BITS )
+#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
+
+//Use the same accuracy as the waves
+#define LFO_SH ( WAVE_SH - 10 )
+//LFO is controlled by our tremolo 256 sample limit
+#define LFO_MAX ( 256 << ( LFO_SH ) )
+
+
+//Maximum amount of attenuation bits
+//Envelope goes to 511, 9 bits
+#if (DBOPL_WAVE == WAVE_TABLEMUL )
+//Uses the value directly
+#define ENV_BITS ( 9 )
+#else
+//Add 3 bits here for more accuracy and would have to be shifted up either way
+#define ENV_BITS ( 9 )
+#endif
+//Limits of the envelope with those bits and when the envelope goes silent
+#define ENV_MIN 0
+#define ENV_EXTRA ( ENV_BITS - 9 )
+#define ENV_MAX ( 511 << ENV_EXTRA )
+#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
+#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
+
+//Attack/decay/release rate counter shift
+#define RATE_SH 24
+#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
+//Has to fit within 16bit lookuptable
+#define MUL_SH 16
+
+//Check some ranges
+#if ENV_EXTRA > 3
+#error Too many envelope bits
+#endif
+
+
+//How much to substract from the base value for the final attenuation
+static const Bit8u KslCreateTable[16] = {
+ //0 will always be be lower than 7 * 8
+ 64, 32, 24, 19,
+ 16, 12, 11, 10,
+ 8, 6, 5, 4,
+ 3, 2, 1, 0,
+};
+
+#define M(_X_) ((Bit8u)( (_X_) * 2))
+static const Bit8u FreqCreateTable[16] = {
+ M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ),
+ M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15)
+};
+#undef M
+
+//We're not including the highest attack rate, that gets a special value
+static const Bit8u AttackSamplesTable[13] = {
+ 69, 55, 46, 40,
+ 35, 29, 23, 20,
+ 19, 15, 11, 10,
+ 9
+};
+//On a real opl these values take 8 samples to reach and are based upon larger tables
+static const Bit8u EnvelopeIncreaseTable[13] = {
+ 4, 5, 6, 7,
+ 8, 10, 12, 14,
+ 16, 20, 24, 28,
+ 32,
+};
+
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+static Bit16u ExpTable[ 256 ];
+#endif
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+//PI table used by WAVEHANDLER
+static Bit16u SinTable[ 512 ];
+#endif
+
+#if ( DBOPL_WAVE > WAVE_HANDLER )
+//Layout of the waveform table in 512 entry intervals
+//With overlapping waves we reduce the table to half it's size
+
+// | |//\\|____|WAV7|//__|/\ |____|/\/\|
+// |\\//| | |WAV7| | \/| | |
+// |06 |0126|17 |7 |3 |4 |4 5 |5 |
+
+//6 is just 0 shifted and masked
+
+static Bit16s WaveTable[ 8 * 512 ];
+//Distance into WaveTable the wave starts
+static const Bit16u WaveBaseTable[8] = {
+ 0x000, 0x200, 0x200, 0x800,
+ 0xa00, 0xc00, 0x100, 0x400,
+
+};
+//Mask the counter with this
+static const Bit16u WaveMaskTable[8] = {
+ 1023, 1023, 511, 511,
+ 1023, 1023, 512, 1023,
+};
+
+//Where to start the counter on at keyon
+static const Bit16u WaveStartTable[8] = {
+ 512, 0, 0, 0,
+ 0, 512, 512, 256,
+};
+#endif
+
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+static Bit16u MulTable[ 384 ];
+#endif
+
+static Bit8u KslTable[ 8 * 16 ];
+static Bit8u TremoloTable[ TREMOLO_TABLE ];
+//Start of a channel behind the chip struct start
+static Bit16u ChanOffsetTable[32];
+//Start of an operator behind the chip struct start
+static Bit16u OpOffsetTable[64];
+
+//The lower bits are the shift of the operator vibrato value
+//The highest bit is right shifted to generate -1 or 0 for negation
+//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
+static const Bit8s VibratoTable[ 8 ] = {
+ 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
+ 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
+};
+
+//Shift strength for the ksl value determined by ksl strength
+static const Bit8u KslShiftTable[4] = {
+ 31,1,2,0
+};
+
+//Generate a table index and table shift value using input value from a selected rate
+static void EnvelopeSelect( Bit8u val, Bit8u& index, Bit8u& shift ) {
+ if ( val < 13 * 4 ) { //Rate 0 - 12
+ shift = 12 - ( val >> 2 );
+ index = val & 3;
+ } else if ( val < 15 * 4 ) { //rate 13 - 14
+ shift = 0;
+ index = val - 12 * 4;
+ } else { //rate 15 and up
+ shift = 0;
+ index = 12;
+ }
+}
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+/*
+ Generate the different waveforms out of the sine/exponetial table using handlers
+*/
+static inline Bits MakeVolume( Bitu wave, Bitu volume ) {
+ Bitu total = wave + volume;
+ Bitu index = total & 0xff;
+ Bitu sig = ExpTable[ index ];
+ Bitu exp = total >> 8;
+#if 0
+ //Check if we overflow the 31 shift limit
+ if ( exp >= 32 ) {
+ LOG_MSG( "WTF %d %d", total, exp );
+ }
+#endif
+ return (sig >> exp);
+};
+
+static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) {
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) {
+ Bit32u wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) {
+ Bitu wave = SinTable[i & 511];
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) {
+ Bitu wave = SinTable[i & 255];
+ wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) {
+ //Twice as fast
+ i <<= 1;
