aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--engines/sword25/gfx/image/art.cpp2538
-rw-r--r--engines/sword25/gfx/image/art.h104
-rw-r--r--engines/sword25/gfx/image/art_svp_intersect.cpp1344
-rw-r--r--engines/sword25/gfx/image/art_svp_intersect.h73
-rw-r--r--engines/sword25/gfx/image/art_svp_render_aa.cpp443
-rw-r--r--engines/sword25/gfx/image/art_svp_render_aa.h70
-rw-r--r--engines/sword25/gfx/image/art_svp_vpath.cpp207
-rw-r--r--engines/sword25/gfx/image/art_svp_vpath.h45
-rw-r--r--engines/sword25/gfx/image/art_svp_vpath_stroke.cpp657
-rw-r--r--engines/sword25/gfx/image/art_svp_vpath_stroke.h71
-rw-r--r--engines/sword25/gfx/image/art_vpath_bpath.cpp276
-rw-r--r--engines/sword25/gfx/image/vectorimagerenderer.cpp4
-rw-r--r--engines/sword25/module.mk5
13 files changed, 2621 insertions, 3216 deletions
diff --git a/engines/sword25/gfx/image/art.cpp b/engines/sword25/gfx/image/art.cpp
index 54cf2e3271..b158e437aa 100644
--- a/engines/sword25/gfx/image/art.cpp
+++ b/engines/sword25/gfx/image/art.cpp
@@ -36,20 +36,13 @@
#include "art.h"
-#ifdef HAVE_UINSTD_H
-#include <unistd.h>
-#endif
-#include <stdio.h>
-#include <stdarg.h>
-
/**
* art_die: Print the error message to stderr and exit with a return code of 1.
* @fmt: The printf-style format for the error message.
*
* Used for dealing with severe errors.
**/
-void
-art_die(const char *fmt, ...) {
+void art_die(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
@@ -64,8 +57,7 @@ art_die(const char *fmt, ...) {
*
* Used for generating warnings.
**/
-void
-art_warn(const char *fmt, ...) {
+void art_warn(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
@@ -79,8 +71,7 @@ art_warn(const char *fmt, ...) {
*
* Frees an #ArtSVP structure and all the segments in it.
**/
-void
-art_svp_free(ArtSVP *svp) {
+void art_svp_free(ArtSVP *svp) {
int n_segs = svp->n_segs;
int i;
@@ -89,11 +80,7 @@ art_svp_free(ArtSVP *svp) {
free(svp);
}
-#ifdef ART_USE_NEW_INTERSECTOR
#define EPSILON 0
-#else
-#define EPSILON 1e-6
-#endif
/**
* art_svp_seg_compare: Compare two segments of an svp.
@@ -103,8 +90,7 @@ art_svp_free(ArtSVP *svp) {
* Compares two segments of an svp. Return 1 if @seg2 is below or to the
* right of @seg1, -1 otherwise.
**/
-int
-art_svp_seg_compare(const void *s1, const void *s2) {
+int art_svp_seg_compare(const void *s1, const void *s2) {
const ArtSVPSeg *seg1 = (const ArtSVPSeg *)s1;
const ArtSVPSeg *seg2 = (const ArtSVPSeg *)s2;
@@ -135,8 +121,7 @@ art_svp_seg_compare(const void *s1, const void *s2) {
* vpath. Thus, it should be called in the order the points are
* desired.
**/
-void
-art_vpath_add_point(ArtVpath **p_vpath, int *pn_points, int *pn_points_max,
+void art_vpath_add_point(ArtVpath **p_vpath, int *pn_points, int *pn_points_max,
ArtPathcode code, double x, double y) {
int i;
@@ -147,3 +132,2516 @@ art_vpath_add_point(ArtVpath **p_vpath, int *pn_points, int *pn_points_max,
(*p_vpath)[i].x = x;
(*p_vpath)[i].y = y;
}
+
+/* Sort vector paths into sorted vector paths */
+
+/* reverse a list of points in place */
+static void reverse_points(ArtPoint *points, int n_points) {
+ int i;
+ ArtPoint tmp_p;
+
+ for (i = 0; i < (n_points >> 1); i++) {
+ tmp_p = points[i];
+ points[i] = points[n_points - (i + 1)];
+ points[n_points - (i + 1)] = tmp_p;
+ }
+}
+
+/**
+ * art_svp_from_vpath: Convert a vpath to a sorted vector path.
+ * @vpath: #ArtVPath to convert.
+ *
+ * Converts a vector path into sorted vector path form. The svp form is
+ * more efficient for rendering and other vector operations.
+ *
+ * Basically, the implementation is to traverse the vector path,
+ * generating a new segment for each "run" of points in the vector
+ * path with monotonically increasing Y values. All the resulting
+ * values are then sorted.
+ *
+ * Note: I'm not sure that the sorting rule is correct with respect
+ * to numerical stability issues.
+ *
+ * Return value: Resulting sorted vector path.
+ **/
+ArtSVP *art_svp_from_vpath(ArtVpath *vpath) {
+ int n_segs, n_segs_max;
+ ArtSVP *svp;
+ int dir;
+ int new_dir;
+ int i;
+ ArtPoint *points;
+ int n_points, n_points_max;
+ double x, y;
+ double x_min, x_max;
+
+ n_segs = 0;
+ n_segs_max = 16;
+ svp = (ArtSVP *)malloc(sizeof(ArtSVP) +
+ (n_segs_max - 1) * sizeof(ArtSVPSeg));
+
+ dir = 0;
+ n_points = 0;
+ n_points_max = 0;
+ points = NULL;
+ i = 0;
+
+ x = y = 0; /* unnecessary, given "first code must not be LINETO" invariant,
+ but it makes gcc -Wall -ansi -pedantic happier */
+ x_min = x_max = 0; /* same */
+
+ while (vpath[i].code != ART_END) {
+ if (vpath[i].code == ART_MOVETO || vpath[i].code == ART_MOVETO_OPEN) {
+ if (points != NULL && n_points >= 2) {
+ if (n_segs == n_segs_max) {
+ n_segs_max <<= 1;
+ svp = (ArtSVP *)realloc(svp, sizeof(ArtSVP) +
+ (n_segs_max - 1) *
+ sizeof(ArtSVPSeg));
+ }
+ svp->segs[n_segs].n_points = n_points;
+ svp->segs[n_segs].dir = (dir > 0);
+ if (dir < 0)
+ reverse_points(points, n_points);
+ svp->segs[n_segs].points = points;
+ svp->segs[n_segs].bbox.x0 = x_min;
+ svp->segs[n_segs].bbox.x1 = x_max;
+ svp->segs[n_segs].bbox.y0 = points[0].y;
+ svp->segs[n_segs].bbox.y1 = points[n_points - 1].y;
+ n_segs++;
+ points = NULL;
+ }
+
+ if (points == NULL) {
+ n_points_max = 4;
+ points = art_new(ArtPoint, n_points_max);
+ }
+
+ n_points = 1;
+ points[0].x = x = vpath[i].x;
+ points[0].y = y = vpath[i].y;
+ x_min = x;
+ x_max = x;
+ dir = 0;
+ } else { /* must be LINETO */
+ new_dir = (vpath[i].y > y ||
+ (vpath[i].y == y && vpath[i].x > x)) ? 1 : -1;
+ if (dir && dir != new_dir) {
+ /* new segment */
+ x = points[n_points - 1].x;
+ y = points[n_points - 1].y;
+ if (n_segs == n_segs_max) {
+ n_segs_max <<= 1;
+ svp = (ArtSVP *)realloc(svp, sizeof(ArtSVP) +
+ (n_segs_max - 1) *
+ sizeof(ArtSVPSeg));
+ }
+ svp->segs[n_segs].n_points = n_points;
+ svp->segs[n_segs].dir = (dir > 0);
+ if (dir < 0)
+ reverse_points(points, n_points);
+ svp->segs[n_segs].points = points;
+ svp->segs[n_segs].bbox.x0 = x_min;
+ svp->segs[n_segs].bbox.x1 = x_max;
+ svp->segs[n_segs].bbox.y0 = points[0].y;
+ svp->segs[n_segs].bbox.y1 = points[n_points - 1].y;
+ n_segs++;
+
+ n_points = 1;
+ n_points_max = 4;
+ points = art_new(ArtPoint, n_points_max);
+ points[0].x = x;
+ points[0].y = y;
+ x_min = x;
+ x_max = x;
+ }
+
+ if (points != NULL) {
+ if (n_points == n_points_max)
+ art_expand(points, ArtPoint, n_points_max);
+ points[n_points].x = x = vpath[i].x;
+ points[n_points].y = y = vpath[i].y;
+ if (x < x_min) x_min = x;
+ else if (x > x_max) x_max = x;
+ n_points++;
+ }
+ dir = new_dir;
+ }
+ i++;
+ }
+
+ if (points != NULL) {
+ if (n_points >= 2) {
+ if (n_segs == n_segs_max) {
+ n_segs_max <<= 1;
+ svp = (ArtSVP *)realloc(svp, sizeof(ArtSVP) +
+ (n_segs_max - 1) *
+ sizeof(ArtSVPSeg));
+ }
+ svp->segs[n_segs].n_points = n_points;
+ svp->segs[n_segs].dir = (dir > 0);
+ if (dir < 0)
+ reverse_points(points, n_points);
+ svp->segs[n_segs].points = points;
+ svp->segs[n_segs].bbox.x0 = x_min;
+ svp->segs[n_segs].bbox.x1 = x_max;
+ svp->segs[n_segs].bbox.y0 = points[0].y;
+ svp->segs[n_segs].bbox.y1 = points[n_points - 1].y;
+ n_segs++;
+ } else
+ free(points);
+ }
+
+ svp->n_segs = n_segs;
+
+ qsort(&svp->segs, n_segs, sizeof(ArtSVPSeg), art_svp_seg_compare);
+
+ return svp;
+}
+
+
+/* Basic constructors and operations for bezier paths */
+
+#define RENDER_LEVEL 4
+#define RENDER_SIZE (1 << (RENDER_LEVEL))
+
+/**
+ * art_vpath_render_bez: Render a bezier segment into the vpath.
+ * @p_vpath: Where the pointer to the #ArtVpath structure is stored.
+ * @pn_points: Pointer to the number of points in *@p_vpath.
+ * @pn_points_max: Pointer to the number of points allocated.
+ * @x0: X coordinate of starting bezier point.
+ * @y0: Y coordinate of starting bezier point.
+ * @x1: X coordinate of first bezier control point.
+ * @y1: Y coordinate of first bezier control point.
+ * @x2: X coordinate of second bezier control point.
+ * @y2: Y coordinate of second bezier control point.
+ * @x3: X coordinate of ending bezier point.
+ * @y3: Y coordinate of ending bezier point.
+ * @flatness: Flatness control.
+ *
+ * Renders a bezier segment into the vector path, reallocating and
+ * updating *@p_vpath and *@pn_vpath_max as necessary. *@pn_vpath is
+ * incremented by the number of vector points added.
+ *
+ * This step includes (@x0, @y0) but not (@x3, @y3).
+ *
+ * The @flatness argument guides the amount of subdivision. The Adobe
+ * PostScript reference manual defines flatness as the maximum
+ * deviation between the any point on the vpath approximation and the
+ * corresponding point on the "true" curve, and we follow this
+ * definition here. A value of 0.25 should ensure high quality for aa
+ * rendering.
+**/
+static void art_vpath_render_bez(ArtVpath **p_vpath, int *pn, int *pn_max,
+ double x0, double y0,
+ double x1, double y1,
+ double x2, double y2,
+ double x3, double y3,
+ double flatness) {
+ double x3_0, y3_0;
+ double z3_0_dot;
+ double z1_dot, z2_dot;
+ double z1_perp, z2_perp;
+ double max_perp_sq;
+
+ double x_m, y_m;
+ double xa1, ya1;
+ double xa2, ya2;
+ double xb1, yb1;
+ double xb2, yb2;
+
+ /* It's possible to optimize this routine a fair amount.
+
+ First, once the _dot conditions are met, they will also be met in
+ all further subdivisions. So we might recurse to a different
+ routine that only checks the _perp conditions.
+
+ Second, the distance _should_ decrease according to fairly
+ predictable rules (a factor of 4 with each subdivision). So it might
+ be possible to note that the distance is within a factor of 4 of
+ acceptable, and subdivide once. But proving this might be hard.
+
+ Third, at the last subdivision, x_m and y_m can be computed more
+ expeditiously (as in the routine above).
+
+ Finally, if we were able to subdivide by, say 2 or 3, this would
+ allow considerably finer-grain control, i.e. fewer points for the
+ same flatness tolerance. This would speed things up downstream.
+
+ In any case, this routine is unlikely to be the bottleneck. It's
+ just that I have this undying quest for more speed...
+
+ */
+
+ x3_0 = x3 - x0;
+ y3_0 = y3 - y0;
+
+ /* z3_0_dot is dist z0-z3 squared */
+ z3_0_dot = x3_0 * x3_0 + y3_0 * y3_0;
+
+ if (z3_0_dot < 0.001) {
+ /* if start and end point are almost identical, the flatness tests
+ * don't work properly, so fall back on testing whether both of
+ * the other two control points are the same as the start point,
+ * too.
+ */
+ if (hypot(x1 - x0, y1 - y0) < 0.001
+ && hypot(x2 - x0, y2 - y0) < 0.001)
+ goto nosubdivide;
+ else
+ goto subdivide;
+ }
+
+ /* we can avoid subdivision if:
+
+ z1 has distance no more than flatness from the z0-z3 line
+
+ z1 is no more z0'ward than flatness past z0-z3
+
+ z1 is more z0'ward than z3'ward on the line traversing z0-z3
+
+ and correspondingly for z2 */
+
+ /* perp is distance from line, multiplied by dist z0-z3 */
+ max_perp_sq = flatness * flatness * z3_0_dot;
+
+ z1_perp = (y1 - y0) * x3_0 - (x1 - x0) * y3_0;
+ if (z1_perp * z1_perp > max_perp_sq)
+ goto subdivide;
+
+ z2_perp = (y3 - y2) * x3_0 - (x3 - x2) * y3_0;
+ if (z2_perp * z2_perp > max_perp_sq)
+ goto subdivide;
+
+ z1_dot = (x1 - x0) * x3_0 + (y1 - y0) * y3_0;
+ if (z1_dot < 0 && z1_dot * z1_dot > max_perp_sq)
+ goto subdivide;
+
+ z2_dot = (x3 - x2) * x3_0 + (y3 - y2) * y3_0;
+ if (z2_dot < 0 && z2_dot * z2_dot > max_perp_sq)
+ goto subdivide;
+
+ if (z1_dot + z1_dot > z3_0_dot)
+ goto subdivide;
+
+ if (z2_dot + z2_dot > z3_0_dot)
+ goto subdivide;
+
+
+nosubdivide:
+ /* don't subdivide */
+ art_vpath_add_point(p_vpath, pn, pn_max,
+ ART_LINETO, x3, y3);
+ return;
+
+subdivide:
+
+ xa1 = (x0 + x1) * 0.5;
+ ya1 = (y0 + y1) * 0.5;
+ xa2 = (x0 + 2 * x1 + x2) * 0.25;
+ ya2 = (y0 + 2 * y1 + y2) * 0.25;
+ xb1 = (x1 + 2 * x2 + x3) * 0.25;
+ yb1 = (y1 + 2 * y2 + y3) * 0.25;
+ xb2 = (x2 + x3) * 0.5;
+ yb2 = (y2 + y3) * 0.5;
+ x_m = (xa2 + xb1) * 0.5;
+ y_m = (ya2 + yb1) * 0.5;
+
+ art_vpath_render_bez(p_vpath, pn, pn_max,
+ x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, flatness);
+ art_vpath_render_bez(p_vpath, pn, pn_max,
+ x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, flatness);
+}
+
+/**
+ * art_bez_path_to_vec: Create vpath from bezier path.
+ * @bez: Bezier path.
+ * @flatness: Flatness control.
+ *
+ * Creates a vector path closely approximating the bezier path defined by
+ * @bez. The @flatness argument controls the amount of subdivision. In
+ * general, the resulting vpath deviates by at most @flatness pixels
+ * from the "ideal" path described by @bez.
+ *
+ * Return value: Newly allocated vpath.