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) {
+ //Twice as fast
+ i <<= 1;
+ Bitu wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) {
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ return (MakeVolume( 0, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) {
+ //Negative is reversed here
+ Bits neg = (( i >> 9) & 1) - 1;
+ Bitu wave = (i << 3);
+ //When negative the volume also runs backwards
+ wave = ((wave ^ neg) - neg) & 4095;
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+
+static const WaveHandler WaveHandlerTable[8] = {
+ WaveForm0, WaveForm1, WaveForm2, WaveForm3,
+ WaveForm4, WaveForm5, WaveForm6, WaveForm7
+};
+
+#endif
+
+/*
+ Operator
+*/
+
+//We zero out when rate == 0
+inline void Operator::UpdateAttack( const Chip* chip ) {
+ Bit8u rate = reg60 >> 4;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + ksr;
+ attackAdd = chip->attackRates[ val ];
+ rateZero &= ~(1 << ATTACK);
+ } else {
+ attackAdd = 0;
+ rateZero |= (1 << ATTACK);
+ }
+}
+inline void Operator::UpdateDecay( const Chip* chip ) {
+ Bit8u rate = reg60 & 0xf;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + ksr;
+ decayAdd = chip->linearRates[ val ];
+ rateZero &= ~(1 << DECAY);
+ } else {
+ decayAdd = 0;
+ rateZero |= (1 << DECAY);
+ }
+}
+inline void Operator::UpdateRelease( const Chip* chip ) {
+ Bit8u rate = reg80 & 0xf;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + ksr;
+ releaseAdd = chip->linearRates[ val ];
+ rateZero &= ~(1 << RELEASE);
+ if ( !(reg20 & MASK_SUSTAIN ) ) {
+ rateZero &= ~( 1 << SUSTAIN );
+ }
+ } else {
+ rateZero |= (1 << RELEASE);
+ releaseAdd = 0;
+ if ( !(reg20 & MASK_SUSTAIN ) ) {
+ rateZero |= ( 1 << SUSTAIN );
+ }
+ }
+}
+
+inline void Operator::UpdateAttenuation( ) {
+ Bit8u kslBase = (Bit8u)((chanData >> SHIFT_KSLBASE) & 0xff);
+ Bit32u tl = reg40 & 0x3f;
+ Bit8u kslShift = KslShiftTable[ reg40 >> 6 ];
+ //Make sure the attenuation goes to the right bits
+ totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max
+ totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
+}
+
+void Operator::UpdateFrequency( ) {
+ Bit32u freq = chanData & (( 1 << 10 ) - 1);
+ Bit32u block = (chanData >> 10) & 0xff;
+#ifdef WAVE_PRECISION
+ block = 7 - block;
+ waveAdd = ( freq * freqMul ) >> block;
+#else
+ waveAdd = ( freq << block ) * freqMul;
+#endif
+ if ( reg20 & MASK_VIBRATO ) {
+ vibStrength = (Bit8u)(freq >> 7);
+
+#ifdef WAVE_PRECISION
+ vibrato = ( vibStrength * freqMul ) >> block;
+#else
+ vibrato = ( vibStrength << block ) * freqMul;
+#endif
+ } else {
+ vibStrength = 0;
+ vibrato = 0;
+ }
+}
+
+void Operator::UpdateRates( const Chip* chip ) {
+ //Mame seems to reverse this where enabling ksr actually lowers
+ //the rate, but pdf manuals says otherwise?
+ Bit8u newKsr = (Bit8u)((chanData >> SHIFT_KEYCODE) & 0xff);
+ if ( !( reg20 & MASK_KSR ) ) {
+ newKsr >>= 2;
+ }
+ if ( ksr == newKsr )
+ return;
+ ksr = newKsr;
+ UpdateAttack( chip );
+ UpdateDecay( chip );
+ UpdateRelease( chip );
+}
+
+INLINE Bit32s Operator::RateForward( Bit32u add ) {
+ rateIndex += add;
+ Bit32s ret = rateIndex >> RATE_SH;
+ rateIndex = rateIndex & RATE_MASK;
+ return ret;
+}
+
+template< Operator::State yes>
+Bits Operator::TemplateVolume( ) {
+ Bit32s vol = volume;
+ Bit32s change;
+ switch ( yes ) {
+ case OFF:
+ return ENV_MAX;
+ case ATTACK:
+ change = RateForward( attackAdd );
+ if ( !change )
+ return vol;
+ vol += ( (~vol) * change ) >> 3;
+ if ( vol < ENV_MIN ) {
+ volume = ENV_MIN;
+ rateIndex = 0;
+ SetState( DECAY );
+ return ENV_MIN;
+ }
+ break;
+ case DECAY:
+ vol += RateForward( decayAdd );
+ if ( GCC_UNLIKELY(vol >= sustainLevel) ) {
+ //Check if we didn't overshoot max attenuation, then just go off
+ if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+ volume = ENV_MAX;
+ SetState( OFF );
+ return ENV_MAX;
+ }
+ //Continue as sustain
+ rateIndex = 0;
+ SetState( SUSTAIN );
+ }
+ break;
+ case SUSTAIN:
+ if ( reg20 & MASK_SUSTAIN ) {
+ return vol;
+ }
+ //In sustain phase, but not sustaining, do regular release
+ case RELEASE:
+ vol += RateForward( releaseAdd );;
+ if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+ volume = ENV_MAX;
+ SetState( OFF );
+ return ENV_MAX;
+ }
+ break;
+ }
+ volume = vol;
+ return vol;
+}
+
+static const VolumeHandler VolumeHandlerTable[5] = {
+ &Operator::TemplateVolume< Operator::OFF >,
+ &Operator::TemplateVolume< Operator::RELEASE >,
+ &Operator::TemplateVolume< Operator::SUSTAIN >,
+ &Operator::TemplateVolume< Operator::DECAY >,
+ &Operator::TemplateVolume< Operator::ATTACK >
+};
+
+INLINE Bitu Operator::ForwardVolume() {
+ return currentLevel + (this->*volHandler)();
+}
+
+
+INLINE Bitu Operator::ForwardWave() {
+ waveIndex += waveCurrent;
+ return waveIndex >> WAVE_SH;
+}
+
+void Operator::Write20( const Chip* chip, Bit8u val ) {
+ Bit8u change = (reg20 ^ val );
+ if ( !change )
+ return;
+ reg20 = val;
+ //Shift the tremolo bit over the entire register, saved a branch, YES!