+ **/
+ArtVpath *art_bez_path_to_vec(const ArtBpath *bez, double flatness) {
+ ArtVpath *vec;
+ int vec_n, vec_n_max;
+ int bez_index;
+ double x, y;
+
+ vec_n = 0;
+ vec_n_max = RENDER_SIZE;
+ vec = art_new(ArtVpath, vec_n_max);
+
+ /* Initialization is unnecessary because of the precondition that the
+ bezier path does not begin with LINETO or CURVETO, but is here
+ to make the code warning-free. */
+ x = 0;
+ y = 0;
+
+ bez_index = 0;
+ do {
+ /* make sure space for at least one more code */
+ if (vec_n >= vec_n_max)
+ art_expand(vec, ArtVpath, vec_n_max);
+ switch (bez[bez_index].code) {
+ case ART_MOVETO_OPEN:
+ case ART_MOVETO:
+ case ART_LINETO:
+ x = bez[bez_index].x3;
+ y = bez[bez_index].y3;
+ vec[vec_n].code = bez[bez_index].code;
+ vec[vec_n].x = x;
+ vec[vec_n].y = y;
+ vec_n++;
+ break;
+ case ART_END:
+ vec[vec_n].code = bez[bez_index].code;
+ vec[vec_n].x = 0;
+ vec[vec_n].y = 0;
+ vec_n++;
+ break;
+ case ART_CURVETO:
+ art_vpath_render_bez(&vec, &vec_n, &vec_n_max,
+ x, y,
+ bez[bez_index].x1, bez[bez_index].y1,
+ bez[bez_index].x2, bez[bez_index].y2,
+ bez[bez_index].x3, bez[bez_index].y3,
+ flatness);
+ x = bez[bez_index].x3;
+ y = bez[bez_index].y3;
+ break;
+ }
+ } while (bez[bez_index++].code != ART_END);
+ return vec;
+}
+
+
+#define EPSILON_6 1e-6
+#define EPSILON_2 1e-12
+
+/* Render an arc segment starting at (xc + x0, yc + y0) to (xc + x1,
+ yc + y1), centered at (xc, yc), and with given radius. Both x0^2 +
+ y0^2 and x1^2 + y1^2 should be equal to radius^2.
+
+ A positive value of radius means curve to the left, negative means
+ curve to the right.
+*/
+static void art_svp_vpath_stroke_arc(ArtVpath **p_vpath, int *pn, int *pn_max,
+ double xc, double yc,
+ double x0, double y0,
+ double x1, double y1,
+ double radius,
+ double flatness) {
+ double theta;
+ double th_0, th_1;
+ int n_pts;
+ int i;
+ double aradius;
+
+ aradius = fabs(radius);
+ theta = 2 * M_SQRT2 * sqrt(flatness / aradius);
+ th_0 = atan2(y0, x0);
+ th_1 = atan2(y1, x1);
+ if (radius > 0) {
+ /* curve to the left */
+ if (th_0 < th_1) th_0 += M_PI * 2;
+ n_pts = ceil((th_0 - th_1) / theta);
+ } else {
+ /* curve to the right */
+ if (th_1 < th_0) th_1 += M_PI * 2;
+ n_pts = ceil((th_1 - th_0) / theta);
+ }
+ art_vpath_add_point(p_vpath, pn, pn_max,
+ ART_LINETO, xc + x0, yc + y0);
+ for (i = 1; i < n_pts; i++) {
+ theta = th_0 + (th_1 - th_0) * i / n_pts;
+ art_vpath_add_point(p_vpath, pn, pn_max,
+ ART_LINETO, xc + cos(theta) * aradius,
+ yc + sin(theta) * aradius);
+ }
+ art_vpath_add_point(p_vpath, pn, pn_max,
+ ART_LINETO, xc + x1, yc + y1);
+}
+
+/* Assume that forw and rev are at point i0. Bring them to i1,
+ joining with the vector i1 - i2.
+
+ This used to be true, but isn't now that the stroke_raw code is
+ filtering out (near)zero length vectors: {It so happens that all
+ invocations of this function maintain the precondition i1 = i0 + 1,
+ so we could decrease the number of arguments by one. We haven't
+ done that here, though.}
+
+ forw is to the line's right and rev is to its left.
+
+ Precondition: no zero-length vectors, otherwise a divide by
+ zero will happen. */
+static void render_seg(ArtVpath **p_forw, int *pn_forw, int *pn_forw_max,
+ ArtVpath **p_rev, int *pn_rev, int *pn_rev_max,
+ ArtVpath *vpath, int i0, int i1, int i2,
+ ArtPathStrokeJoinType join,
+ double line_width, double miter_limit, double flatness) {
+ double dx0, dy0;
+ double dx1, dy1;
+ double dlx0, dly0;
+ double dlx1, dly1;
+ double dmx, dmy;
+ double dmr2;
+ double scale;
+ double cross;
+
+ /* The vectors of the lines from i0 to i1 and i1 to i2. */
+ dx0 = vpath[i1].x - vpath[i0].x;
+ dy0 = vpath[i1].y - vpath[i0].y;
+
+ dx1 = vpath[i2].x - vpath[i1].x;
+ dy1 = vpath[i2].y - vpath[i1].y;
+
+ /* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
+ 90 degrees, and scaled to the length of line_width. */
+ scale = line_width / sqrt(dx0 * dx0 + dy0 * dy0);
+ dlx0 = dy0 * scale;
+ dly0 = -dx0 * scale;
+
+ /* Set dl[xy]1 to the vector from i1 to i2, rotated counterclockwise
+ 90 degrees, and scaled to the length of line_width. */
+ scale = line_width / sqrt(dx1 * dx1 + dy1 * dy1);
+ dlx1 = dy1 * scale;
+ dly1 = -dx1 * scale;
+
+ /* now, forw's last point is expected to be colinear along d[xy]0
+ to point i0 - dl[xy]0, and rev with i0 + dl[xy]0. */
+
+ /* positive for positive area (i.e. left turn) */
+ cross = dx1 * dy0 - dx0 * dy1;
+
+ dmx = (dlx0 + dlx1) * 0.5;
+ dmy = (dly0 + dly1) * 0.5;
+ dmr2 = dmx * dmx + dmy * dmy;
+
+ if (join == ART_PATH_STROKE_JOIN_MITER &&
+ dmr2 * miter_limit * miter_limit < line_width * line_width)
+ join = ART_PATH_STROKE_JOIN_BEVEL;
+
+ /* the case when dmr2 is zero or very small bothers me
+ (i.e. near a 180 degree angle)
+ ALEX: So, we avoid the optimization when dmr2 is very small. This should
+ be safe since dmx/y is only used in optimization and in MITER case, and MITER
+ should be converted to BEVEL when dmr2 is very small. */
+ if (dmr2 > EPSILON_2) {
+ scale = line_width * line_width / dmr2;
+ dmx *= scale;
+ dmy *= scale;
+ }
+
+ if (cross *cross < EPSILON_2 && dx0 *dx1 + dy0 *dy1 >= 0) {
+ /* going straight */
+ art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
+ ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
+ art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
+ ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
+ } else if (cross > 0) {
+ /* left turn, forw is outside and rev is inside */
+
+ if (
+ (dmr2 > EPSILON_2) &&
+ /* check that i1 + dm[xy] is inside i0-i1 rectangle */
+ (dx0 + dmx) * dx0 + (dy0 + dmy) * dy0 > 0 &&
+ /* and that i1 + dm[xy] is inside i1-i2 rectangle */
+ ((dx1 - dmx) * dx1 + (dy1 - dmy) * dy1 > 0)
+#ifdef PEDANTIC_INNER
+ &&
+ /* check that i1 + dl[xy]1 is inside i0-i1 rectangle */
+ (dx0 + dlx1) * dx0 + (dy0 + dly1) * dy0 > 0 &&
+ /* and that i1 + dl[xy]0 is inside i1-i2 rectangle */
+ ((dx1 - dlx0) * dx1 + (dy1 - dly0) * dy1 > 0)
+#endif
+ ) {
+ /* can safely add single intersection point */
+ art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
+ ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
+ } else {
+ /* need to loop-de-loop the inside */
+ art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
+ ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
+ art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
+ ART_LINETO, vpath[i1].x, vpath[i1].y);
+ art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
+ ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
+ }
+
+ if (join == ART_PATH_STROKE_JOIN_BEVEL) {
+ /* bevel */
+ art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
+ ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
+ art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
+ ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
+ } else if (join == ART_PATH_STROKE_JOIN_MITER) {
+ art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
+ ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
+ } else if (join == ART_PATH_STROKE_JOIN_ROUND)
+ art_svp_vpath_stroke_arc(p_forw, pn_forw, pn_forw_max,
+ vpath[i1].x, vpath[i1].y,
+ -dlx0, -dly0,
+ -dlx1, -dly1,
+ line_width,
+ flatness);
+ } else {
+ /* right turn, rev is outside and forw is inside */
+
+ if (
+ (dmr2 > EPSILON_2) &&
+ /* check that i1 - dm[xy] is inside i0-i1 rectangle */
+ (dx0 - dmx) * dx0 + (dy0 - dmy) * dy0 > 0 &&
+ /* and that i1 - dm[xy] is inside i1-i2 rectangle */
+ ((dx1 + dmx) * dx1 + (dy1 + dmy) * dy1 > 0)
+#ifdef PEDANTIC_INNER
+ &&
+ /* check that i1 - dl[xy]1 is inside i0-i1 rectangle */
+ (dx0 - dlx1) * dx0 + (dy0 - dly1) * dy0 > 0 &&
+ /* and that i1 - dl[xy]0 is inside i1-i2 rectangle */
+ ((dx1 + dlx0) * dx1 + (dy1 + dly0) * dy1 > 0)
+#endif
+ ) {
+ /* can safely add single intersection point */
+ art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
+ ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
+ } else {
+ /* need to loop-de-loop the inside */
+ art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
+ ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
+ art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
+ ART_LINETO, vpath[i1].x, vpath[i1].y);
+ art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
+ ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
+ }
+
+ if (join == ART_PATH_STROKE_JOIN_BEVEL) {
+ /* bevel */
+ art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
+ ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
+ art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
+ ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
+ } else if (join == ART_PATH_STROKE_JOIN_MITER) {
+ art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
+ ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
+ } else if (join == ART_PATH_STROKE_JOIN_ROUND)
+ art_svp_vpath_stroke_arc(p_rev, pn_rev, pn_rev_max,
+ vpath[i1].x, vpath[i1].y,
+ dlx0, dly0,
+ dlx1, dly1,
+ -line_width,
+ flatness);
+
+ }
+}
+
+/* caps i1, under the assumption of a vector from i0 */
+static void render_cap(ArtVpath **p_result, int *pn_result, int *pn_result_max,
+ ArtVpath *vpath, int i0, int i1,
+ ArtPathStrokeCapType cap, double line_width, double flatness) {
+ double dx0, dy0;
+ double dlx0, dly0;
+ double scale;
+ int n_pts;
+ int i;
+
+ dx0 = vpath[i1].x - vpath[i0].x;
+ dy0 = vpath[i1].y - vpath[i0].y;
+
+ /* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
+ 90 degrees, and scaled to the length of line_width. */
+ scale = line_width / sqrt(dx0 * dx0 + dy0 * dy0);
+ dlx0 = dy0 * scale;
+ dly0 = -dx0 * scale;
+
+ switch (cap) {
+ case ART_PATH_STROKE_CAP_BUTT:
+ art_vpath_add_point(p_result, pn_result, pn_result_max,
+ ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
+ art_vpath_add_point(p_result, pn_result, pn_result_max,
+ ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
+ break;
+ case ART_PATH_STROKE_CAP_ROUND:
+ n_pts = ceil(M_PI / (2.0 * M_SQRT2 * sqrt(flatness / line_width)));
+ art_vpath_add_point(p_result, pn_result, pn_result_max,
+ ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
+ for (i = 1; i < n_pts; i++) {
+ double theta, c_th, s_th;
+
+ theta = M_PI * i / n_pts;
+ c_th = cos(theta);
+ s_th = sin(theta);
+ art_vpath_add_point(p_result, pn_result, pn_result_max,
+ ART_LINETO,
+ vpath[i1].x - dlx0 * c_th - dly0 * s_th,
+ vpath[i1].y - dly0 * c_th + dlx0 * s_th);
+ }
+ art_vpath_add_point(p_result, pn_result, pn_result_max,
+ ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
+ break;
+ case ART_PATH_STROKE_CAP_SQUARE:
+ art_vpath_add_point(p_result, pn_result, pn_result_max,
+ ART_LINETO,
+ vpath[i1].x - dlx0 - dly0,
+ vpath[i1].y - dly0 + dlx0);
+ art_vpath_add_point(p_result, pn_result, pn_result_max,
+ ART_LINETO,
+ vpath[i1].x + dlx0 - dly0,
+ vpath[i1].y + dly0 + dlx0);
+ break;
+ }
+}
+
+/**
+ * art_svp_from_vpath_raw: Stroke a vector path, raw version
+ * @vpath: #ArtVPath to stroke.
+ * @join: Join style.
+ * @cap: Cap style.
+ * @line_width: Width of stroke.
+ * @miter_limit: Miter limit.
+ * @flatness: Flatness.
+ *
+ * Exactly the same as art_svp_vpath_stroke(), except that the resulting
+ * stroke outline may self-intersect and have regions of winding number
+ * greater than 1.
+ *
+ * Return value: Resulting raw stroked outline in svp format.
+ **/
+ArtVpath *art_svp_vpath_stroke_raw(ArtVpath *vpath,
+ ArtPathStrokeJoinType join,
+ ArtPathStrokeCapType cap,
+ double line_width,
+ double miter_limit,
+ double flatness) {
+ int begin_idx, end_idx;
+ int i;
+ ArtVpath *forw, *rev;
+ int n_forw, n_rev;
+ int n_forw_max, n_rev_max;
+ ArtVpath *result;
+ int n_result, n_result_max;
+ double half_lw = 0.5 * line_width;
+ int closed;
+ int last, this_, next, second;
+ double dx, dy;
+
+ n_forw_max = 16;
+ forw = art_new(ArtVpath, n_forw_max);
+
+ n_rev_max = 16;
+ rev = art_new(ArtVpath, n_rev_max);
+
+ n_result = 0;
+ n_result_max = 16;
+ result = art_new(ArtVpath, n_result_max);
+
+ for (begin_idx = 0; vpath[begin_idx].code != ART_END; begin_idx = end_idx) {
+ n_forw = 0;
+ n_rev = 0;
+
+ closed = (vpath[begin_idx].code == ART_MOVETO);
+
+ /* we don't know what the first point joins with until we get to the
+ last point and see if it's closed. So we start with the second
+ line in the path.
+
+ Note: this is not strictly true (we now know it's closed from
+ the opening pathcode), but why fix code that isn't broken?
+ */
+
+ this_ = begin_idx;
+ /* skip over identical points at the beginning of the subpath */
+ for (i = this_ + 1; vpath[i].code == ART_LINETO; i++) {
+ dx = vpath[i].x - vpath[this_].x;
+ dy = vpath[i].y - vpath[this_].y;
+ if (dx * dx + dy * dy > EPSILON_2)
+ break;
+ }
+ next = i;
+ second = next;
+
+ /* invariant: this doesn't coincide with next */
+ while (vpath[next].code == ART_LINETO) {
+ last = this_;
+ this_ = next;
+ /* skip over identical points after the beginning of the subpath */
+ for (i = this_ + 1; vpath[i].code == ART_LINETO; i++) {
+ dx = vpath[i].x - vpath[this_].x;
+ dy = vpath[i].y - vpath[this_].y;
+ if (dx * dx + dy * dy > EPSILON_2)
+ break;
+ }
+ next = i;
+ if (vpath[next].code != ART_LINETO) {
+ /* reached end of path */
+ /* make "closed" detection conform to PostScript
+ semantics (i.e. explicit closepath code rather than
+ just the fact that end of the path is the beginning) */
+ if (closed &&
+ vpath[this_].x == vpath[begin_idx].x &&
+ vpath[this_].y == vpath[begin_idx].y) {
+ int j;
+
+ /* path is closed, render join to beginning */
+ render_seg(&forw, &n_forw, &n_forw_max,
+ &rev, &n_rev, &n_rev_max,
+ vpath, last, this_, second,
+ join, half_lw, miter_limit, flatness);
+
+ /* do forward path */
+ art_vpath_add_point(&result, &n_result, &n_result_max,
+ ART_MOVETO, forw[n_forw - 1].x,
+ forw[n_forw - 1].y);
+ for (j = 0; j < n_forw; j++)
+ art_vpath_add_point(&result, &n_result, &n_result_max,
+ ART_LINETO, forw[j].x,
+ forw[j].y);
+
+ /* do reverse path, reversed */
+ art_vpath_add_point(&result, &n_result, &n_result_max,
+ ART_MOVETO, rev[0].x,
+ rev[0].y);
+ for (j = n_rev - 1; j >= 0; j--)
+ art_vpath_add_point(&result, &n_result, &n_result_max,
+ ART_LINETO, rev[j].x,
+ rev[j].y);
+ } else {
+ /* path is open */
+ int j;
+
+ /* add to forw rather than result to ensure that
+ forw has at least one point. */
+ render_cap(&forw, &n_forw, &n_forw_max,
+ vpath, last, this_,
+ cap, half_lw, flatness);
+ art_vpath_add_point(&result, &n_result, &n_result_max,
+ ART_MOVETO, forw[0].x,
+ forw[0].y);
+ for (j = 1; j < n_forw; j++)
+ art_vpath_add_point(&result, &n_result, &n_result_max,
+ ART_LINETO, forw[j].x,
+ forw[j].y);
+ for (j = n_rev - 1; j >= 0; j--)
+ art_vpath_add_point(&result, &n_result, &n_result_max,
+ ART_LINETO, rev[j].x,
+ rev[j].y);
+ render_cap(&result, &n_result, &n_result_max,
+ vpath, second, begin_idx,
+ cap, half_lw, flatness);
+ art_vpath_add_point(&result, &n_result, &n_result_max,
+ ART_LINETO, forw[0].x,
+ forw[0].y);
+ }
+ } else
+ render_seg(&forw, &n_forw, &n_forw_max,
+ &rev, &n_rev, &n_rev_max,
+ vpath, last, this_, next,
+ join, half_lw, miter_limit, flatness);
+ }
+ end_idx = next;
+ }
+
+ free(forw);
+ free(rev);
+ art_vpath_add_point(&result, &n_result, &n_result_max, ART_END, 0, 0);
+ return result;
+}
+
+
+/* Render a vector path into a stroked outline.
+
+ Status of this routine:
+
+ Basic correctness: Only miter and bevel line joins are implemented,
+ and only butt line caps. Otherwise, seems to be fine.
+
+ Numerical stability: We cheat (adding random perturbation). Thus,
+ it seems very likely that no numerical stability problems will be
+ seen in practice.
+
+ Speed: Should be pretty good.
+
+ Precision: The perturbation fuzzes the coordinates slightly,
+ but not enough to be visible. */
+
+/**
+ * art_svp_vpath_stroke: Stroke a vector path.
+ * @vpath: #ArtVPath to stroke.
+ * @join: Join style.
+ * @cap: Cap style.
+ * @line_width: Width of stroke.
+ * @miter_limit: Miter limit.
+ * @flatness: Flatness.
+ *
+ * Computes an svp representing the stroked outline of @vpath. The
+ * width of the stroked line is @line_width.
+ *
+ * Lines are joined according to the @join rule. Possible values are
+ * ART_PATH_STROKE_JOIN_MITER (for mitered joins),
+ * ART_PATH_STROKE_JOIN_ROUND (for round joins), and
+ * ART_PATH_STROKE_JOIN_BEVEL (for bevelled joins). The mitered join
+ * is converted to a bevelled join if the miter would extend to a
+ * distance of more than @miter_limit * @line_width from the actual
+ * join point.
+ *
+ * If there are open subpaths, the ends of these subpaths are capped
+ * according to the @cap rule. Possible values are
+ * ART_PATH_STROKE_CAP_BUTT (squared cap, extends exactly to end
+ * point), ART_PATH_STROKE_CAP_ROUND (rounded half-circle centered at
+ * the end point), and ART_PATH_STROKE_CAP_SQUARE (squared cap,
+ * extending half @line_width past the end point).
+ *
+ * The @flatness parameter controls the accuracy of the rendering. It
+ * is most important for determining the number of points to use to
+ * approximate circular arcs for round lines and joins. In general, the
+ * resulting vector path will be within @flatness pixels of the "ideal"
+ * path containing actual circular arcs. I reserve the right to use
+ * the @flatness parameter to convert bevelled joins to miters for very
+ * small turn angles, as this would reduce the number of points in the
+ * resulting outline path.
+ *
+ * The resulting path is "clean" with respect to self-intersections, i.e.
+ * the winding number is 0 or 1 at each point.
+ *
+ * Return value: Resulting stroked outline in svp format.
+ **/
+ArtSVP *art_svp_vpath_stroke(ArtVpath *vpath,
+ ArtPathStrokeJoinType join,
+ ArtPathStrokeCapType cap,
+ double line_width,
+ double miter_limit,
+ double flatness) {
+ ArtVpath *vpath_stroke;
+ ArtSVP *svp, *svp2;
+ ArtSvpWriter *swr;
+
+ vpath_stroke = art_svp_vpath_stroke_raw(vpath, join, cap,
+ line_width, miter_limit, flatness);
+ svp = art_svp_from_vpath(vpath_stroke);
+ free(vpath_stroke);
+
+ swr = art_svp_writer_rewind_new(ART_WIND_RULE_NONZERO);
+ art_svp_intersector(svp, swr);
+
+ svp2 = art_svp_writer_rewind_reap(swr);
+ art_svp_free(svp);
+ return svp2;
+}
+
+
+/* Testbed implementation of the new intersection code.
+*/
+
+typedef struct _ArtPriQ ArtPriQ;
+typedef struct _ArtPriPoint ArtPriPoint;
+
+struct _ArtPriQ {
+ int n_items;
+ int n_items_max;
+ ArtPriPoint **items;
+};
+
+struct _ArtPriPoint {
+ double x;
+ double y;
+ void *user_data;
+};
+
+static ArtPriQ *art_pri_new(void) {
+ ArtPriQ *result = art_new(ArtPriQ, 1);
+
+ result->n_items = 0;
+ result->n_items_max = 16;
+ result->items = art_new(ArtPriPoint *, result->n_items_max);
+ return result;
+}
+
+static void art_pri_free(ArtPriQ *pq) {
+ free(pq->items);
+ free(pq);
+}
+
+static art_boolean art_pri_empty(ArtPriQ *pq) {
+ return pq->n_items == 0;
+}
+
+/* This heap implementation is based on Vasek Chvatal's course notes:
+ http://www.cs.rutgers.edu/~chvatal/notes/pq.html#heap */
+
+static void art_pri_bubble_up(ArtPriQ *pq, int vacant, ArtPriPoint *missing) {
+ ArtPriPoint **items = pq->items;
+ int parent;
+
+ parent = (vacant - 1) >> 1;
+ while (vacant > 0 && (missing->y < items[parent]->y ||
+ (missing->y == items[parent]->y &&
+ missing->x < items[parent]->x))) {
+ items[vacant] = items[parent];
+ vacant = parent;
+ parent = (vacant - 1) >> 1;
+ }
+
+ items[vacant] = missing;
+}
+
+static void art_pri_insert(ArtPriQ *pq, ArtPriPoint *point) {
+ if (pq->n_items == pq->n_items_max)
+ art_expand(pq->items, ArtPriPoint *, pq->n_items_max);
+
+ art_pri_bubble_up(pq, pq->n_items++, point);
+}
+
+static void art_pri_sift_down_from_root(ArtPriQ *pq, ArtPriPoint *missing) {
+ ArtPriPoint **items = pq->items;
+ int vacant = 0, child = 2;
+ int n = pq->n_items;
+
+ while (child < n) {
+ if (items[child - 1]->y < items[child]->y ||
+ (items[child - 1]->y == items[child]->y &&
+ items[child - 1]->x < items[child]->x))
+ child--;
+ items[vacant] = items[child];
+ vacant = child;
+ child = (vacant + 1) << 1;
+ }
+ if (child == n) {
+ items[vacant] = items[n - 1];
+ vacant = n - 1;
+ }
+
+ art_pri_bubble_up(pq, vacant, missing);
+}
+
+static ArtPriPoint *art_pri_choose(ArtPriQ *pq) {
+ ArtPriPoint *result = pq->items[0];
+
+ art_pri_sift_down_from_root(pq, pq->items[--pq->n_items]);
+ return result;
+}
+
+/* A virtual class for an "svp writer". A client of this object creates an
+ SVP by repeatedly calling "add segment" and "add point" methods on it.
+*/
+
+typedef struct _ArtSvpWriterRewind ArtSvpWriterRewind;
+
+/* An implementation of the svp writer virtual class that applies the
+ winding rule. */
+
+struct _ArtSvpWriterRewind {
+ ArtSvpWriter super;
+ ArtWindRule rule;
+ ArtSVP *svp;
+ int n_segs_max;
+ int *n_points_max;
+};
+
+static int art_svp_writer_rewind_add_segment(ArtSvpWriter *self, int wind_left,
+ int delta_wind, double x, double y) {
+ ArtSvpWriterRewind *swr = (ArtSvpWriterRewind *)self;
+ ArtSVP *svp;
+ ArtSVPSeg *seg;
+ art_boolean left_filled, right_filled;
+ int wind_right = wind_left + delta_wind;
+ int seg_num;
+ const int init_n_points_max = 4;
+
+ switch (swr->rule) {
+ case ART_WIND_RULE_NONZERO:
+ left_filled = (wind_left != 0);
+ right_filled = (wind_right != 0);
+ break;
+ case ART_WIND_RULE_INTERSECT:
+ left_filled = (wind_left > 1);
+ right_filled = (wind_right > 1);
+ break;
+ case ART_WIND_RULE_ODDEVEN:
+ left_filled = (wind_left & 1);
+ right_filled = (wind_right & 1);
+ break;
+ case ART_WIND_RULE_POSITIVE:
+ left_filled = (wind_left > 0);
+ right_filled = (wind_right > 0);
+ break;
+ default:
+ art_die("Unknown wind rule %d\n", swr->rule);
+ }
+ if (left_filled == right_filled) {
+ /* discard segment now */
+ return -1;
+ }
+
+ svp = swr->svp;
+ seg_num = svp->n_segs++;
+ if (swr->n_segs_max == seg_num) {
+ swr->n_segs_max <<= 1;
+ svp = (ArtSVP *)realloc(svp, sizeof(ArtSVP) +
+ (swr->n_segs_max - 1) *
+ sizeof(ArtSVPSeg));
+ swr->svp = svp;
+ swr->n_points_max = art_renew(swr->n_points_max, int,
+ swr->n_segs_max);
+ }
+ seg = &svp->segs[seg_num];
+ seg->n_points = 1;
+ seg->dir = right_filled;
+ swr->n_points_max[seg_num] = init_n_points_max;
+ seg->bbox.x0 = x;
+ seg->bbox.y0 = y;
+ seg->bbox.x1 = x;
+ seg->bbox.y1 = y;
+ seg->points = art_new(ArtPoint, init_n_points_max);
+ seg->points[0].x = x;
+ seg->points[0].y = y;
+ return seg_num;
+}
+
+static void art_svp_writer_rewind_add_point(ArtSvpWriter *self, int seg_id,
+ double x, double y) {
+ ArtSvpWriterRewind *swr = (ArtSvpWriterRewind *)self;
+ ArtSVPSeg *seg;
+ int n_points;
+
+ if (seg_id < 0)
+ /* omitted segment */
+ return;
+
+ seg = &swr->svp->segs[seg_id];
+ n_points = seg->n_points++;
+ if (swr->n_points_max[seg_id] == n_points)
+ art_expand(seg->points, ArtPoint, swr->n_points_max[seg_id]);
+ seg->points[n_points].x = x;
+ seg->points[n_points].y = y;
+ if (x < seg->bbox.x0)
+ seg->bbox.x0 = x;
+ if (x > seg->bbox.x1)
+ seg->bbox.x1 = x;
+ seg->bbox.y1 = y;
+}
+
+static void art_svp_writer_rewind_close_segment(ArtSvpWriter *self, int seg_id) {
+ /* Not needed for this simple implementation. A potential future
+ optimization is to merge segments that can be merged safely. */
+}
+
+ArtSVP *art_svp_writer_rewind_reap(ArtSvpWriter *self) {
+ ArtSvpWriterRewind *swr = (ArtSvpWriterRewind *)self;
+ ArtSVP *result = swr->svp;
+
+ free(swr->n_points_max);
+ free(swr);
+ return result;
+}
+
+ArtSvpWriter *art_svp_writer_rewind_new(ArtWindRule rule) {
+ ArtSvpWriterRewind *result = art_new(ArtSvpWriterRewind, 1);
+
+ result->super.add_segment = art_svp_writer_rewind_add_segment;
+ result->super.add_point = art_svp_writer_rewind_add_point;
+ result->super.close_segment = art_svp_writer_rewind_close_segment;
+
+ result->rule = rule;
+ result->n_segs_max = 16;
+ result->svp = (ArtSVP *)malloc(sizeof(ArtSVP) +
+ (result->n_segs_max - 1) * sizeof(ArtSVPSeg));
+ result->svp->n_segs = 0;
+ result->n_points_max = art_new(int, result->n_segs_max);
+
+ return &result->super;
+}
+
+/* Now, data structures for the active list */
+
+typedef struct _ArtActiveSeg ArtActiveSeg;
+
+/* Note: BNEG is 1 for \ lines, and 0 for /. Thus,
+ x[(flags & BNEG) ^ 1] <= x[flags & BNEG] */
+#define ART_ACTIVE_FLAGS_BNEG 1
+
+/* This flag is set if the segment has been inserted into the active
+ list. */
+#define ART_ACTIVE_FLAGS_IN_ACTIVE 2
+
+/* This flag is set when the segment is to be deleted in the
+ horiz commit process. */
+#define ART_ACTIVE_FLAGS_DEL 4
+
+/* This flag is set if the seg_id is a valid output segment. */
+#define ART_ACTIVE_FLAGS_OUT 8
+
+/* This flag is set if the segment is in the horiz list. */
+#define ART_ACTIVE_FLAGS_IN_HORIZ 16
+
+struct _ArtActiveSeg {
+ int flags;
+ int wind_left, delta_wind;
+ ArtActiveSeg *left, *right; /* doubly linked list structure */
+
+ const ArtSVPSeg *in_seg;
+ int in_curs;
+
+ double x[2];
+ double y0, y1;
+ double a, b, c; /* line equation; ax+by+c = 0 for the line, a^2 + b^2 = 1,
+ and a>0 */
+
+ /* bottom point and intersection point stack */
+ int n_stack;
+ int n_stack_max;
+ ArtPoint *stack;
+
+ /* horiz commit list */
+ ArtActiveSeg *horiz_left, *horiz_right;
+ double horiz_x;
+ int horiz_delta_wind;
+ int seg_id;
+};
+
+typedef struct _ArtIntersectCtx ArtIntersectCtx;
+
+struct _ArtIntersectCtx {
+ const ArtSVP *in;
+ ArtSvpWriter *out;
+
+ ArtPriQ *pq;
+
+ ArtActiveSeg *active_head;
+
+ double y;
+ ArtActiveSeg *horiz_first;
+ ArtActiveSeg *horiz_last;
+
+ /* segment index of next input segment to be added to pri q */
+ int in_curs;
+};
+
+#define EPSILON_A 1e-5 /* Threshold for breaking lines at point insertions */
+
+/**
+ * art_svp_intersect_setup_seg: Set up an active segment from input segment.
+ * @seg: Active segment.
+ * @pri_pt: Priority queue point to initialize.
+ *
+ * Sets the x[], a, b, c, flags, and stack fields according to the
+ * line from the current cursor value. Sets the priority queue point
+ * to the bottom point of this line. Also advances the input segment
+ * cursor.
+ **/
+static void art_svp_intersect_setup_seg(ArtActiveSeg *seg, ArtPriPoint *pri_pt) {
+ const ArtSVPSeg *in_seg = seg->in_seg;
+ int in_curs = seg->in_curs++;
+ double x0, y0, x1, y1;
+ double dx, dy, s;
+ double a, b, r2;
+
+ x0 = in_seg->points[in_curs].x;
+ y0 = in_seg->points[in_curs].y;
+ x1 = in_seg->points[in_curs + 1].x;
+ y1 = in_seg->points[in_curs + 1].y;
+ pri_pt->x = x1;
+ pri_pt->y = y1;
+ dx = x1 - x0;
+ dy = y1 - y0;
+ r2 = dx * dx + dy * dy;
+ s = r2 == 0 ? 1 : 1 / sqrt(r2);
+ seg->a = a = dy * s;
+ seg->b = b = -dx * s;
+ seg->c = -(a * x0 + b * y0);
+ seg->flags = (seg->flags & ~ART_ACTIVE_FLAGS_BNEG) | (dx > 0);
+ seg->x[0] = x0;
+ seg->x[1] = x1;
+ seg->y0 = y0;
+ seg->y1 = y1;
+ seg->n_stack = 1;
+ seg->stack[0].x = x1;
+ seg->stack[0].y = y1;
+}
+
+/**
+ * art_svp_intersect_add_horiz: Add point to horizontal list.
+ * @ctx: Intersector context.
+ * @seg: Segment with point to insert into horizontal list.
+ *
+ * Inserts @seg into horizontal list, keeping it in ascending horiz_x
+ * order.
+ *
+ * Note: the horiz_commit routine processes "clusters" of segs in the
+ * horiz list, all sharing the same horiz_x value. The cluster is
+ * processed in active list order, rather than horiz list order. Thus,
+ * the order of segs in the horiz list sharing the same horiz_x
+ * _should_ be irrelevant. Even so, we use b as a secondary sorting key,
+ * as a "belt and suspenders" defensive coding tactic.