+ tremoloMask = (Bit8s)(val) >> 7;
+ tremoloMask &= ~(( 1 << ENV_EXTRA ) -1);
+ //Update specific features based on changes
+ if ( change & MASK_KSR ) {
+ UpdateRates( chip );
+ }
+ //With sustain enable the volume doesn't change
+ if ( reg20 & MASK_SUSTAIN || ( !releaseAdd ) ) {
+ rateZero |= ( 1 << SUSTAIN );
+ } else {
+ rateZero &= ~( 1 << SUSTAIN );
+ }
+ //Frequency multiplier or vibrato changed
+ if ( change & (0xf | MASK_VIBRATO) ) {
+ freqMul = chip->freqMul[ val & 0xf ];
+ UpdateFrequency();
+ }
+}
+
+void Operator::Write40( const Chip* /*chip*/, Bit8u val ) {
+ if (!(reg40 ^ val ))
+ return;
+ reg40 = val;
+ UpdateAttenuation( );
+}
+
+void Operator::Write60( const Chip* chip, Bit8u val ) {
+ Bit8u change = reg60 ^ val;
+ reg60 = val;
+ if ( change & 0x0f ) {
+ UpdateDecay( chip );
+ }
+ if ( change & 0xf0 ) {
+ UpdateAttack( chip );
+ }
+}
+
+void Operator::Write80( const Chip* chip, Bit8u val ) {
+ Bit8u change = (reg80 ^ val );
+ if ( !change )
+ return;
+ reg80 = val;
+ Bit8u sustain = val >> 4;
+ //Turn 0xf into 0x1f
+ sustain |= ( sustain + 1) & 0x10;
+ sustainLevel = sustain << ( ENV_BITS - 5 );
+ if ( change & 0x0f ) {
+ UpdateRelease( chip );
+ }
+}
+
+void Operator::WriteE0( const Chip* chip, Bit8u val ) {
+ if ( !(regE0 ^ val) )
+ return;
+ //in opl3 mode you can always selet 7 waveforms regardless of waveformselect
+ Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) );
+ regE0 = val;
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+ waveHandler = WaveHandlerTable[ waveForm ];
+#else
+ waveBase = WaveTable + WaveBaseTable[ waveForm ];
+ waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
+ waveMask = WaveMaskTable[ waveForm ];
+#endif
+}
+
+INLINE void Operator::SetState( Bit8u s ) {
+ state = s;
+ volHandler = VolumeHandlerTable[ s ];
+}
+
+INLINE bool Operator::Silent() const {
+ if ( !ENV_SILENT( totalLevel + volume ) )
+ return false;
+ if ( !(rateZero & ( 1 << state ) ) )
+ return false;
+ return true;
+}
+
+INLINE void Operator::Prepare( const Chip* chip ) {
+ currentLevel = totalLevel + (chip->tremoloValue & tremoloMask);
+ waveCurrent = waveAdd;
+ if ( vibStrength >> chip->vibratoShift ) {
+ Bit32s add = vibrato >> chip->vibratoShift;
+ //Sign extend over the shift value
+ Bit32s neg = chip->vibratoSign;
+ //Negate the add with -1 or 0
+ add = ( add ^ neg ) - neg;
+ waveCurrent += add;
+ }
+}
+
+void Operator::KeyOn( Bit8u mask ) {
+ if ( !keyOn ) {
+ //Restart the frequency generator
+#if ( DBOPL_WAVE > WAVE_HANDLER )
+ waveIndex = waveStart;
+#else
+ waveIndex = 0;
+#endif
+ rateIndex = 0;
+ SetState( ATTACK );
+ }
+ keyOn |= mask;
+}
+
+void Operator::KeyOff( Bit8u mask ) {
+ keyOn &= ~mask;
+ if ( !keyOn ) {
+ if ( state != OFF ) {
+ SetState( RELEASE );
+ }
+ }
+}
+
+INLINE Bits Operator::GetWave( Bitu index, Bitu vol ) {
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+ return waveHandler( index, vol << ( 3 - ENV_EXTRA ) );
+#elif ( DBOPL_WAVE == WAVE_TABLEMUL )
+ return (waveBase[ index & waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
+#elif ( DBOPL_WAVE == WAVE_TABLELOG )
+ Bit32s wave = waveBase[ index & waveMask ];
+ Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA );
+ Bit32s sig = ExpTable[ total & 0xff ];
+ Bit32u exp = total >> 8;
+ Bit32s neg = wave >> 16;
+ return ((sig ^ neg) - neg) >> exp;
+#else
+#error "No valid wave routine"
+#endif
+}
+
+Bits INLINE Operator::GetSample( Bits modulation ) {
+ Bitu vol = ForwardVolume();
+ if ( ENV_SILENT( vol ) ) {
+ //Simply forward the wave
+ waveIndex += waveCurrent;
+ return 0;
+ } else {
+ Bitu index = ForwardWave();
+ index += modulation;
+ return GetWave( index, vol );
+ }
+}
+
+Operator::Operator() {
+ chanData = 0;
+ freqMul = 0;
+ waveIndex = 0;
+ waveAdd = 0;
+ waveCurrent = 0;
+ keyOn = 0;
+ ksr = 0;
+ reg20 = 0;
+ reg40 = 0;
+ reg60 = 0;
+ reg80 = 0;
+ regE0 = 0;
+ SetState( OFF );
+ rateZero = (1 << OFF);
+ sustainLevel = ENV_MAX;
+ currentLevel = ENV_MAX;
+ totalLevel = ENV_MAX;
+ volume = ENV_MAX;
+}
+
+/*
+ Channel
+*/
+
+Channel::Channel() {
+ old[0] = old[1] = 0;
+ chanData = 0;
+ regB0 = 0;
+ regC0 = 0;
+ maskLeft = -1;
+ maskRight = -1;
+ feedback = 31;
+ fourMask = 0;
+ synthHandler = &Channel::BlockTemplate< sm2FM >;
+}
+
+void Channel::SetChanData( const Chip* chip, Bit32u data ) {
+ Bit32u change = chanData ^ data;
+ chanData = data;
+ Op( 0 )->chanData = data;
+ Op( 1 )->chanData = data;
+ //Since a frequency update triggered this, always update frequency
+ Op( 0 )->UpdateFrequency();
+ Op( 1 )->UpdateFrequency();
+ if ( change & ( 0xff << SHIFT_KSLBASE ) ) {
+ Op( 0 )->UpdateAttenuation();
+ Op( 1 )->UpdateAttenuation();
+ }
+ if ( change & ( 0xff << SHIFT_KEYCODE ) ) {
+ Op( 0 )->UpdateRates( chip );
+ Op( 1 )->UpdateRates( chip );
+ }
+}
+