+ **/
+static void art_svp_intersect_add_horiz(ArtIntersectCtx *ctx, ArtActiveSeg *seg) {
+ ArtActiveSeg **pp = &ctx->horiz_last;
+ ArtActiveSeg *place;
+ ArtActiveSeg *place_right = NULL;
+
+ if (seg->flags & ART_ACTIVE_FLAGS_IN_HORIZ) {
+ art_warn("*** attempt to put segment in horiz list twice\n");
+ return;
+ }
+ seg->flags |= ART_ACTIVE_FLAGS_IN_HORIZ;
+
+ for (place = *pp; place != NULL && (place->horiz_x > seg->horiz_x ||
+ (place->horiz_x == seg->horiz_x &&
+ place->b < seg->b));
+ place = *pp) {
+ place_right = place;
+ pp = &place->horiz_left;
+ }
+ *pp = seg;
+ seg->horiz_left = place;
+ seg->horiz_right = place_right;
+ if (place == NULL)
+ ctx->horiz_first = seg;
+ else
+ place->horiz_right = seg;
+}
+
+static void art_svp_intersect_push_pt(ArtIntersectCtx *ctx, ArtActiveSeg *seg,
+ double x, double y) {
+ ArtPriPoint *pri_pt;
+ int n_stack = seg->n_stack;
+
+ if (n_stack == seg->n_stack_max)
+ art_expand(seg->stack, ArtPoint, seg->n_stack_max);
+ seg->stack[n_stack].x = x;
+ seg->stack[n_stack].y = y;
+ seg->n_stack++;
+
+ seg->x[1] = x;
+ seg->y1 = y;
+
+ pri_pt = art_new(ArtPriPoint, 1);
+ pri_pt->x = x;
+ pri_pt->y = y;
+ pri_pt->user_data = seg;
+ art_pri_insert(ctx->pq, pri_pt);
+}
+
+typedef enum {
+ ART_BREAK_LEFT = 1,
+ ART_BREAK_RIGHT = 2
+} ArtBreakFlags;
+
+/**
+ * art_svp_intersect_break: Break an active segment.
+ *
+ * Note: y must be greater than the top point's y, and less than
+ * the bottom's.
+ *
+ * Return value: x coordinate of break point.
+ */
+static double art_svp_intersect_break(ArtIntersectCtx *ctx, ArtActiveSeg *seg,
+ double x_ref, double y, ArtBreakFlags break_flags) {
+ double x0, y0, x1, y1;
+ const ArtSVPSeg *in_seg = seg->in_seg;
+ int in_curs = seg->in_curs;
+ double x;
+
+ x0 = in_seg->points[in_curs - 1].x;
+ y0 = in_seg->points[in_curs - 1].y;
+ x1 = in_seg->points[in_curs].x;
+ y1 = in_seg->points[in_curs].y;
+ x = x0 + (x1 - x0) * ((y - y0) / (y1 - y0));
+ if ((break_flags == ART_BREAK_LEFT && x > x_ref) ||
+ (break_flags == ART_BREAK_RIGHT && x < x_ref)) {
+ }
+
+ /* I think we can count on min(x0, x1) <= x <= max(x0, x1) with sane
+ arithmetic, but it might be worthwhile to check just in case. */
+
+ if (y > ctx->y)
+ art_svp_intersect_push_pt(ctx, seg, x, y);
+ else {
+ seg->x[0] = x;
+ seg->y0 = y;
+ seg->horiz_x = x;
+ art_svp_intersect_add_horiz(ctx, seg);
+ }
+
+ return x;
+}
+
+/**
+ * art_svp_intersect_add_point: Add a point, breaking nearby neighbors.
+ * @ctx: Intersector context.
+ * @x: X coordinate of point to add.
+ * @y: Y coordinate of point to add.
+ * @seg: "nearby" segment, or NULL if leftmost.
+ *
+ * Return value: Segment immediately to the left of the new point, or
+ * NULL if the new point is leftmost.
+ **/
+static ArtActiveSeg *art_svp_intersect_add_point(ArtIntersectCtx *ctx, double x, double y,
+ ArtActiveSeg *seg, ArtBreakFlags break_flags) {
+ ArtActiveSeg *left, *right;
+ double x_min = x, x_max = x;
+ art_boolean left_live, right_live;
+ double d;
+ double new_x;
+ ArtActiveSeg *test, *result = NULL;
+ double x_test;
+
+ left = seg;
+ if (left == NULL)
+ right = ctx->active_head;
+ else
+ right = left->right;
+ left_live = (break_flags & ART_BREAK_LEFT) && (left != NULL);
+ right_live = (break_flags & ART_BREAK_RIGHT) && (right != NULL);
+ while (left_live || right_live) {
+ if (left_live) {
+ if (x <= left->x[left->flags & ART_ACTIVE_FLAGS_BNEG] &&
+ /* It may be that one of these conjuncts turns out to be always
+ true. We test both anyway, to be defensive. */
+ y != left->y0 && y < left->y1) {
+ d = x_min * left->a + y * left->b + left->c;
+ if (d < EPSILON_A) {
+ new_x = art_svp_intersect_break(ctx, left, x_min, y,
+ ART_BREAK_LEFT);
+ if (new_x > x_max) {
+ x_max = new_x;
+ right_live = (right != NULL);
+ } else if (new_x < x_min)
+ x_min = new_x;
+ left = left->left;
+ left_live = (left != NULL);
+ } else
+ left_live = ART_FALSE;
+ } else
+ left_live = ART_FALSE;
+ } else if (right_live) {
+ if (x >= right->x[(right->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1] &&
+ /* It may be that one of these conjuncts turns out to be always
+ true. We test both anyway, to be defensive. */
+ y != right->y0 && y < right->y1) {
+ d = x_max * right->a + y * right->b + right->c;
+ if (d > -EPSILON_A) {
+ new_x = art_svp_intersect_break(ctx, right, x_max, y,
+ ART_BREAK_RIGHT);
+ if (new_x < x_min) {
+ x_min = new_x;
+ left_live = (left != NULL);
+ } else if (new_x >= x_max)
+ x_max = new_x;
+ right = right->right;
+ right_live = (right != NULL);
+ } else
+ right_live = ART_FALSE;
+ } else
+ right_live = ART_FALSE;
+ }
+ }
+
+ /* Ascending order is guaranteed by break_flags. Thus, we don't need
+ to actually fix up non-ascending pairs. */
+
+ /* Now, (left, right) defines an interval of segments broken. Sort
+ into ascending x order. */
+ test = left == NULL ? ctx->active_head : left->right;
+ result = left;
+ if (test != NULL && test != right) {
+ if (y == test->y0)
+ x_test = test->x[0];
+ else /* assert y == test->y1, I think */
+ x_test = test->x[1];
+ for (;;) {
+ if (x_test <= x)
+ result = test;
+ test = test->right;
+ if (test == right)
+ break;
+ new_x = x_test;
+ if (new_x < x_test) {
+ art_warn("art_svp_intersect_add_point: non-ascending x\n");
+ }
+ x_test = new_x;
+ }
+ }
+ return result;
+}
+
+static void art_svp_intersect_swap_active(ArtIntersectCtx *ctx,
+ ArtActiveSeg *left_seg, ArtActiveSeg *right_seg) {
+ right_seg->left = left_seg->left;
+ if (right_seg->left != NULL)
+ right_seg->left->right = right_seg;
+ else
+ ctx->active_head = right_seg;
+ left_seg->right = right_seg->right;
+ if (left_seg->right != NULL)
+ left_seg->right->left = left_seg;
+ left_seg->left = right_seg;
+ right_seg->right = left_seg;
+}
+
+/**
+ * art_svp_intersect_test_cross: Test crossing of a pair of active segments.
+ * @ctx: Intersector context.
+ * @left_seg: Left segment of the pair.
+ * @right_seg: Right segment of the pair.
+ * @break_flags: Flags indicating whether to break neighbors.
+ *
+ * Tests crossing of @left_seg and @right_seg. If there is a crossing,
+ * inserts the intersection point into both segments.
+ *
+ * Return value: True if the intersection took place at the current
+ * scan line, indicating further iteration is needed.
+ **/
+static art_boolean art_svp_intersect_test_cross(ArtIntersectCtx *ctx,
+ ArtActiveSeg *left_seg, ArtActiveSeg *right_seg,
+ ArtBreakFlags break_flags) {
+ double left_x0, left_y0, left_x1;
+ double left_y1 = left_seg->y1;
+ double right_y1 = right_seg->y1;
+ double d;
+
+ const ArtSVPSeg *in_seg;
+ int in_curs;
+ double d0, d1, t;
+ double x, y; /* intersection point */
+
+ if (left_seg->y0 == right_seg->y0 && left_seg->x[0] == right_seg->x[0]) {
+ /* Top points of left and right segments coincide. This case
+ feels like a bit of duplication - we may want to merge it
+ with the cases below. However, this way, we're sure that this
+ logic makes only localized changes. */
+
+ if (left_y1 < right_y1) {
+ /* Test left (x1, y1) against right segment */
+ left_x1 = left_seg->x[1];
+
+ if (left_x1 <
+ right_seg->x[(right_seg->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1] ||
+ left_y1 == right_seg->y0)
+ return ART_FALSE;
+ d = left_x1 * right_seg->a + left_y1 * right_seg->b + right_seg->c;
+ if (d < -EPSILON_A)
+ return ART_FALSE;
+ else if (d < EPSILON_A) {
+ /* I'm unsure about the break flags here. */
+ double right_x1 = art_svp_intersect_break(ctx, right_seg,
+ left_x1, left_y1,
+ ART_BREAK_RIGHT);
+ if (left_x1 <= right_x1)
+ return ART_FALSE;
+ }
+ } else if (left_y1 > right_y1) {
+ /* Test right (x1, y1) against left segment */
+ double right_x1 = right_seg->x[1];
+
+ if (right_x1 > left_seg->x[left_seg->flags & ART_ACTIVE_FLAGS_BNEG] ||
+ right_y1 == left_seg->y0)
+ return ART_FALSE;
+ d = right_x1 * left_seg->a + right_y1 * left_seg->b + left_seg->c;
+ if (d > EPSILON_A)
+ return ART_FALSE;
+ else if (d > -EPSILON_A) {
+ /* See above regarding break flags. */
+ left_x1 = art_svp_intersect_break(ctx, left_seg,
+ right_x1, right_y1,
+ ART_BREAK_LEFT);
+ if (left_x1 <= right_x1)
+ return ART_FALSE;
+ }
+ } else { /* left_y1 == right_y1 */
+ left_x1 = left_seg->x[1];
+ double right_x1 = right_seg->x[1];
+
+ if (left_x1 <= right_x1)
+ return ART_FALSE;
+ }
+ art_svp_intersect_swap_active(ctx, left_seg, right_seg);
+ return ART_TRUE;
+ }
+
+ if (left_y1 < right_y1) {
+ /* Test left (x1, y1) against right segment */
+ left_x1 = left_seg->x[1];
+
+ if (left_x1 <
+ right_seg->x[(right_seg->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1] ||
+ left_y1 == right_seg->y0)
+ return ART_FALSE;
+ d = left_x1 * right_seg->a + left_y1 * right_seg->b + right_seg->c;
+ if (d < -EPSILON_A)
+ return ART_FALSE;
+ else if (d < EPSILON_A) {
+ double right_x1 = art_svp_intersect_break(ctx, right_seg,
+ left_x1, left_y1,
+ ART_BREAK_RIGHT);
+ if (left_x1 <= right_x1)
+ return ART_FALSE;
+ }
+ } else if (left_y1 > right_y1) {
+ /* Test right (x1, y1) against left segment */
+ double right_x1 = right_seg->x[1];
+
+ if (right_x1 > left_seg->x[left_seg->flags & ART_ACTIVE_FLAGS_BNEG] ||
+ right_y1 == left_seg->y0)
+ return ART_FALSE;
+ d = right_x1 * left_seg->a + right_y1 * left_seg->b + left_seg->c;
+ if (d > EPSILON_A)
+ return ART_FALSE;
+ else if (d > -EPSILON_A) {
+ left_x1 = art_svp_intersect_break(ctx, left_seg,
+ right_x1, right_y1,
+ ART_BREAK_LEFT);
+ if (left_x1 <= right_x1)
+ return ART_FALSE;
+ }
+ } else { /* left_y1 == right_y1 */
+ left_x1 = left_seg->x[1];
+ double right_x1 = right_seg->x[1];
+
+ if (left_x1 <= right_x1)
+ return ART_FALSE;
+ }
+
+ /* The segments cross. Find the intersection point. */
+
+ in_seg = left_seg->in_seg;
+ in_curs = left_seg->in_curs;
+ left_x0 = in_seg->points[in_curs - 1].x;
+ left_y0 = in_seg->points[in_curs - 1].y;
+ left_x1 = in_seg->points[in_curs].x;
+ left_y1 = in_seg->points[in_curs].y;
+ d0 = left_x0 * right_seg->a + left_y0 * right_seg->b + right_seg->c;
+ d1 = left_x1 * right_seg->a + left_y1 * right_seg->b + right_seg->c;
+ if (d0 == d1) {
+ x = left_x0;
+ y = left_y0;
+ } else {
+ /* Is this division always safe? It could possibly overflow. */
+ t = d0 / (d0 - d1);
+ if (t <= 0) {
+ x = left_x0;
+ y = left_y0;
+ } else if (t >= 1) {
+ x = left_x1;
+ y = left_y1;
+ } else {
+ x = left_x0 + t * (left_x1 - left_x0);
+ y = left_y0 + t * (left_y1 - left_y0);
+ }
+ }
+
+ /* Make sure intersection point is within bounds of right seg. */
+ if (y < right_seg->y0) {
+ x = right_seg->x[0];
+ y = right_seg->y0;
+ } else if (y > right_seg->y1) {
+ x = right_seg->x[1];
+ y = right_seg->y1;
+ } else if (x < right_seg->x[(right_seg->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1])
+ x = right_seg->x[(right_seg->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1];
+ else if (x > right_seg->x[right_seg->flags & ART_ACTIVE_FLAGS_BNEG])
+ x = right_seg->x[right_seg->flags & ART_ACTIVE_FLAGS_BNEG];
+
+ if (y == left_seg->y0) {
+ if (y != right_seg->y0) {
+ art_svp_intersect_push_pt(ctx, right_seg, x, y);
+ if ((break_flags & ART_BREAK_RIGHT) && right_seg->right != NULL)
+ art_svp_intersect_add_point(ctx, x, y, right_seg->right,
+ break_flags);
+ } else {
+ /* Intersection takes place at current scan line; process
+ immediately rather than queueing intersection point into
+ priq. */
+ ArtActiveSeg *winner, *loser;
+
+ /* Choose "most vertical" segement */
+ if (left_seg->a > right_seg->a) {
+ winner = left_seg;
+ loser = right_seg;
+ } else {
+ winner = right_seg;
+ loser = left_seg;
+ }
+
+ loser->x[0] = winner->x[0];
+ loser->horiz_x = loser->x[0];
+ loser->horiz_delta_wind += loser->delta_wind;
+ winner->horiz_delta_wind -= loser->delta_wind;
+
+ art_svp_intersect_swap_active(ctx, left_seg, right_seg);
+ return ART_TRUE;
+ }
+ } else if (y == right_seg->y0) {
+ art_svp_intersect_push_pt(ctx, left_seg, x, y);
+ if ((break_flags & ART_BREAK_LEFT) && left_seg->left != NULL)
+ art_svp_intersect_add_point(ctx, x, y, left_seg->left,
+ break_flags);
+ } else {
+ /* Insert the intersection point into both segments. */
+ art_svp_intersect_push_pt(ctx, left_seg, x, y);
+ art_svp_intersect_push_pt(ctx, right_seg, x, y);
+ if ((break_flags & ART_BREAK_LEFT) && left_seg->left != NULL)
+ art_svp_intersect_add_point(ctx, x, y, left_seg->left, break_flags);
+ if ((break_flags & ART_BREAK_RIGHT) && right_seg->right != NULL)
+ art_svp_intersect_add_point(ctx, x, y, right_seg->right, break_flags);
+ }
+ return ART_FALSE;
+}
+
+/**
+ * art_svp_intersect_active_delete: Delete segment from active list.
+ * @ctx: Intersection context.
+ * @seg: Segment to delete.
+ *
+ * Deletes @seg from the active list.
+ **/
+static void art_svp_intersect_active_delete(ArtIntersectCtx *ctx, ArtActiveSeg *seg) {
+ ArtActiveSeg *left = seg->left, *right = seg->right;
+
+ if (left != NULL)
+ left->right = right;
+ else
+ ctx->active_head = right;
+ if (right != NULL)
+ right->left = left;
+}
+
+/**
+ * art_svp_intersect_active_free: Free an active segment.
+ * @seg: Segment to delete.
+ *
+ * Frees @seg.
+ **/
+static void art_svp_intersect_active_free(ArtActiveSeg *seg) {
+ free(seg->stack);
+ free(seg);
+}
+
+/**
+ * art_svp_intersect_insert_cross: Test crossings of newly inserted line.
+ *
+ * Tests @seg against its left and right neighbors for intersections.
+ * Precondition: the line in @seg is not purely horizontal.