+void Channel::UpdateFrequency( const Chip* chip, Bit8u fourOp ) {
+ //Extrace the frequency bits
+ Bit32u data = chanData & 0xffff;
+ Bit32u kslBase = KslTable[ data >> 6 ];
+ Bit32u keyCode = ( data & 0x1c00) >> 9;
+ if ( chip->reg08 & 0x40 ) {
+ keyCode |= ( data & 0x100)>>8; /* notesel == 1 */
+ } else {
+ keyCode |= ( data & 0x200)>>9; /* notesel == 0 */
+ }
+ //Add the keycode and ksl into the highest bits of chanData
+ data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE );
+ ( this + 0 )->SetChanData( chip, data );
+ if ( fourOp & 0x3f ) {
+ ( this + 1 )->SetChanData( chip, data );
+ }
+}
+
+void Channel::WriteA0( const Chip* chip, Bit8u val ) {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
+ //Don't handle writes to silent fourop channels
+ if ( fourOp > 0x80 )
+ return;
+ Bit32u change = (chanData ^ val ) & 0xff;
+ if ( change ) {
+ chanData ^= change;
+ UpdateFrequency( chip, fourOp );
+ }
+}
+
+void Channel::WriteB0( const Chip* chip, Bit8u val ) {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
+ //Don't handle writes to silent fourop channels
+ if ( fourOp > 0x80 )
+ return;
+ Bitu change = (chanData ^ ( val << 8 ) ) & 0x1f00;
+ if ( change ) {
+ chanData ^= change;
+ UpdateFrequency( chip, fourOp );
+ }
+ //Check for a change in the keyon/off state
+ if ( !(( val ^ regB0) & 0x20))
+ return;
+ regB0 = val;
+ if ( val & 0x20 ) {
+ Op(0)->KeyOn( 0x1 );
+ Op(1)->KeyOn( 0x1 );
+ if ( fourOp & 0x3f ) {
+ ( this + 1 )->Op(0)->KeyOn( 1 );
+ ( this + 1 )->Op(1)->KeyOn( 1 );
+ }
+ } else {
+ Op(0)->KeyOff( 0x1 );
+ Op(1)->KeyOff( 0x1 );
+ if ( fourOp & 0x3f ) {
+ ( this + 1 )->Op(0)->KeyOff( 1 );
+ ( this + 1 )->Op(1)->KeyOff( 1 );
+ }
+ }
+}
+
+void Channel::WriteC0( const Chip* chip, Bit8u val ) {
+ Bit8u change = val ^ regC0;
+ if ( !change )
+ return;
+ regC0 = val;
+ feedback = ( val >> 1 ) & 7;
+ if ( feedback ) {
+ //We shift the input to the right 10 bit wave index value
+ feedback = 9 - feedback;
+ } else {
+ feedback = 31;
+ }
+ //Select the new synth mode
+ if ( chip->opl3Active ) {
+ //4-op mode enabled for this channel
+ if ( (chip->reg104 & fourMask) & 0x3f ) {
+ Channel* chan0, *chan1;
+ //Check if it's the 2nd channel in a 4-op
+ if ( !(fourMask & 0x80 ) ) {
+ chan0 = this;
+ chan1 = this + 1;
+ } else {
+ chan0 = this - 1;
+ chan1 = this;
+ }
+
+ Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 );
+ switch ( synth ) {
+ case 0:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3FMFM >;
+ break;
+ case 1:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3AMFM >;
+ break;
+ case 2:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3FMAM >;
+ break;
+ case 3:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3AMAM >;
+ break;
+ }
+ //Disable updating percussion channels
+ } else if ((fourMask & 0x40) && ( chip->regBD & 0x20) ) {
+
+ //Regular dual op, am or fm
+ } else if ( val & 1 ) {
+ synthHandler = &Channel::BlockTemplate< sm3AM >;
+ } else {
+ synthHandler = &Channel::BlockTemplate< sm3FM >;
+ }
+ maskLeft = ( val & 0x10 ) ? -1 : 0;
+ maskRight = ( val & 0x20 ) ? -1 : 0;
+ //opl2 active
+ } else {
+ //Disable updating percussion channels
+ if ( (fourMask & 0x40) && ( chip->regBD & 0x20 ) ) {
+
+ //Regular dual op, am or fm
+ } else if ( val & 1 ) {
+ synthHandler = &Channel::BlockTemplate< sm2AM >;
+ } else {
+ synthHandler = &Channel::BlockTemplate< sm2FM >;
+ }
+ }
+}
+
+void Channel::ResetC0( const Chip* chip ) {
+ Bit8u val = regC0;
+ regC0 ^= 0xff;
+ WriteC0( chip, val );
+}
+
+template< bool opl3Mode>
+INLINE void Channel::GeneratePercussion( Chip* chip, Bit32s* output ) {
+ Channel* chan = this;
+
+ //BassDrum
+ Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
+ old[0] = old[1];
+ old[1] = Op(0)->GetSample( mod );
+
+ //When bassdrum is in AM mode first operator is ignoed
+ if ( chan->regC0 & 1 ) {
+ mod = 0;
+ } else {
+ mod = old[0];
+ }
+ Bit32s sample = Op(1)->GetSample( mod );
+
+
+ //Precalculate stuff used by other outputs
+ Bit32u noiseBit = chip->ForwardNoise() & 0x1;
+ Bit32u c2 = Op(2)->ForwardWave();
+ Bit32u c5 = Op(5)->ForwardWave();
+ Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00;
+
+ //Hi-Hat
+ Bit32u hhVol = Op(2)->ForwardVolume();
+ if ( !ENV_SILENT( hhVol ) ) {
+ Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 )));
+ sample += Op(2)->GetWave( hhIndex, hhVol );
+ }
+ //Snare Drum
+ Bit32u sdVol = Op(3)->ForwardVolume();
+ if ( !ENV_SILENT( sdVol ) ) {
+ Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 );
+ sample += Op(3)->GetWave( sdIndex, sdVol );
+ }
+ //Tom-tom
+ sample += Op(4)->GetSample( 0 );
+
+ //Top-Cymbal
+ Bit32u tcVol = Op(5)->ForwardVolume();
+ if ( !ENV_SILENT( tcVol ) ) {
+ Bit32u tcIndex = (1 + phaseBit) << 8;
+ sample += Op(5)->GetWave( tcIndex, tcVol );
+ }
+ sample <<= 1;
+ if ( opl3Mode ) {