+ **/
+static void art_svp_intersect_insert_cross(ArtIntersectCtx *ctx,
+ ArtActiveSeg *seg) {
+ ArtActiveSeg *left = seg, *right = seg;
+
+ for (;;) {
+ if (left != NULL) {
+ ArtActiveSeg *leftc;
+
+ for (leftc = left->left; leftc != NULL; leftc = leftc->left)
+ if (!(leftc->flags & ART_ACTIVE_FLAGS_DEL))
+ break;
+ if (leftc != NULL &&
+ art_svp_intersect_test_cross(ctx, leftc, left,
+ ART_BREAK_LEFT)) {
+ if (left == right || right == NULL)
+ right = left->right;
+ } else {
+ left = NULL;
+ }
+ } else if (right != NULL && right->right != NULL) {
+ ArtActiveSeg *rightc;
+
+ for (rightc = right->right; rightc != NULL; rightc = rightc->right)
+ if (!(rightc->flags & ART_ACTIVE_FLAGS_DEL))
+ break;
+ if (rightc != NULL &&
+ art_svp_intersect_test_cross(ctx, right, rightc,
+ ART_BREAK_RIGHT)) {
+ if (left == right || left == NULL)
+ left = right->left;
+ } else {
+ right = NULL;
+ }
+ } else
+ break;
+ }
+}
+
+/**
+ * art_svp_intersect_horiz: Add horizontal line segment.
+ * @ctx: Intersector context.
+ * @seg: Segment on which to add horizontal line.
+ * @x0: Old x position.
+ * @x1: New x position.
+ *
+ * Adds a horizontal line from @x0 to @x1, and updates the current
+ * location of @seg to @x1.
+ **/
+static void art_svp_intersect_horiz(ArtIntersectCtx *ctx, ArtActiveSeg *seg,
+ double x0, double x1) {
+ ArtActiveSeg *hs;
+
+ if (x0 == x1)
+ return;
+
+ hs = art_new(ArtActiveSeg, 1);
+
+ hs->flags = ART_ACTIVE_FLAGS_DEL | (seg->flags & ART_ACTIVE_FLAGS_OUT);
+ if (seg->flags & ART_ACTIVE_FLAGS_OUT) {
+ ArtSvpWriter *swr = ctx->out;
+
+ swr->add_point(swr, seg->seg_id, x0, ctx->y);
+ }
+ hs->seg_id = seg->seg_id;
+ hs->horiz_x = x0;
+ hs->horiz_delta_wind = seg->delta_wind;
+ hs->stack = NULL;
+
+ /* Ideally, the (a, b, c) values will never be read. However, there
+ are probably some tests remaining that don't check for _DEL
+ before evaluating the line equation. For those, these
+ initializations will at least prevent a UMR of the values, which
+ can crash on some platforms. */
+ hs->a = 0.0;
+ hs->b = 0.0;
+ hs->c = 0.0;
+
+ seg->horiz_delta_wind -= seg->delta_wind;
+
+ art_svp_intersect_add_horiz(ctx, hs);
+
+ if (x0 > x1) {
+ ArtActiveSeg *left;
+ art_boolean first = ART_TRUE;
+
+ for (left = seg->left; left != NULL; left = seg->left) {
+ int left_bneg = left->flags & ART_ACTIVE_FLAGS_BNEG;
+
+ if (left->x[left_bneg] <= x1)
+ break;
+ if (left->x[left_bneg ^ 1] <= x1 &&
+ x1 *left->a + ctx->y *left->b + left->c >= 0)
+ break;
+ if (left->y0 != ctx->y && left->y1 != ctx->y) {
+ art_svp_intersect_break(ctx, left, x1, ctx->y, ART_BREAK_LEFT);
+ }
+ art_svp_intersect_swap_active(ctx, left, seg);
+ if (first && left->right != NULL) {
+ art_svp_intersect_test_cross(ctx, left, left->right,
+ ART_BREAK_RIGHT);
+ first = ART_FALSE;
+ }
+ }
+ } else {
+ ArtActiveSeg *right;
+ art_boolean first = ART_TRUE;
+
+ for (right = seg->right; right != NULL; right = seg->right) {
+ int right_bneg = right->flags & ART_ACTIVE_FLAGS_BNEG;
+
+ if (right->x[right_bneg ^ 1] >= x1)
+ break;
+ if (right->x[right_bneg] >= x1 &&
+ x1 *right->a + ctx->y *right->b + right->c <= 0)
+ break;
+ if (right->y0 != ctx->y && right->y1 != ctx->y) {
+ art_svp_intersect_break(ctx, right, x1, ctx->y,
+ ART_BREAK_LEFT);
+ }
+ art_svp_intersect_swap_active(ctx, seg, right);
+ if (first && right->left != NULL) {
+ art_svp_intersect_test_cross(ctx, right->left, right,
+ ART_BREAK_RIGHT);
+ first = ART_FALSE;
+ }
+ }
+ }
+
+ seg->x[0] = x1;
+ seg->x[1] = x1;
+ seg->horiz_x = x1;
+ seg->flags &= ~ART_ACTIVE_FLAGS_OUT;
+}
+
+/**
+ * art_svp_intersect_insert_line: Insert a line into the active list.
+ * @ctx: Intersector context.
+ * @seg: Segment containing line to insert.
+ *
+ * Inserts the line into the intersector context, taking care of any
+ * intersections, and adding the appropriate horizontal points to the
+ * active list.
+ **/
+static void art_svp_intersect_insert_line(ArtIntersectCtx *ctx, ArtActiveSeg *seg) {
+ if (seg->y1 == seg->y0) {
+ art_svp_intersect_horiz(ctx, seg, seg->x[0], seg->x[1]);
+ } else {
+ art_svp_intersect_insert_cross(ctx, seg);
+ art_svp_intersect_add_horiz(ctx, seg);
+ }
+}
+
+static void art_svp_intersect_process_intersection(ArtIntersectCtx *ctx,
+ ArtActiveSeg *seg) {
+ int n_stack = --seg->n_stack;
+ seg->x[1] = seg->stack[n_stack - 1].x;
+ seg->y1 = seg->stack[n_stack - 1].y;
+ seg->x[0] = seg->stack[n_stack].x;
+ seg->y0 = seg->stack[n_stack].y;
+ seg->horiz_x = seg->x[0];
+ art_svp_intersect_insert_line(ctx, seg);
+}
+
+static void art_svp_intersect_advance_cursor(ArtIntersectCtx *ctx, ArtActiveSeg *seg,
+ ArtPriPoint *pri_pt) {
+ const ArtSVPSeg *in_seg = seg->in_seg;
+ int in_curs = seg->in_curs;
+ ArtSvpWriter *swr = seg->flags & ART_ACTIVE_FLAGS_OUT ? ctx->out : NULL;
+
+ if (swr != NULL)
+ swr->add_point(swr, seg->seg_id, seg->x[1], seg->y1);
+ if (in_curs + 1 == in_seg->n_points) {
+ ArtActiveSeg *left = seg->left, *right = seg->right;
+
+ seg->flags |= ART_ACTIVE_FLAGS_DEL;
+ art_svp_intersect_add_horiz(ctx, seg);
+ art_svp_intersect_active_delete(ctx, seg);
+ if (left != NULL && right != NULL)
+ art_svp_intersect_test_cross(ctx, left, right,
+ (ArtBreakFlags)(ART_BREAK_LEFT | ART_BREAK_RIGHT));
+ free(pri_pt);
+ } else {
+ seg->horiz_x = seg->x[1];
+
+ art_svp_intersect_setup_seg(seg, pri_pt);
+ art_pri_insert(ctx->pq, pri_pt);
+ art_svp_intersect_insert_line(ctx, seg);
+ }
+}
+
+static void art_svp_intersect_add_seg(ArtIntersectCtx *ctx, const ArtSVPSeg *in_seg) {
+ ArtActiveSeg *seg = art_new(ArtActiveSeg, 1);
+ ArtActiveSeg *test;
+ double x0, y0;
+ ArtActiveSeg *beg_range;
+ ArtActiveSeg *last = NULL;
+ ArtActiveSeg *left, *right;
+ ArtPriPoint *pri_pt = art_new(ArtPriPoint, 1);
+
+ seg->flags = 0;
+ seg->in_seg = in_seg;
+ seg->in_curs = 0;
+
+ seg->n_stack_max = 4;
+ seg->stack = art_new(ArtPoint, seg->n_stack_max);
+
+ seg->horiz_delta_wind = 0;
+
+ seg->wind_left = 0;
+
+ pri_pt->user_data = seg;
+ art_svp_intersect_setup_seg(seg, pri_pt);
+ art_pri_insert(ctx->pq, pri_pt);
+
+ /* Find insertion place for new segment */
+ /* This is currently a left-to-right scan, but should be replaced
+ with a binary search as soon as it's validated. */
+
+ x0 = in_seg->points[0].x;
+ y0 = in_seg->points[0].y;
+ beg_range = NULL;
+ for (test = ctx->active_head; test != NULL; test = test->right) {
+ double d;
+ int test_bneg = test->flags & ART_ACTIVE_FLAGS_BNEG;
+
+ if (x0 < test->x[test_bneg]) {
+ if (x0 < test->x[test_bneg ^ 1])
+ break;
+ d = x0 * test->a + y0 * test->b + test->c;
+ if (d < 0)
+ break;
+ }
+ last = test;
+ }
+
+ left = art_svp_intersect_add_point(ctx, x0, y0, last, (ArtBreakFlags)(ART_BREAK_LEFT | ART_BREAK_RIGHT));
+ seg->left = left;
+ if (left == NULL) {
+ right = ctx->active_head;
+ ctx->active_head = seg;
+ } else {
+ right = left->right;
+ left->right = seg;
+ }
+ seg->right = right;
+ if (right != NULL)
+ right->left = seg;
+
+ seg->delta_wind = in_seg->dir ? 1 : -1;
+ seg->horiz_x = x0;
+
+ art_svp_intersect_insert_line(ctx, seg);
+}
+
+/**
+ * art_svp_intersect_horiz_commit: Commit points in horiz list to output.
+ * @ctx: Intersection context.
+ *
+ * The main function of the horizontal commit is to output new
+ * points to the output writer.
+ *
+ * This "commit" pass is also where winding numbers are assigned,
+ * because doing it here provides much greater tolerance for inputs
+ * which are not in strict SVP order.
+ *
+ * Each cluster in the horiz_list contains both segments that are in
+ * the active list (ART_ACTIVE_FLAGS_DEL is false) and that are not,
+ * and are scheduled to be deleted (ART_ACTIVE_FLAGS_DEL is true). We
+ * need to deal with both.
+ **/
+static void art_svp_intersect_horiz_commit(ArtIntersectCtx *ctx) {
+ ArtActiveSeg *seg;
+ int winding_number = 0; /* initialization just to avoid warning */
+ int horiz_wind = 0;
+ double last_x = 0; /* initialization just to avoid warning */
+
+ /* Output points to svp writer. */
+ for (seg = ctx->horiz_first; seg != NULL;) {
+ /* Find a cluster with common horiz_x, */
+ ArtActiveSeg *curs;
+ double x = seg->horiz_x;
+
+ /* Generate any horizontal segments. */
+ if (horiz_wind != 0) {
+ ArtSvpWriter *swr = ctx->out;
+ int seg_id;
+
+ seg_id = swr->add_segment(swr, winding_number, horiz_wind,
+ last_x, ctx->y);
+ swr->add_point(swr, seg_id, x, ctx->y);
+ swr->close_segment(swr, seg_id);
+ }
+
+ /* Find first active segment in cluster. */
+
+ for (curs = seg; curs != NULL && curs->horiz_x == x;
+ curs = curs->horiz_right)
+ if (!(curs->flags & ART_ACTIVE_FLAGS_DEL))
+ break;
+
+ if (curs != NULL && curs->horiz_x == x) {
+ /* There exists at least one active segment in this cluster. */
+
+ /* Find beginning of cluster. */
+ for (; curs->left != NULL; curs = curs->left)
+ if (curs->left->horiz_x != x)
+ break;
+
+ if (curs->left != NULL)
+ winding_number = curs->left->wind_left + curs->left->delta_wind;
+ else
+ winding_number = 0;
+
+ do {
+ if (!(curs->flags & ART_ACTIVE_FLAGS_OUT) ||
+ curs->wind_left != winding_number) {
+ ArtSvpWriter *swr = ctx->out;
+
+ if (curs->flags & ART_ACTIVE_FLAGS_OUT) {
+ swr->add_point(swr, curs->seg_id,
+ curs->horiz_x, ctx->y);
+ swr->close_segment(swr, curs->seg_id);
+ }
+
+ curs->seg_id = swr->add_segment(swr, winding_number,
+ curs->delta_wind,
+ x, ctx->y);
+ curs->flags |= ART_ACTIVE_FLAGS_OUT;
+ }
+ curs->wind_left = winding_number;
+ winding_number += curs->delta_wind;
+ curs = curs->right;
+ } while (curs != NULL && curs->horiz_x == x);
+ }
+
+ /* Skip past cluster. */
+ do {
+ ArtActiveSeg *next = seg->horiz_right;
+
+ seg->flags &= ~ART_ACTIVE_FLAGS_IN_HORIZ;
+ horiz_wind += seg->horiz_delta_wind;
+ seg->horiz_delta_wind = 0;
+ if (seg->flags & ART_ACTIVE_FLAGS_DEL) {
+ if (seg->flags & ART_ACTIVE_FLAGS_OUT) {
+ ArtSvpWriter *swr = ctx->out;
+ swr->close_segment(swr, seg->seg_id);
+ }
+ art_svp_intersect_active_free(seg);
+ }
+ seg = next;
+ } while (seg != NULL && seg->horiz_x == x);
+
+ last_x = x;
+ }
+ ctx->horiz_first = NULL;
+ ctx->horiz_last = NULL;
+}
+
+void art_svp_intersector(const ArtSVP *in, ArtSvpWriter *out) {
+ ArtIntersectCtx *ctx;
+ ArtPriQ *pq;
+ ArtPriPoint *first_point;
+
+ if (in->n_segs == 0)
+ return;
+
+ ctx = art_new(ArtIntersectCtx, 1);
+ ctx->in = in;
+ ctx->out = out;
+ pq = art_pri_new();
+ ctx->pq = pq;
+
+ ctx->active_head = NULL;
+
+ ctx->horiz_first = NULL;
+ ctx->horiz_last = NULL;
+
+ ctx->in_curs = 0;
+ first_point = art_new(ArtPriPoint, 1);
+ first_point->x = in->segs[0].points[0].x;
+ first_point->y = in->segs[0].points[0].y;
+ first_point->user_data = NULL;
+ ctx->y = first_point->y;
+ art_pri_insert(pq, first_point);
+
+ while (!art_pri_empty(pq)) {
+ ArtPriPoint *pri_point = art_pri_choose(pq);
+ ArtActiveSeg *seg = (ArtActiveSeg *)pri_point->user_data;
+
+ if (ctx->y != pri_point->y) {
+ art_svp_intersect_horiz_commit(ctx);
+ ctx->y = pri_point->y;
+ }
+
+ if (seg == NULL) {
+ /* Insert new segment from input */
+ const ArtSVPSeg *in_seg = &in->segs[ctx->in_curs++];
+ art_svp_intersect_add_seg(ctx, in_seg);
+ if (ctx->in_curs < in->n_segs) {
+ const ArtSVPSeg *next_seg = &in->segs[ctx->in_curs];
+ pri_point->x = next_seg->points[0].x;
+ pri_point->y = next_seg->points[0].y;
+ /* user_data is already NULL */
+ art_pri_insert(pq, pri_point);
+ } else
+ free(pri_point);
+ } else {
+ int n_stack = seg->n_stack;
+
+ if (n_stack > 1) {
+ art_svp_intersect_process_intersection(ctx, seg);
+ free(pri_point);
+ } else {
+ art_svp_intersect_advance_cursor(ctx, seg, pri_point);
+ }
+ }
+ }
+
+ art_svp_intersect_horiz_commit(ctx);
+
+ art_pri_free(pq);
+ free(ctx);
+}
+
+
+/* The spiffy antialiased renderer for sorted vector paths. */
+
+typedef double artfloat;
+
+struct _ArtSVPRenderAAIter {
+ const ArtSVP *svp;
+ int x0, x1;
+ int y;
+ int seg_ix;
+
+ int *active_segs;
+ int n_active_segs;
+ int *cursor;
+ artfloat *seg_x;
+ artfloat *seg_dx;
+
+ ArtSVPRenderAAStep *steps;
+};
+
+static void art_svp_render_insert_active(int i, int *active_segs, int n_active_segs,
+ artfloat *seg_x, artfloat *seg_dx) {
+ int j;
+ artfloat x;
+ int tmp1, tmp2;
+
+ /* this is a cheap hack to get ^'s sorted correctly */
+ x = seg_x[i] + 0.001 * seg_dx[i];
+ for (j = 0; j < n_active_segs && seg_x[active_segs[j]] < x; j++);
+
+ tmp1 = i;
+ while (j < n_active_segs) {
+ tmp2 = active_segs[j];
+ active_segs[j] = tmp1;
+ tmp1 = tmp2;
+ j++;
+ }
+ active_segs[j] = tmp1;
+}
+
+static void art_svp_render_delete_active(int *active_segs, int j, int n_active_segs) {
+ int k;
+
+ for (k = j; k < n_active_segs; k++)
+ active_segs[k] = active_segs[k + 1];
+}
+
+/* Render the sorted vector path in the given rectangle, antialiased.
+
+ This interface uses a callback for the actual pixel rendering. The
+ callback is called y1 - y0 times (once for each scan line). The y
+ coordinate is given as an argument for convenience (it could be
+ stored in the callback's private data and incremented on each
+ call).
+
+ The rendered polygon is represented in a semi-runlength format: a
+ start value and a sequence of "steps". Each step has an x
+ coordinate and a value delta. The resulting value at position x is
+ equal to the sum of the start value and all step delta values for
+ which the step x coordinate is less than or equal to x. An
+ efficient algorithm will traverse the steps left to right, keeping
+ a running sum.
+
+ All x coordinates in the steps are guaranteed to be x0 <= x < x1.
+ (This guarantee is a change from the gfonted vpaar renderer, and is
+ designed to simplify the callback).
+
+ There is now a further guarantee that no two steps will have the
+ same x value. This may allow for further speedup and simplification
+ of renderers.
+
+ The value 0x8000 represents 0% coverage by the polygon, while
+ 0xff8000 represents 100% coverage. This format is designed so that
+ >> 16 results in a standard 0x00..0xff value range, with nice
+ rounding.
+
+ Status of this routine:
+
+ Basic correctness: OK
+
+ Numerical stability: pretty good, although probably not
+ bulletproof.
+
+ Speed: Needs more aggressive culling of bounding boxes. Can
+ probably speed up the [x0,x1) clipping of step values. Can do more
+ of the step calculation in fixed point.
+
+ Precision: No known problems, although it should be tested
+ thoroughly, especially for symmetry.
+
+*/
+
+ArtSVPRenderAAIter *art_svp_render_aa_iter(const ArtSVP *svp,
+ int x0, int y0, int x1, int y1) {
+ ArtSVPRenderAAIter *iter = art_new(ArtSVPRenderAAIter, 1);
+
+ iter->svp = svp;
+ iter->y = y0;
+ iter->x0 = x0;
+ iter->x1 = x1;
+ iter->seg_ix = 0;
+
+ iter->active_segs = art_new(int, svp->n_segs);
+ iter->cursor = art_new(int, svp->n_segs);
+ iter->seg_x = art_new(artfloat, svp->n_segs);
+ iter->seg_dx = art_new(artfloat, svp->n_segs);
+ iter->steps = art_new(ArtSVPRenderAAStep, x1 - x0);
+ iter->n_active_segs = 0;
+
+ return iter;
+}
+
+#define ADD_STEP(xpos, xdelta) \
+ /* stereotype code fragment for adding a step */ \
+ if (n_steps == 0 || steps[n_steps - 1].x < xpos) \
+ { \
+ sx = n_steps; \
+ steps[sx].x = xpos; \
+ steps[sx].delta = xdelta; \
+ n_steps++; \
+ } \
+ else \
+ { \
+ for (sx = n_steps; sx > 0; sx--) \
+ { \
+ if (steps[sx - 1].x == xpos) \
+ { \
+ steps[sx - 1].delta += xdelta; \
+ sx = n_steps; \
+ break; \
+ } \
+ else if (steps[sx - 1].x < xpos) \
+ { \
+ break; \
+ } \
+ } \
+ if (sx < n_steps) \
+ { \
+ memmove (&steps[sx + 1], &steps[sx], \
+ (n_steps - sx) * sizeof(steps[0])); \
+ steps[sx].x = xpos; \
+ steps[sx].delta = xdelta; \
+ n_steps++; \
+ } \
+ }
+
+void art_svp_render_aa_iter_step(ArtSVPRenderAAIter *iter, int *p_start,
+ ArtSVPRenderAAStep **p_steps, int *p_n_steps) {
+ const ArtSVP *svp = iter->svp;
+ int *active_segs = iter->active_segs;
+ int n_active_segs = iter->n_active_segs;
+ int *cursor = iter->cursor;
+ artfloat *seg_x = iter->seg_x;
+ artfloat *seg_dx = iter->seg_dx;
+ int i = iter->seg_ix;
+ int j;
+ int x0 = iter->x0;
+ int x1 = iter->x1;
+ int y = iter->y;
+ int seg_index;
+
+ int x;
+ ArtSVPRenderAAStep *steps = iter->steps;
+ int n_steps;
+ artfloat y_top, y_bot;
+ artfloat x_top, x_bot;
+ artfloat x_min, x_max;
+ int ix_min, ix_max;
+ artfloat delta; /* delta should be int too? */
+ int last, this_;
+ int xdelta;
+ artfloat rslope, drslope;
+ int start;
+ const ArtSVPSeg *seg;
+ int curs;
+ artfloat dy;
+
+ int sx;
+
+ /* insert new active segments */
+ for (; i < svp->n_segs && svp->segs[i].bbox.y0 < y + 1; i++) {
+ if (svp->segs[i].bbox.y1 > y &&
+ svp->segs[i].bbox.x0 < x1) {
+ seg = &svp->segs[i];
+ /* move cursor to topmost vector which overlaps [y,y+1) */
+ for (curs = 0; seg->points[curs + 1].y < y; curs++);
+ cursor[i] = curs;
+ dy = seg->points[curs + 1].y - seg->points[curs].y;
+ if (fabs(dy) >= EPSILON_6)
+ seg_dx[i] = (seg->points[curs + 1].x - seg->points[curs].x) /
+ dy;
+ else
+ seg_dx[i] = 1e12;
+ seg_x[i] = seg->points[curs].x +
+ (y - seg->points[curs].y) * seg_dx[i];
+ art_svp_render_insert_active(i, active_segs, n_active_segs++,
+ seg_x, seg_dx);
+ }
+ }
+
+ n_steps = 0;
+
+ /* render the runlengths, advancing and deleting as we go */
+ start = 0x8000;
+
+ for (j = 0; j < n_active_segs; j++) {
+ seg_index = active_segs[j];
+ seg = &svp->segs[seg_index];
+ curs = cursor[seg_index];
+ while (curs != seg->n_points - 1 &&
+ seg->points[curs].y < y + 1) {
+ y_top = y;
+ if (y_top < seg->points[curs].y)
+ y_top = seg->points[curs].y;
+ y_bot = y + 1;
+ if (y_bot > seg->points[curs + 1].y)
+ y_bot = seg->points[curs + 1].y;
+ if (y_top != y_bot) {
+ delta = (seg->dir ? 16711680.0 : -16711680.0) *
+ (y_bot - y_top);
+ x_top = seg_x[seg_index] + (y_top - y) * seg_dx[seg_index];
+ x_bot = seg_x[seg_index] + (y_bot - y) * seg_dx[seg_index];
+ if (x_top < x_bot) {
+ x_min = x_top;
+ x_max = x_bot;
+ } else {
+ x_min = x_bot;
+ x_max = x_top;
+ }
+ ix_min = (int)floor(x_min);
+ ix_max = (int)floor(x_max);
+ if (ix_min >= x1) {
+ /* skip; it starts to the right of the render region */
+ } else if (ix_max < x0)
+ /* it ends to the left of the render region */
+ start += (int)delta;
+ else if (ix_min == ix_max) {
+ /* case 1, antialias a single pixel */
+ xdelta = (ix_min + 1 - (x_min + x_max) * 0.5) * delta;
+
+ ADD_STEP(ix_min, xdelta)
+
+ if (ix_min + 1 < x1) {
+ xdelta = delta - xdelta;
+
+ ADD_STEP(ix_min + 1, xdelta)
+ }
+ } else {
+ /* case 2, antialias a run */
+ rslope = 1.0 / fabs(seg_dx[seg_index]);
+ drslope = delta * rslope;
+ last =
+ drslope * 0.5 *
+ (ix_min + 1 - x_min) * (ix_min + 1 - x_min);
+ xdelta = last;
+ if (ix_min >= x0) {
+ ADD_STEP(ix_min, xdelta)
+
+ x = ix_min + 1;
+ } else {
+ start += last;
+ x = x0;
+ }
+ if (ix_max > x1)
+ ix_max = x1;
+ for (; x < ix_max; x++) {
+ this_ = (seg->dir ? 16711680.0 : -16711680.0) * rslope *
+ (x + 0.5 - x_min);
+ xdelta = this_ - last;
+ last = this_;
+
+ ADD_STEP(x, xdelta)
+ }
+ if (x < x1) {
+ this_ =
+ delta * (1 - 0.5 *
+ (x_max - ix_max) * (x_max - ix_max) *
+ rslope);
+ xdelta = this_ - last;
+ last = this_;
+
+ ADD_STEP(x, xdelta)
+
+ if (x + 1 < x1) {
+ xdelta = delta - last;
+
+ ADD_STEP(x + 1, xdelta)
+ }
+ }
+ }
+ }
+ curs++;
+ if (curs != seg->n_points - 1 &&
+ seg->points[curs].y < y + 1) {
+ dy = seg->points[curs + 1].y - seg->points[curs].y;
+ if (fabs(dy) >= EPSILON_6)
+ seg_dx[seg_index] = (seg->points[curs + 1].x -
+ seg->points[curs].x) / dy;
+ else
+ seg_dx[seg_index] = 1e12;
+ seg_x[seg_index] = seg->points[curs].x +
+ (y - seg->points[curs].y) * seg_dx[seg_index];
+ }
+ /* break here, instead of duplicating predicate in while? */
+ }
+ if (seg->points[curs].y >= y + 1) {
+ curs--;
+ cursor[seg_index] = curs;
+ seg_x[seg_index] += seg_dx[seg_index];
+ } else {
+ art_svp_render_delete_active(active_segs, j--,
+ --n_active_segs);
+ }
+ }
+
+ *p_start = start;
+ *p_steps = steps;
+ *p_n_steps = n_steps;
+
+ iter->seg_ix = i;
+ iter->n_active_segs = n_active_segs;
+ iter->y++;
+}
+
+void art_svp_render_aa_iter_done(ArtSVPRenderAAIter *iter) {
+ free(iter->steps);
+
+ free(iter->seg_dx);
+ free(iter->seg_x);
+ free(iter->cursor);
+ free(iter->active_segs);
+ free(iter);
+}
+
+/**
+ * art_svp_render_aa: Render SVP antialiased.
+ * @svp: The #ArtSVP to render.
+ * @x0: Left coordinate of destination rectangle.
+ * @y0: Top coordinate of destination rectangle.
+ * @x1: Right coordinate of destination rectangle.
+ * @y1: Bottom coordinate of destination rectangle.
+ * @callback: The callback which actually paints the pixels.
+ * @callback_data: Private data for @callback.
+ *
+ * Renders the sorted vector path in the given rectangle, antialiased.
+ *
+ * This interface uses a callback for the actual pixel rendering. The
+ * callback is called @y1 - @y0 times (once for each scan line). The y
+ * coordinate is given as an argument for convenience (it could be
+ * stored in the callback's private data and incremented on each
+ * call).
+ *
+ * The rendered polygon is represented in a semi-runlength format: a
+ * start value and a sequence of "steps". Each step has an x
+ * coordinate and a value delta. The resulting value at position x is
+ * equal to the sum of the start value and all step delta values for
+ * which the step x coordinate is less than or equal to x. An
+ * efficient algorithm will traverse the steps left to right, keeping
+ * a running sum.
+ *
+ * All x coordinates in the steps are guaranteed to be @x0 <= x < @x1.
+ * (This guarantee is a change from the gfonted vpaar renderer from
+ * which this routine is derived, and is designed to simplify the
+ * callback).
+ *
+ * The value 0x8000 represents 0% coverage by the polygon, while
+ * 0xff8000 represents 100% coverage. This format is designed so that
+ * >> 16 results in a standard 0x00..0xff value range, with nice
+ * rounding.
+ *
+ **/
+void art_svp_render_aa(const ArtSVP *svp,
+ int x0, int y0, int x1, int y1,
+ void (*callback)(void *callback_data,
+ int y,
+ int start,
+ ArtSVPRenderAAStep *steps, int n_steps),
+ void *callback_data) {
+ ArtSVPRenderAAIter *iter;
+ int y;
+ int start;
+ ArtSVPRenderAAStep *steps;
+ int n_steps;
+
+ iter = art_svp_render_aa_iter(svp, x0, y0, x1, y1);
+
+
+ for (y = y0; y < y1; y++) {
+ art_svp_render_aa_iter_step(iter, &start, &steps, &n_steps);
+ (*callback)(callback_data, y, start, steps, n_steps);
+ }
+
+ art_svp_render_aa_iter_done(iter);
+}
diff --git a/engines/sword25/gfx/image/art.h b/engines/sword25/gfx/image/art.h
index 5888814e77..f0d0d7cacc 100644
--- a/engines/sword25/gfx/image/art.h
+++ b/engines/sword25/gfx/image/art.h
@@ -86,8 +86,6 @@ art_die(const char *fmt, ...) ART_GNUC_PRINTF(1, 2);
void
art_warn(const char *fmt, ...) ART_GNUC_PRINTF(1, 2);
-#define ART_USE_NEW_INTERSECTOR
-
typedef struct _ArtDRect ArtDRect;
typedef struct _ArtIRect ArtIRect;
@@ -173,4 +171,106 @@ art_vpath_add_point(ArtVpath **p_vpath, int *pn_points, int *pn_points_max,
ArtVpath *art_bez_path_to_vec(const ArtBpath *bez, double flatness);
+/* The funky new SVP intersector. */
+
+#ifndef ART_WIND_RULE_DEFINED
+#define ART_WIND_RULE_DEFINED
+typedef enum {
+ ART_WIND_RULE_NONZERO,
+ ART_WIND_RULE_INTERSECT,
+ ART_WIND_RULE_ODDEVEN,
+ ART_WIND_RULE_POSITIVE
+} ArtWindRule;
+#endif
+
+typedef struct _ArtSvpWriter ArtSvpWriter;
+
+struct _ArtSvpWriter {
+ int (*add_segment)(ArtSvpWriter *self, int wind_left, int delta_wind,
+ double x, double y);
+ void (*add_point)(ArtSvpWriter *self, int seg_id, double x, double y);
+ void (*close_segment)(ArtSvpWriter *self, int seg_id);
+};
+
+ArtSvpWriter *
+art_svp_writer_rewind_new(ArtWindRule rule);
+
+ArtSVP *
+art_svp_writer_rewind_reap(ArtSvpWriter *self);
+
+int
+art_svp_seg_compare(const void *s1, const void *s2);
+
+void
+art_svp_intersector(const ArtSVP *in, ArtSvpWriter *out);
+
+
+/* Sort vector paths into sorted vector paths. */
+
+ArtSVP *
+art_svp_from_vpath(ArtVpath *vpath);
+
+/* Sort vector paths into sorted vector paths. */
+
+typedef enum {
+ ART_PATH_STROKE_JOIN_MITER,
+ ART_PATH_STROKE_JOIN_ROUND,
+ ART_PATH_STROKE_JOIN_BEVEL
+} ArtPathStrokeJoinType;
+
+typedef enum {
+ ART_PATH_STROKE_CAP_BUTT,
+ ART_PATH_STROKE_CAP_ROUND,
+ ART_PATH_STROKE_CAP_SQUARE
+} ArtPathStrokeCapType;
+
+ArtSVP *
+art_svp_vpath_stroke(ArtVpath *vpath,
+ ArtPathStrokeJoinType join,
+ ArtPathStrokeCapType cap,
+ double line_width,
+ double miter_limit,
+ double flatness);
+
+/* This version may have winding numbers exceeding 1. */
+ArtVpath *
+art_svp_vpath_stroke_raw(ArtVpath *vpath,
+ ArtPathStrokeJoinType join,
+ ArtPathStrokeCapType cap,
+ double line_width,
+ double miter_limit,
+ double flatness);
+
+
+/* The spiffy antialiased renderer for sorted vector paths. */
+
+typedef struct _ArtSVPRenderAAStep ArtSVPRenderAAStep;
+typedef struct _ArtSVPRenderAAIter ArtSVPRenderAAIter;
+
+struct _ArtSVPRenderAAStep {
+ int x;
+ int delta; /* stored with 16 fractional bits */
+};
+
+ArtSVPRenderAAIter *
+art_svp_render_aa_iter(const ArtSVP *svp,
+ int x0, int y0, int x1, int y1);
+
+void
+art_svp_render_aa_iter_step(ArtSVPRenderAAIter *iter, int *p_start,
+ ArtSVPRenderAAStep **p_steps, int *p_n_steps);
+
+void
+art_svp_render_aa_iter_done(ArtSVPRenderAAIter *iter);
+
+void
+art_svp_render_aa(const ArtSVP *svp,
+ int x0, int y0, int x1, int y1,
+ void (*callback)(void *callback_data,
+ int y,
+ int start,
+ ArtSVPRenderAAStep *steps, int n_steps),
+ void *callback_data);
+
+
#endif /* __ART_MISC_H__ */
diff --git a/engines/sword25/gfx/image/art_svp_intersect.cpp b/engines/sword25/gfx/image/art_svp_intersect.cpp
deleted file mode 100644
index db0b5643d4..0000000000
--- a/engines/sword25/gfx/image/art_svp_intersect.cpp
+++ /dev/null
@@ -1,1344 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-/* This file contains a testbed implementation of the new intersection
- code.