+ output[0] += sample;
+ output[1] += sample;
+ } else {
+ output[0] += sample;
+ }
+}
+
+template<SynthMode mode>
+Channel* Channel::BlockTemplate( Chip* chip, Bit32u samples, Bit32s* output ) {
+ switch( mode ) {
+ case sm2AM:
+ case sm3AM:
+ if ( Op(0)->Silent() && Op(1)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 1);
+ }
+ break;
+ case sm2FM:
+ case sm3FM:
+ if ( Op(1)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 1);
+ }
+ break;
+ case sm3FMFM:
+ if ( Op(3)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+ break;
+ case sm3AMFM:
+ if ( Op(0)->Silent() && Op(3)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+ break;
+ case sm3FMAM:
+ if ( Op(1)->Silent() && Op(3)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+ break;
+ case sm3AMAM:
+ if ( Op(0)->Silent() && Op(2)->Silent() && Op(3)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+ break;
+ case sm2Percussion:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm3Percussion:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ }
+ //Init the operators with the the current vibrato and tremolo values
+ Op( 0 )->Prepare( chip );
+ Op( 1 )->Prepare( chip );
+ if ( mode > sm4Start ) {
+ Op( 2 )->Prepare( chip );
+ Op( 3 )->Prepare( chip );
+ }
+ if ( mode > sm6Start ) {
+ Op( 4 )->Prepare( chip );
+ Op( 5 )->Prepare( chip );
+ }
+ for ( Bitu i = 0; i < samples; i++ ) {
+ //Early out for percussion handlers
+ if ( mode == sm2Percussion ) {
+ GeneratePercussion<false>( chip, output + i );
+ continue; //Prevent some unitialized value bitching
+ } else if ( mode == sm3Percussion ) {
+ GeneratePercussion<true>( chip, output + i * 2 );
+ continue; //Prevent some unitialized value bitching
+ }
+
+ //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
+ Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
+ old[0] = old[1];
+ old[1] = Op(0)->GetSample( mod );
+ Bit32s sample;
+ Bit32s out0 = old[0];
+ if ( mode == sm2AM || mode == sm3AM ) {
+ sample = out0 + Op(1)->GetSample( 0 );
+ } else if ( mode == sm2FM || mode == sm3FM ) {
+ sample = Op(1)->GetSample( out0 );
+ } else if ( mode == sm3FMFM ) {
+ Bits next = Op(1)->GetSample( out0 );
+ next = Op(2)->GetSample( next );
+ sample = Op(3)->GetSample( next );
+ } else if ( mode == sm3AMFM ) {
+ sample = out0;
+ Bits next = Op(1)->GetSample( 0 );
+ next = Op(2)->GetSample( next );
+ sample += Op(3)->GetSample( next );
+ } else if ( mode == sm3FMAM ) {
+ sample = Op(1)->GetSample( out0 );
+ Bits next = Op(2)->GetSample( 0 );
+ sample += Op(3)->GetSample( next );
+ } else if ( mode == sm3AMAM ) {
+ sample = out0;
+ Bits next = Op(1)->GetSample( 0 );
+ sample += Op(2)->GetSample( next );
+ sample += Op(3)->GetSample( 0 );
+ }
+ switch( mode ) {
+ case sm2AM:
+ case sm2FM:
+ output[ i ] += sample;
+ break;
+ case sm3AM:
+ case sm3FM:
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ output[ i * 2 + 0 ] += sample & maskLeft;
+ output[ i * 2 + 1 ] += sample & maskRight;
+ break;
+ case sm2Percussion:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm3Percussion:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ }
+ }
+ switch( mode ) {
+ case sm2AM:
+ case sm2FM:
+ case sm3AM:
+ case sm3FM:
+ return ( this + 1 );
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ return( this + 2 );
+ case sm2Percussion:
+ case sm3Percussion:
+ return( this + 3 );
+ }
+ return 0;
+}
+
+/*
+ Chip
+*/
+
+Chip::Chip() {
+ reg08 = 0;
+ reg04 = 0;
+ regBD = 0;
+ reg104 = 0;
+ opl3Active = 0;
+}
+
+INLINE Bit32u Chip::ForwardNoise() {
+ noiseCounter += noiseAdd;
+ Bitu count = noiseCounter >> LFO_SH;
+ noiseCounter &= WAVE_MASK;
+ for ( ; count > 0; --count ) {
+ //Noise calculation from mame
+ noiseValue ^= ( 0x800302 ) & ( 0 - (noiseValue & 1 ) );
+ noiseValue >>= 1;
+ }
+ return noiseValue;
+}
+
+INLINE Bit32u Chip::ForwardLFO( Bit32u samples ) {
+ //Current vibrato value, runs 4x slower than tremolo
+ vibratoSign = ( VibratoTable[ vibratoIndex >> 2] ) >> 7;
+ vibratoShift = ( VibratoTable[ vibratoIndex >> 2] & 7) + vibratoStrength;
+ tremoloValue = TremoloTable[ tremoloIndex ] >> tremoloStrength;
+
+ //Check hom many samples there can be done before the value changes
+ Bit32u todo = LFO_MAX - lfoCounter;
+ Bit32u count = (todo + lfoAdd - 1) / lfoAdd;
+ if ( count > samples ) {
+ count = samples;
+ lfoCounter += count * lfoAdd;
+ } else {
+ lfoCounter += count * lfoAdd;
+ lfoCounter &= (LFO_MAX - 1);
+ //Maximum of 7 vibrato value * 4
+ vibratoIndex = ( vibratoIndex + 1 ) & 31;
+ //Clip tremolo to the the table size
+ if ( tremoloIndex + 1 < TREMOLO_TABLE )
+ ++tremoloIndex;
+ else
+ tremoloIndex = 0;
+ }
+ return count;
+}
+
+
+void Chip::WriteBD( Bit8u val ) {
+ Bit8u change = regBD ^ val;
+ if ( !change )
+ return;
+ regBD = val;
+ //TODO could do this with shift and xor?
+ vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
+ tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
+ if ( val & 0x20 ) {
+ //Drum was just enabled, make sure channel 6 has the right synth
+ if ( change & 0x20 ) {
+ if ( opl3Active ) {
+ chan[6].synthHandler = &Channel::BlockTemplate< sm3Percussion >;
+ } else {
+ chan[6].synthHandler = &Channel::BlockTemplate< sm2Percussion >;
+ }
+ }
+ //Bass Drum
+ if ( val & 0x10 ) {
+ chan[6].op[0].KeyOn( 0x2 );
+ chan[6].op[1].KeyOn( 0x2 );
+ } else {
+ chan[6].op[0].KeyOff( 0x2 );
+ chan[6].op[1].KeyOff( 0x2 );
+ }
+ //Hi-Hat
+ if ( val & 0x1 ) {
+ chan[7].op[0].KeyOn( 0x2 );
+ } else {
+ chan[7].op[0].KeyOff( 0x2 );
+ }
+ //Snare
+ if ( val & 0x8 ) {
+ chan[7].op[1].KeyOn( 0x2 );
+ } else {
+ chan[7].op[1].KeyOff( 0x2 );
+ }
+ //Tom-Tom
+ if ( val & 0x4 ) {
+ chan[8].op[0].KeyOn( 0x2 );
+ } else {
+ chan[8].op[0].KeyOff( 0x2 );
+ }
+ //Top Cymbal
+ if ( val & 0x2 ) {
+ chan[8].op[1].KeyOn( 0x2 );
+ } else {
+ chan[8].op[1].KeyOff( 0x2 );
+ }
+ //Toggle keyoffs when we turn off the percussion
+ } else if ( change & 0x20 ) {
+ //Trigger a reset to setup the original synth handler
+ chan[6].ResetC0( this );
+ chan[6].op[0].KeyOff( 0x2 );
+ chan[6].op[1].KeyOff( 0x2 );
+ chan[7].op[0].KeyOff( 0x2 );
+ chan[7].op[1].KeyOff( 0x2 );
+ chan[8].op[0].KeyOff( 0x2 );
+ chan[8].op[1].KeyOff( 0x2 );
+ }
+}
+
+
+#define REGOP( _FUNC_ ) \
+ index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
+ if ( OpOffsetTable[ index ] ) { \
+ Operator* regOp = (Operator*)( ((char *)this ) + OpOffsetTable[ index ] ); \
+ regOp->_FUNC_( this, val ); \
+ }
+
+#define REGCHAN( _FUNC_ ) \
+ index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
+ if ( ChanOffsetTable[ index ] ) { \
+ Channel* regChan = (Channel*)( ((char *)this ) + ChanOffsetTable[ index ] ); \
+ regChan->_FUNC_( this, val ); \
+ }
+
+void Chip::WriteReg( Bit32u reg, Bit8u val ) {
+ Bitu index;
+ switch ( (reg & 0xf0) >> 4 ) {
+ case 0x00 >> 4:
+ if ( reg == 0x01 ) {
+ waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0;
+ } else if ( reg == 0x104 ) {
+ //Only detect changes in lowest 6 bits
+ if ( !((reg104 ^ val) & 0x3f) )
+ return;
+ //Always keep the highest bit enabled, for checking > 0x80
+ reg104 = 0x80 | ( val & 0x3f );
+ } else if ( reg == 0x105 ) {
+ //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
+ if ( !((opl3Active ^ val) & 1 ) )
+ return;
+ opl3Active = ( val & 1 ) ? 0xff : 0;
+ //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
+ for ( int i = 0; i < 18;i++ ) {
+ chan[i].ResetC0( this );
+ }
+ } else if ( reg == 0x08 ) {
+ reg08 = val;
+ }
+ case 0x10 >> 4:
+ break;
+ case 0x20 >> 4:
+ case 0x30 >> 4:
+ REGOP( Write20 );
+ break;
+ case 0x40 >> 4:
+ case 0x50 >> 4:
+ REGOP( Write40 );
+ break;
+ case 0x60 >> 4:
+ case 0x70 >> 4:
+ REGOP( Write60 );
+ break;
+ case 0x80 >> 4:
+ case 0x90 >> 4:
+ REGOP( Write80 );
+ break;
+ case 0xa0 >> 4:
+ REGCHAN( WriteA0 );
+ break;
+ case 0xb0 >> 4:
+ if ( reg == 0xbd ) {
+ WriteBD( val );
+ } else {
+ REGCHAN( WriteB0 );
+ }
+ break;
+ case 0xc0 >> 4:
+ REGCHAN( WriteC0 );
+ case 0xd0 >> 4:
+ break;
+ case 0xe0 >> 4:
+ case 0xf0 >> 4:
+ REGOP( WriteE0 );
+ break;
+ }
+}
+
+
+Bit32u Chip::WriteAddr( Bit32u port, Bit8u val ) {
+ switch ( port & 3 ) {
+ case 0:
+ return val;
+ case 2:
+ if ( opl3Active || (val == 0x05) )
+ return 0x100 | val;
+ else
+ return val;
+ }
+ return 0;
+}
+
+void Chip::GenerateBlock2( Bitu total, Bit32s* output ) {
+ while ( total > 0 ) {
+ Bit32u samples = ForwardLFO( total );
+ for ( Bitu i = 0; i < samples; i++ ) {
+ output[i] = 0;
+ }
+ int count = 0;
+ for( Channel* ch = chan; ch < chan + 9; ) {
+ count++;
+ ch = (ch->*(ch->synthHandler))( this, samples, output );
+ }
+ total -= samples;
+ output += samples;
+ }
+}
+
+void Chip::GenerateBlock3( Bitu total, Bit32s* output ) {
+ while ( total > 0 ) {
+ Bit32u samples = ForwardLFO( total );
+ for ( Bitu i = 0; i < samples; i++ ) {
+ output[i * 2 + 0 ] = 0;
+ output[i * 2 + 1 ] = 0;
+ }
+ int count = 0;
+ for( Channel* ch = chan; ch < chan + 18; ) {
+ count++;
+ ch = (ch->*(ch->synthHandler))( this, samples, output );
+ }
+ total -= samples;
+ output += samples * 2;
+ }
+}
+
+void Chip::Setup( Bit32u rate ) {
+ double scale = OPLRATE / (double)rate;
+
+ //Noise counter is run at the same precision as general waves
+ noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+ noiseCounter = 0;
+ noiseValue = 1; //Make sure it triggers the noise xor the first time
+ //The low frequency oscillation counter
+ //Every time his overflows vibrato and tremoloindex are increased
+ lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+ lfoCounter = 0;
+ vibratoIndex = 0;
+ tremoloIndex = 0;
+
+ //With higher octave this gets shifted up
+ //-1 since the freqCreateTable = *2
+#ifdef WAVE_PRECISION
+ double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10));
+ for ( int i = 0; i < 16; i++ ) {
+ freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] );
+ }
+#else
+ Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10)));
+ for ( int i = 0; i < 16; i++ ) {
+ freqMul[i] = freqScale * FreqCreateTable[ i ];
+ }
+#endif
+
+ //-3 since the real envelope takes 8 steps to reach the single value we supply
+ for ( Bit8u i = 0; i < 76; i++ ) {
+ Bit8u index, shift;
+ EnvelopeSelect( i, index, shift );
+ linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 )));
+ }
+ //Generate the best matching attack rate
+ for ( Bit8u i = 0; i < 62; i++ ) {
+ Bit8u index, shift;
+ EnvelopeSelect( i, index, shift );
+ //Original amount of samples the attack would take
+ Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale);
+
+ Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 )));
+ Bit32s bestAdd = guessAdd;
+ Bit32u bestDiff = 1 << 30;
+ for( Bit32u passes = 0; passes < 16; passes ++ ) {
+ Bit32s volume = ENV_MAX;
+ Bit32s samples = 0;
+ Bit32u count = 0;
+ while ( volume > 0 && samples < original * 2 ) {
+ count += guessAdd;
+ Bit32s change = count >> RATE_SH;
+ count &= RATE_MASK;
+ if ( GCC_UNLIKELY(change) ) { // less than 1 %
+ volume += ( ~volume * change ) >> 3;
+ }
+ samples++;
+
+ }
+ Bit32s diff = original - samples;
+ Bit32u lDiff = labs( diff );
+ //Init last on first pass
+ if ( lDiff < bestDiff ) {
+ bestDiff = lDiff;
+ bestAdd = guessAdd;
+ if ( !bestDiff )
+ break;
+ }
+ //Below our target
+ if ( diff < 0 ) {
+ //Better than the last time
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = ((guessAdd * mul) >> 12);
+ guessAdd++;
+ } else if ( diff > 0 ) {
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = (guessAdd * mul) >> 12;
+ guessAdd--;
+ }
+ }
+ attackRates[i] = bestAdd;
+ }
+ for ( Bit8u i = 62; i < 76; i++ ) {
+ //This should provide instant volume maximizing
+ attackRates[i] = 8 << RATE_SH;
+ }
+ //Setup the channels with the correct four op flags
+ //Channels are accessed through a table so they appear linear here
+ chan[ 0].fourMask = 0x00 | ( 1 << 0 );
+ chan[ 1].fourMask = 0x80 | ( 1 << 0 );
+ chan[ 2].fourMask = 0x00 | ( 1 << 1 );
+ chan[ 3].fourMask = 0x80 | ( 1 << 1 );
+ chan[ 4].fourMask = 0x00 | ( 1 << 2 );
+ chan[ 5].fourMask = 0x80 | ( 1 << 2 );
+
+ chan[ 9].fourMask = 0x00 | ( 1 << 3 );
+ chan[10].fourMask = 0x80 | ( 1 << 3 );
+ chan[11].fourMask = 0x00 | ( 1 << 4 );
+ chan[12].fourMask = 0x80 | ( 1 << 4 );
+ chan[13].fourMask = 0x00 | ( 1 << 5 );
+ chan[14].fourMask = 0x80 | ( 1 << 5 );
+
+ //mark the percussion channels
+ chan[ 6].fourMask = 0x40;
+ chan[ 7].fourMask = 0x40;
+ chan[ 8].fourMask = 0x40;
+
+ //Clear Everything in opl3 mode
+ WriteReg( 0x105, 0x1 );
+ for ( int i = 0; i < 512; i++ ) {
+ if ( i == 0x105 )
+ continue;
+ WriteReg( i, 0xff );
+ WriteReg( i, 0x0 );
+ }
+ WriteReg( 0x105, 0x0 );
+ //Clear everything in opl2 mode
+ for ( int i = 0; i < 255; i++ ) {
+ WriteReg( i, 0xff );
+ WriteReg( i, 0x0 );
+ }
+}
+
+static bool doneTables = false;
+void InitTables( void ) {
+ if ( doneTables )
+ return;
+ doneTables = true;
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+ //Exponential volume table, same as the real adlib
+ for ( int i = 0; i < 256; i++ ) {
+ //Save them in reverse
+ ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 );
+ ExpTable[i] += 1024; //or remove the -1 oh well :)
+ //Preshift to the left once so the final volume can shift to the right
+ ExpTable[i] *= 2;
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+ //Add 0.5 for the trunc rounding of the integer cast
+ //Do a PI sinetable instead of the original 0.5 PI
+ for ( int i = 0; i < 512; i++ ) {
+ SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+ //Multiplication based tables
+ for ( int i = 0; i < 384; i++ ) {
+ int s = i * 8;
+ //TODO maybe keep some of the precision errors of the original table?