-*/
-
-#include "art.h"
-#include "art_svp_intersect.h"
-
-#include <math.h> /* for sqrt */
-
-/* This can be used in production, to prevent hangs. Eventually, it
- should not be necessary. */
-#define CHEAP_SANITYCHECK
-
-/* A priority queue - perhaps move to a separate file if it becomes
- needed somewhere else */
-
-#define ART_PRIQ_USE_HEAP
-
-typedef struct _ArtPriQ ArtPriQ;
-typedef struct _ArtPriPoint ArtPriPoint;
-
-struct _ArtPriQ {
- int n_items;
- int n_items_max;
- ArtPriPoint **items;
-};
-
-struct _ArtPriPoint {
- double x;
- double y;
- void *user_data;
-};
-
-static ArtPriQ *
-art_pri_new(void) {
- ArtPriQ *result = art_new(ArtPriQ, 1);
-
- result->n_items = 0;
- result->n_items_max = 16;
- result->items = art_new(ArtPriPoint *, result->n_items_max);
- return result;
-}
-
-static void
-art_pri_free(ArtPriQ *pq) {
- free(pq->items);
- free(pq);
-}
-
-static art_boolean
-art_pri_empty(ArtPriQ *pq) {
- return pq->n_items == 0;
-}
-
-#ifdef ART_PRIQ_USE_HEAP
-
-/* This heap implementation is based on Vasek Chvatal's course notes:
- http://www.cs.rutgers.edu/~chvatal/notes/pq.html#heap */
-
-static void
-art_pri_bubble_up(ArtPriQ *pq, int vacant, ArtPriPoint *missing) {
- ArtPriPoint **items = pq->items;
- int parent;
-
- parent = (vacant - 1) >> 1;
- while (vacant > 0 && (missing->y < items[parent]->y ||
- (missing->y == items[parent]->y &&
- missing->x < items[parent]->x))) {
- items[vacant] = items[parent];
- vacant = parent;
- parent = (vacant - 1) >> 1;
- }
-
- items[vacant] = missing;
-}
-
-static void
-art_pri_insert(ArtPriQ *pq, ArtPriPoint *point) {
- if (pq->n_items == pq->n_items_max)
- art_expand(pq->items, ArtPriPoint *, pq->n_items_max);
-
- art_pri_bubble_up(pq, pq->n_items++, point);
-}
-
-static void
-art_pri_sift_down_from_root(ArtPriQ *pq, ArtPriPoint *missing) {
- ArtPriPoint **items = pq->items;
- int vacant = 0, child = 2;
- int n = pq->n_items;
-
- while (child < n) {
- if (items[child - 1]->y < items[child]->y ||
- (items[child - 1]->y == items[child]->y &&
- items[child - 1]->x < items[child]->x))
- child--;
- items[vacant] = items[child];
- vacant = child;
- child = (vacant + 1) << 1;
- }
- if (child == n) {
- items[vacant] = items[n - 1];
- vacant = n - 1;
- }
-
- art_pri_bubble_up(pq, vacant, missing);
-}
-
-static ArtPriPoint *
-art_pri_choose(ArtPriQ *pq) {
- ArtPriPoint *result = pq->items[0];
-
- art_pri_sift_down_from_root(pq, pq->items[--pq->n_items]);
- return result;
-}
-
-#else
-
-/* Choose least point in queue */
-static ArtPriPoint *
-art_pri_choose(ArtPriQ *pq) {
- int i;
- int best = 0;
- double best_x, best_y;
- double y;
- ArtPriPoint *result;
-
- if (pq->n_items == 0)
- return NULL;
-
- best_x = pq->items[best]->x;
- best_y = pq->items[best]->y;
-
- for (i = 1; i < pq->n_items; i++) {
- y = pq->items[i]->y;
- if (y < best_y || (y == best_y && pq->items[i]->x < best_x)) {
- best = i;
- best_x = pq->items[best]->x;
- best_y = y;
- }
- }
- result = pq->items[best];
- pq->items[best] = pq->items[--pq->n_items];
- return result;
-}
-
-static void
-art_pri_insert(ArtPriQ *pq, ArtPriPoint *point) {
- if (pq->n_items == pq->n_items_max)
- art_expand(pq->items, ArtPriPoint *, pq->n_items_max);
-
- pq->items[pq->n_items++] = point;
-}
-
-#endif
-
-/* A virtual class for an "svp writer". A client of this object creates an
- SVP by repeatedly calling "add segment" and "add point" methods on it.
-*/
-
-typedef struct _ArtSvpWriterRewind ArtSvpWriterRewind;
-
-/* An implementation of the svp writer virtual class that applies the
- winding rule. */
-
-struct _ArtSvpWriterRewind {
- ArtSvpWriter super;
- ArtWindRule rule;
- ArtSVP *svp;
- int n_segs_max;
- int *n_points_max;
-};
-
-static int
-art_svp_writer_rewind_add_segment(ArtSvpWriter *self, int wind_left,
- int delta_wind, double x, double y) {
- ArtSvpWriterRewind *swr = (ArtSvpWriterRewind *)self;
- ArtSVP *svp;
- ArtSVPSeg *seg;
- art_boolean left_filled, right_filled;
- int wind_right = wind_left + delta_wind;
- int seg_num;
- const int init_n_points_max = 4;
-
- switch (swr->rule) {
- case ART_WIND_RULE_NONZERO:
- left_filled = (wind_left != 0);
- right_filled = (wind_right != 0);
- break;
- case ART_WIND_RULE_INTERSECT:
- left_filled = (wind_left > 1);
- right_filled = (wind_right > 1);
- break;
- case ART_WIND_RULE_ODDEVEN:
- left_filled = (wind_left & 1);
- right_filled = (wind_right & 1);
- break;
- case ART_WIND_RULE_POSITIVE:
- left_filled = (wind_left > 0);
- right_filled = (wind_right > 0);
- break;
- default:
- art_die("Unknown wind rule %d\n", swr->rule);
- }
- if (left_filled == right_filled) {
- /* discard segment now */
- return -1;
- }
-
- svp = swr->svp;
- seg_num = svp->n_segs++;
- if (swr->n_segs_max == seg_num) {
- swr->n_segs_max <<= 1;
- svp = (ArtSVP *)realloc(svp, sizeof(ArtSVP) +
- (swr->n_segs_max - 1) *
- sizeof(ArtSVPSeg));
- swr->svp = svp;
- swr->n_points_max = art_renew(swr->n_points_max, int,
- swr->n_segs_max);
- }
- seg = &svp->segs[seg_num];
- seg->n_points = 1;
- seg->dir = right_filled;
- swr->n_points_max[seg_num] = init_n_points_max;
- seg->bbox.x0 = x;
- seg->bbox.y0 = y;
- seg->bbox.x1 = x;
- seg->bbox.y1 = y;
- seg->points = art_new(ArtPoint, init_n_points_max);
- seg->points[0].x = x;
- seg->points[0].y = y;
- return seg_num;
-}
-
-static void
-art_svp_writer_rewind_add_point(ArtSvpWriter *self, int seg_id,
- double x, double y) {
- ArtSvpWriterRewind *swr = (ArtSvpWriterRewind *)self;
- ArtSVPSeg *seg;
- int n_points;
-
- if (seg_id < 0)
- /* omitted segment */
- return;
-
- seg = &swr->svp->segs[seg_id];
- n_points = seg->n_points++;
- if (swr->n_points_max[seg_id] == n_points)
- art_expand(seg->points, ArtPoint, swr->n_points_max[seg_id]);
- seg->points[n_points].x = x;
- seg->points[n_points].y = y;
- if (x < seg->bbox.x0)
- seg->bbox.x0 = x;
- if (x > seg->bbox.x1)
- seg->bbox.x1 = x;
- seg->bbox.y1 = y;
-}
-
-static void
-art_svp_writer_rewind_close_segment(ArtSvpWriter *self, int seg_id) {
- /* Not needed for this simple implementation. A potential future
- optimization is to merge segments that can be merged safely. */
-}
-
-ArtSVP *
-art_svp_writer_rewind_reap(ArtSvpWriter *self) {
- ArtSvpWriterRewind *swr = (ArtSvpWriterRewind *)self;
- ArtSVP *result = swr->svp;
-
- free(swr->n_points_max);
- free(swr);
- return result;
-}
-
-ArtSvpWriter *
-art_svp_writer_rewind_new(ArtWindRule rule) {
- ArtSvpWriterRewind *result = art_new(ArtSvpWriterRewind, 1);
-
- result->super.add_segment = art_svp_writer_rewind_add_segment;
- result->super.add_point = art_svp_writer_rewind_add_point;
- result->super.close_segment = art_svp_writer_rewind_close_segment;
-
- result->rule = rule;
- result->n_segs_max = 16;
- result->svp = (ArtSVP *)malloc(sizeof(ArtSVP) +
- (result->n_segs_max - 1) * sizeof(ArtSVPSeg));
- result->svp->n_segs = 0;
- result->n_points_max = art_new(int, result->n_segs_max);
-
- return &result->super;
-}
-
-/* Now, data structures for the active list */
-
-typedef struct _ArtActiveSeg ArtActiveSeg;
-
-/* Note: BNEG is 1 for \ lines, and 0 for /. Thus,
- x[(flags & BNEG) ^ 1] <= x[flags & BNEG] */
-#define ART_ACTIVE_FLAGS_BNEG 1
-
-/* This flag is set if the segment has been inserted into the active
- list. */
-#define ART_ACTIVE_FLAGS_IN_ACTIVE 2
-
-/* This flag is set when the segment is to be deleted in the
- horiz commit process. */
-#define ART_ACTIVE_FLAGS_DEL 4
-
-/* This flag is set if the seg_id is a valid output segment. */
-#define ART_ACTIVE_FLAGS_OUT 8
-
-/* This flag is set if the segment is in the horiz list. */
-#define ART_ACTIVE_FLAGS_IN_HORIZ 16
-
-struct _ArtActiveSeg {
- int flags;
- int wind_left, delta_wind;
- ArtActiveSeg *left, *right; /* doubly linked list structure */
-
- const ArtSVPSeg *in_seg;
- int in_curs;
-
- double x[2];
- double y0, y1;
- double a, b, c; /* line equation; ax+by+c = 0 for the line, a^2 + b^2 = 1,
- and a>0 */
-
- /* bottom point and intersection point stack */
- int n_stack;
- int n_stack_max;
- ArtPoint *stack;
-
- /* horiz commit list */
- ArtActiveSeg *horiz_left, *horiz_right;
- double horiz_x;
- int horiz_delta_wind;
- int seg_id;
-};
-
-typedef struct _ArtIntersectCtx ArtIntersectCtx;
-
-struct _ArtIntersectCtx {
- const ArtSVP *in;
- ArtSvpWriter *out;
-
- ArtPriQ *pq;
-
- ArtActiveSeg *active_head;
-
- double y;
- ArtActiveSeg *horiz_first;
- ArtActiveSeg *horiz_last;
-
- /* segment index of next input segment to be added to pri q */
- int in_curs;
-};
-
-#define EPSILON_A 1e-5 /* Threshold for breaking lines at point insertions */
-
-/**
- * art_svp_intersect_setup_seg: Set up an active segment from input segment.
- * @seg: Active segment.
- * @pri_pt: Priority queue point to initialize.
- *
- * Sets the x[], a, b, c, flags, and stack fields according to the
- * line from the current cursor value. Sets the priority queue point
- * to the bottom point of this line. Also advances the input segment
- * cursor.
- **/
-static void
-art_svp_intersect_setup_seg(ArtActiveSeg *seg, ArtPriPoint *pri_pt) {
- const ArtSVPSeg *in_seg = seg->in_seg;
- int in_curs = seg->in_curs++;
- double x0, y0, x1, y1;
- double dx, dy, s;
- double a, b, r2;
-
- x0 = in_seg->points[in_curs].x;
- y0 = in_seg->points[in_curs].y;
- x1 = in_seg->points[in_curs + 1].x;
- y1 = in_seg->points[in_curs + 1].y;
- pri_pt->x = x1;
- pri_pt->y = y1;
- dx = x1 - x0;
- dy = y1 - y0;
- r2 = dx * dx + dy * dy;
- s = r2 == 0 ? 1 : 1 / sqrt(r2);
- seg->a = a = dy * s;
- seg->b = b = -dx * s;
- seg->c = -(a * x0 + b * y0);
- seg->flags = (seg->flags & ~ART_ACTIVE_FLAGS_BNEG) | (dx > 0);
- seg->x[0] = x0;
- seg->x[1] = x1;
- seg->y0 = y0;
- seg->y1 = y1;
- seg->n_stack = 1;
- seg->stack[0].x = x1;
- seg->stack[0].y = y1;
-}
-
-/**
- * art_svp_intersect_add_horiz: Add point to horizontal list.
- * @ctx: Intersector context.
- * @seg: Segment with point to insert into horizontal list.
- *
- * Inserts @seg into horizontal list, keeping it in ascending horiz_x
- * order.
- *
- * Note: the horiz_commit routine processes "clusters" of segs in the
- * horiz list, all sharing the same horiz_x value. The cluster is
- * processed in active list order, rather than horiz list order. Thus,
- * the order of segs in the horiz list sharing the same horiz_x
- * _should_ be irrelevant. Even so, we use b as a secondary sorting key,
- * as a "belt and suspenders" defensive coding tactic.
- **/
-static void
-art_svp_intersect_add_horiz(ArtIntersectCtx *ctx, ArtActiveSeg *seg) {
- ArtActiveSeg **pp = &ctx->horiz_last;
- ArtActiveSeg *place;
- ArtActiveSeg *place_right = NULL;
-
-
-#ifdef CHEAP_SANITYCHECK
- if (seg->flags & ART_ACTIVE_FLAGS_IN_HORIZ) {
- art_warn("*** attempt to put segment in horiz list twice\n");
- return;
- }
- seg->flags |= ART_ACTIVE_FLAGS_IN_HORIZ;
-#endif
-
- for (place = *pp; place != NULL && (place->horiz_x > seg->horiz_x ||
- (place->horiz_x == seg->horiz_x &&
- place->b < seg->b));
- place = *pp) {
- place_right = place;
- pp = &place->horiz_left;
- }
- *pp = seg;
- seg->horiz_left = place;
- seg->horiz_right = place_right;
- if (place == NULL)
- ctx->horiz_first = seg;
- else
- place->horiz_right = seg;
-}
-
-static void
-art_svp_intersect_push_pt(ArtIntersectCtx *ctx, ArtActiveSeg *seg,
- double x, double y) {
- ArtPriPoint *pri_pt;
- int n_stack = seg->n_stack;
-
- if (n_stack == seg->n_stack_max)
- art_expand(seg->stack, ArtPoint, seg->n_stack_max);
- seg->stack[n_stack].x = x;
- seg->stack[n_stack].y = y;
- seg->n_stack++;
-
- seg->x[1] = x;
- seg->y1 = y;
-
- pri_pt = art_new(ArtPriPoint, 1);
- pri_pt->x = x;
- pri_pt->y = y;
- pri_pt->user_data = seg;
- art_pri_insert(ctx->pq, pri_pt);
-}
-
-typedef enum {
- ART_BREAK_LEFT = 1,
- ART_BREAK_RIGHT = 2
-} ArtBreakFlags;
-
-/**
- * art_svp_intersect_break: Break an active segment.
- *
- * Note: y must be greater than the top point's y, and less than
- * the bottom's.
- *
- * Return value: x coordinate of break point.
- */
-static double
-art_svp_intersect_break(ArtIntersectCtx *ctx, ArtActiveSeg *seg,
- double x_ref, double y, ArtBreakFlags break_flags) {
- double x0, y0, x1, y1;
- const ArtSVPSeg *in_seg = seg->in_seg;
- int in_curs = seg->in_curs;
- double x;
-
- x0 = in_seg->points[in_curs - 1].x;
- y0 = in_seg->points[in_curs - 1].y;
- x1 = in_seg->points[in_curs].x;
- y1 = in_seg->points[in_curs].y;
- x = x0 + (x1 - x0) * ((y - y0) / (y1 - y0));
- if ((break_flags == ART_BREAK_LEFT && x > x_ref) ||
- (break_flags == ART_BREAK_RIGHT && x < x_ref)) {
- }
-
- /* I think we can count on min(x0, x1) <= x <= max(x0, x1) with sane
- arithmetic, but it might be worthwhile to check just in case. */
-
- if (y > ctx->y)
- art_svp_intersect_push_pt(ctx, seg, x, y);
- else {
- seg->x[0] = x;
- seg->y0 = y;
- seg->horiz_x = x;
- art_svp_intersect_add_horiz(ctx, seg);
- }
-
- return x;
-}
-
-/**
- * art_svp_intersect_add_point: Add a point, breaking nearby neighbors.