+ double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH ));
+ MulTable[i] = (Bit16u)(val);
+ }
+
+ //Sine Wave Base
+ for ( int i = 0; i < 512; i++ ) {
+ WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084);
+ WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
+ }
+ //Exponential wave
+ for ( int i = 0; i < 256; i++ ) {
+ WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 );
+ WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLELOG )
+ //Sine Wave Base
+ for ( int i = 0; i < 512; i++ ) {
+ WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+ WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
+ }
+ //Exponential wave
+ for ( int i = 0; i < 256; i++ ) {
+ WaveTable[ 0x700 + i ] = i * 8;
+ WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
+ }
+#endif
+
+ // | |//\\|____|WAV7|//__|/\ |____|/\/\|
+ // |\\//| | |WAV7| | \/| | |
+ // |06 |0126|27 |7 |3 |4 |4 5 |5 |
+
+#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
+ for ( int i = 0; i < 256; i++ ) {
+ //Fill silence gaps
+ WaveTable[ 0x400 + i ] = WaveTable[0];
+ WaveTable[ 0x500 + i ] = WaveTable[0];
+ WaveTable[ 0x900 + i ] = WaveTable[0];
+ WaveTable[ 0xc00 + i ] = WaveTable[0];
+ WaveTable[ 0xd00 + i ] = WaveTable[0];
+ //Replicate sines in other pieces
+ WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
+ //double speed sines
+ WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
+ WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ }
+#endif
+
+ //Create the ksl table
+ for ( int oct = 0; oct < 8; oct++ ) {
+ int base = oct * 8;
+ for ( int i = 0; i < 16; i++ ) {
+ int val = base - KslCreateTable[i];
+ if ( val < 0 )
+ val = 0;
+ //*4 for the final range to match attenuation range
+ KslTable[ oct * 16 + i ] = val * 4;
+ }
+ }
+ //Create the Tremolo table, just increase and decrease a triangle wave
+ for ( Bit8u i = 0; i < TREMOLO_TABLE / 2; i++ ) {
+ Bit8u val = i << ENV_EXTRA;
+ TremoloTable[i] = val;
+ TremoloTable[TREMOLO_TABLE - 1 - i] = val;
+ }
+ //Create a table with offsets of the channels from the start of the chip
+ DBOPL::Chip* chip = 0;
+ for ( Bitu i = 0; i < 32; i++ ) {
+ Bitu index = i & 0xf;
+ if ( index >= 9 ) {
+ ChanOffsetTable[i] = 0;
+ continue;
+ }
+ //Make sure the four op channels follow eachother
+ if ( index < 6 ) {
+ index = (index % 3) * 2 + ( index / 3 );
+ }
+ //Add back the bits for highest ones
+ if ( i >= 16 )
+ index += 9;
+ Bitu blah = reinterpret_cast<long>( &(chip->chan[ index ]) );
+ ChanOffsetTable[i] = blah;
+ }
+ //Same for operators
+ for ( Bitu i = 0; i < 64; i++ ) {
+ if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) {
+ OpOffsetTable[i] = 0;
+ continue;
+ }
+ Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
+ //Make sure we use 16 and up for the 2nd range to match the chanoffset gap
+ if ( chNum >= 12 )
+ chNum += 16 - 12;
+ Bitu opNum = ( i % 8 ) / 3;
+ DBOPL::Channel* chan = 0;
+ Bitu blah = reinterpret_cast<long>( &(chan->op[opNum]) );
+ OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah;
+ }
+#if 0
+ //Stupid checks if table's are correct
+ for ( Bitu i = 0; i < 18; i++ ) {
+ Bit32u find = (Bit16u)( &(chip->chan[ i ]) );
+ for ( Bitu c = 0; c < 32; c++ ) {
+ if ( ChanOffsetTable[c] == find ) {
+ find = 0;
+ break;
+ }
+ }
+ if ( find ) {
+ find = find;
+ }
+ }
+ for ( Bitu i = 0; i < 36; i++ ) {
+ Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) );
+ for ( Bitu c = 0; c < 64; c++ ) {
+ if ( OpOffsetTable[c] == find ) {
+ find = 0;
+ break;
+ }
+ }
+ if ( find ) {
+ find = find;
+ }
+ }
+#endif
+}
+
+} //Namespace DBOPL
+} // End of namespace DOSBox
+} // End of namespace OPL
+
+#endif // !DISABLE_DOSBOX_OPL