- * @ctx: Intersector context.
- * @x: X coordinate of point to add.
- * @y: Y coordinate of point to add.
- * @seg: "nearby" segment, or NULL if leftmost.
- *
- * Return value: Segment immediately to the left of the new point, or
- * NULL if the new point is leftmost.
- **/
-static ArtActiveSeg *
-art_svp_intersect_add_point(ArtIntersectCtx *ctx, double x, double y,
- ArtActiveSeg *seg, ArtBreakFlags break_flags) {
- ArtActiveSeg *left, *right;
- double x_min = x, x_max = x;
- art_boolean left_live, right_live;
- double d;
- double new_x;
- ArtActiveSeg *test, *result = NULL;
- double x_test;
-
- left = seg;
- if (left == NULL)
- right = ctx->active_head;
- else
- right = left->right;
- left_live = (break_flags & ART_BREAK_LEFT) && (left != NULL);
- right_live = (break_flags & ART_BREAK_RIGHT) && (right != NULL);
- while (left_live || right_live) {
- if (left_live) {
- if (x <= left->x[left->flags & ART_ACTIVE_FLAGS_BNEG] &&
- /* It may be that one of these conjuncts turns out to be always
- true. We test both anyway, to be defensive. */
- y != left->y0 && y < left->y1) {
- d = x_min * left->a + y * left->b + left->c;
- if (d < EPSILON_A) {
- new_x = art_svp_intersect_break(ctx, left, x_min, y,
- ART_BREAK_LEFT);
- if (new_x > x_max) {
- x_max = new_x;
- right_live = (right != NULL);
- } else if (new_x < x_min)
- x_min = new_x;
- left = left->left;
- left_live = (left != NULL);
- } else
- left_live = ART_FALSE;
- } else
- left_live = ART_FALSE;
- } else if (right_live) {
- if (x >= right->x[(right->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1] &&
- /* It may be that one of these conjuncts turns out to be always
- true. We test both anyway, to be defensive. */
- y != right->y0 && y < right->y1) {
- d = x_max * right->a + y * right->b + right->c;
- if (d > -EPSILON_A) {
- new_x = art_svp_intersect_break(ctx, right, x_max, y,
- ART_BREAK_RIGHT);
- if (new_x < x_min) {
- x_min = new_x;
- left_live = (left != NULL);
- } else if (new_x >= x_max)
- x_max = new_x;
- right = right->right;
- right_live = (right != NULL);
- } else
- right_live = ART_FALSE;
- } else
- right_live = ART_FALSE;
- }
- }
-
- /* Ascending order is guaranteed by break_flags. Thus, we don't need
- to actually fix up non-ascending pairs. */
-
- /* Now, (left, right) defines an interval of segments broken. Sort
- into ascending x order. */
- test = left == NULL ? ctx->active_head : left->right;
- result = left;
- if (test != NULL && test != right) {
- if (y == test->y0)
- x_test = test->x[0];
- else /* assert y == test->y1, I think */
- x_test = test->x[1];
- for (;;) {
- if (x_test <= x)
- result = test;
- test = test->right;
- if (test == right)
- break;
- new_x = x_test;
- if (new_x < x_test) {
- art_warn("art_svp_intersect_add_point: non-ascending x\n");
- }
- x_test = new_x;
- }
- }
- return result;
-}
-
-static void
-art_svp_intersect_swap_active(ArtIntersectCtx *ctx,
- ArtActiveSeg *left_seg, ArtActiveSeg *right_seg) {
- right_seg->left = left_seg->left;
- if (right_seg->left != NULL)
- right_seg->left->right = right_seg;
- else
- ctx->active_head = right_seg;
- left_seg->right = right_seg->right;
- if (left_seg->right != NULL)
- left_seg->right->left = left_seg;
- left_seg->left = right_seg;
- right_seg->right = left_seg;
-}
-
-/**
- * art_svp_intersect_test_cross: Test crossing of a pair of active segments.
- * @ctx: Intersector context.
- * @left_seg: Left segment of the pair.
- * @right_seg: Right segment of the pair.
- * @break_flags: Flags indicating whether to break neighbors.
- *
- * Tests crossing of @left_seg and @right_seg. If there is a crossing,
- * inserts the intersection point into both segments.
- *
- * Return value: True if the intersection took place at the current
- * scan line, indicating further iteration is needed.
- **/
-static art_boolean
-art_svp_intersect_test_cross(ArtIntersectCtx *ctx,
- ArtActiveSeg *left_seg, ArtActiveSeg *right_seg,
- ArtBreakFlags break_flags) {
- double left_x0, left_y0, left_x1;
- double left_y1 = left_seg->y1;
- double right_y1 = right_seg->y1;
- double d;
-
- const ArtSVPSeg *in_seg;
- int in_curs;
- double d0, d1, t;
- double x, y; /* intersection point */
-
- if (left_seg->y0 == right_seg->y0 && left_seg->x[0] == right_seg->x[0]) {
- /* Top points of left and right segments coincide. This case
- feels like a bit of duplication - we may want to merge it
- with the cases below. However, this way, we're sure that this
- logic makes only localized changes. */
-
- if (left_y1 < right_y1) {
- /* Test left (x1, y1) against right segment */
- left_x1 = left_seg->x[1];
-
- if (left_x1 <
- right_seg->x[(right_seg->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1] ||
- left_y1 == right_seg->y0)
- return ART_FALSE;
- d = left_x1 * right_seg->a + left_y1 * right_seg->b + right_seg->c;
- if (d < -EPSILON_A)
- return ART_FALSE;
- else if (d < EPSILON_A) {
- /* I'm unsure about the break flags here. */
- double right_x1 = art_svp_intersect_break(ctx, right_seg,
- left_x1, left_y1,
- ART_BREAK_RIGHT);
- if (left_x1 <= right_x1)
- return ART_FALSE;
- }
- } else if (left_y1 > right_y1) {
- /* Test right (x1, y1) against left segment */
- double right_x1 = right_seg->x[1];
-
- if (right_x1 > left_seg->x[left_seg->flags & ART_ACTIVE_FLAGS_BNEG] ||
- right_y1 == left_seg->y0)
- return ART_FALSE;
- d = right_x1 * left_seg->a + right_y1 * left_seg->b + left_seg->c;
- if (d > EPSILON_A)
- return ART_FALSE;
- else if (d > -EPSILON_A) {
- /* See above regarding break flags. */
- left_x1 = art_svp_intersect_break(ctx, left_seg,
- right_x1, right_y1,
- ART_BREAK_LEFT);
- if (left_x1 <= right_x1)
- return ART_FALSE;
- }
- } else { /* left_y1 == right_y1 */
- left_x1 = left_seg->x[1];
- double right_x1 = right_seg->x[1];
-
- if (left_x1 <= right_x1)
- return ART_FALSE;
- }
- art_svp_intersect_swap_active(ctx, left_seg, right_seg);
- return ART_TRUE;
- }
-
- if (left_y1 < right_y1) {
- /* Test left (x1, y1) against right segment */
- left_x1 = left_seg->x[1];
-
- if (left_x1 <
- right_seg->x[(right_seg->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1] ||
- left_y1 == right_seg->y0)
- return ART_FALSE;
- d = left_x1 * right_seg->a + left_y1 * right_seg->b + right_seg->c;
- if (d < -EPSILON_A)
- return ART_FALSE;
- else if (d < EPSILON_A) {
- double right_x1 = art_svp_intersect_break(ctx, right_seg,
- left_x1, left_y1,
- ART_BREAK_RIGHT);
- if (left_x1 <= right_x1)
- return ART_FALSE;
- }
- } else if (left_y1 > right_y1) {
- /* Test right (x1, y1) against left segment */
- double right_x1 = right_seg->x[1];
-
- if (right_x1 > left_seg->x[left_seg->flags & ART_ACTIVE_FLAGS_BNEG] ||
- right_y1 == left_seg->y0)
- return ART_FALSE;
- d = right_x1 * left_seg->a + right_y1 * left_seg->b + left_seg->c;
- if (d > EPSILON_A)
- return ART_FALSE;
- else if (d > -EPSILON_A) {
- left_x1 = art_svp_intersect_break(ctx, left_seg,
- right_x1, right_y1,
- ART_BREAK_LEFT);
- if (left_x1 <= right_x1)
- return ART_FALSE;
- }
- } else { /* left_y1 == right_y1 */
- left_x1 = left_seg->x[1];
- double right_x1 = right_seg->x[1];
-
- if (left_x1 <= right_x1)
- return ART_FALSE;
- }
-
- /* The segments cross. Find the intersection point. */
-
- in_seg = left_seg->in_seg;
- in_curs = left_seg->in_curs;
- left_x0 = in_seg->points[in_curs - 1].x;
- left_y0 = in_seg->points[in_curs - 1].y;
- left_x1 = in_seg->points[in_curs].x;
- left_y1 = in_seg->points[in_curs].y;
- d0 = left_x0 * right_seg->a + left_y0 * right_seg->b + right_seg->c;
- d1 = left_x1 * right_seg->a + left_y1 * right_seg->b + right_seg->c;
- if (d0 == d1) {
- x = left_x0;
- y = left_y0;
- } else {
- /* Is this division always safe? It could possibly overflow. */
- t = d0 / (d0 - d1);
- if (t <= 0) {
- x = left_x0;
- y = left_y0;
- } else if (t >= 1) {
- x = left_x1;
- y = left_y1;
- } else {
- x = left_x0 + t * (left_x1 - left_x0);
- y = left_y0 + t * (left_y1 - left_y0);
- }
- }
-
- /* Make sure intersection point is within bounds of right seg. */
- if (y < right_seg->y0) {
- x = right_seg->x[0];
- y = right_seg->y0;
- } else if (y > right_seg->y1) {
- x = right_seg->x[1];
- y = right_seg->y1;
- } else if (x < right_seg->x[(right_seg->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1])
- x = right_seg->x[(right_seg->flags & ART_ACTIVE_FLAGS_BNEG) ^ 1];
- else if (x > right_seg->x[right_seg->flags & ART_ACTIVE_FLAGS_BNEG])
- x = right_seg->x[right_seg->flags & ART_ACTIVE_FLAGS_BNEG];
-
- if (y == left_seg->y0) {
- if (y != right_seg->y0) {
- art_svp_intersect_push_pt(ctx, right_seg, x, y);
- if ((break_flags & ART_BREAK_RIGHT) && right_seg->right != NULL)
- art_svp_intersect_add_point(ctx, x, y, right_seg->right,
- break_flags);
- } else {
- /* Intersection takes place at current scan line; process
- immediately rather than queueing intersection point into
- priq. */
- ArtActiveSeg *winner, *loser;
-
- /* Choose "most vertical" segement */
- if (left_seg->a > right_seg->a) {
- winner = left_seg;
- loser = right_seg;
- } else {
- winner = right_seg;
- loser = left_seg;
- }
-
- loser->x[0] = winner->x[0];
- loser->horiz_x = loser->x[0];
- loser->horiz_delta_wind += loser->delta_wind;
- winner->horiz_delta_wind -= loser->delta_wind;
-
- art_svp_intersect_swap_active(ctx, left_seg, right_seg);
- return ART_TRUE;
- }
- } else if (y == right_seg->y0) {
- art_svp_intersect_push_pt(ctx, left_seg, x, y);
- if ((break_flags & ART_BREAK_LEFT) && left_seg->left != NULL)
- art_svp_intersect_add_point(ctx, x, y, left_seg->left,
- break_flags);
- } else {
- /* Insert the intersection point into both segments. */
- art_svp_intersect_push_pt(ctx, left_seg, x, y);
- art_svp_intersect_push_pt(ctx, right_seg, x, y);
- if ((break_flags & ART_BREAK_LEFT) && left_seg->left != NULL)
- art_svp_intersect_add_point(ctx, x, y, left_seg->left, break_flags);
- if ((break_flags & ART_BREAK_RIGHT) && right_seg->right != NULL)
- art_svp_intersect_add_point(ctx, x, y, right_seg->right, break_flags);
- }
- return ART_FALSE;
-}
-
-/**
- * art_svp_intersect_active_delete: Delete segment from active list.
- * @ctx: Intersection context.
- * @seg: Segment to delete.
- *
- * Deletes @seg from the active list.
- **/
-static /* todo inline */ void
-art_svp_intersect_active_delete(ArtIntersectCtx *ctx, ArtActiveSeg *seg) {
- ArtActiveSeg *left = seg->left, *right = seg->right;
-
- if (left != NULL)
- left->right = right;
- else
- ctx->active_head = right;
- if (right != NULL)
- right->left = left;
-}
-
-/**
- * art_svp_intersect_active_free: Free an active segment.
- * @seg: Segment to delete.
- *
- * Frees @seg.
- **/
-static /* todo inline */ void
-art_svp_intersect_active_free(ArtActiveSeg *seg) {
- free(seg->stack);
- free(seg);
-}
-
-/**
- * art_svp_intersect_insert_cross: Test crossings of newly inserted line.
- *
- * Tests @seg against its left and right neighbors for intersections.
- * Precondition: the line in @seg is not purely horizontal.
- **/
-static void
-art_svp_intersect_insert_cross(ArtIntersectCtx *ctx,
- ArtActiveSeg *seg) {
- ArtActiveSeg *left = seg, *right = seg;
-
- for (;;) {
- if (left != NULL) {
- ArtActiveSeg *leftc;
-
- for (leftc = left->left; leftc != NULL; leftc = leftc->left)
- if (!(leftc->flags & ART_ACTIVE_FLAGS_DEL))
- break;
- if (leftc != NULL &&
- art_svp_intersect_test_cross(ctx, leftc, left,
- ART_BREAK_LEFT)) {
- if (left == right || right == NULL)
- right = left->right;
- } else {
- left = NULL;
- }
- } else if (right != NULL && right->right != NULL) {
- ArtActiveSeg *rightc;
-
- for (rightc = right->right; rightc != NULL; rightc = rightc->right)
- if (!(rightc->flags & ART_ACTIVE_FLAGS_DEL))
- break;
- if (rightc != NULL &&
- art_svp_intersect_test_cross(ctx, right, rightc,
- ART_BREAK_RIGHT)) {
- if (left == right || left == NULL)
- left = right->left;
- } else {
- right = NULL;
- }
- } else
- break;
- }
-}
-
-/**
- * art_svp_intersect_horiz: Add horizontal line segment.
- * @ctx: Intersector context.
- * @seg: Segment on which to add horizontal line.
- * @x0: Old x position.
- * @x1: New x position.
- *
- * Adds a horizontal line from @x0 to @x1, and updates the current
- * location of @seg to @x1.
- **/
-static void
-art_svp_intersect_horiz(ArtIntersectCtx *ctx, ArtActiveSeg *seg,
- double x0, double x1) {
- ArtActiveSeg *hs;
-
- if (x0 == x1)
- return;
-
- hs = art_new(ArtActiveSeg, 1);
-
- hs->flags = ART_ACTIVE_FLAGS_DEL | (seg->flags & ART_ACTIVE_FLAGS_OUT);
- if (seg->flags & ART_ACTIVE_FLAGS_OUT) {
- ArtSvpWriter *swr = ctx->out;
-
- swr->add_point(swr, seg->seg_id, x0, ctx->y);
- }
- hs->seg_id = seg->seg_id;
- hs->horiz_x = x0;
- hs->horiz_delta_wind = seg->delta_wind;
- hs->stack = NULL;
-
- /* Ideally, the (a, b, c) values will never be read. However, there
- are probably some tests remaining that don't check for _DEL
- before evaluating the line equation. For those, these
- initializations will at least prevent a UMR of the values, which
- can crash on some platforms. */
- hs->a = 0.0;
- hs->b = 0.0;
- hs->c = 0.0;
-
- seg->horiz_delta_wind -= seg->delta_wind;
-
- art_svp_intersect_add_horiz(ctx, hs);
-
- if (x0 > x1) {
- ArtActiveSeg *left;
- art_boolean first = ART_TRUE;
-
- for (left = seg->left; left != NULL; left = seg->left) {
- int left_bneg = left->flags & ART_ACTIVE_FLAGS_BNEG;
-
- if (left->x[left_bneg] <= x1)
- break;
- if (left->x[left_bneg ^ 1] <= x1 &&
- x1 *left->a + ctx->y *left->b + left->c >= 0)
- break;
- if (left->y0 != ctx->y && left->y1 != ctx->y) {
- art_svp_intersect_break(ctx, left, x1, ctx->y, ART_BREAK_LEFT);
- }
- art_svp_intersect_swap_active(ctx, left, seg);
- if (first && left->right != NULL) {
- art_svp_intersect_test_cross(ctx, left, left->right,
- ART_BREAK_RIGHT);
- first = ART_FALSE;
- }
- }
- } else {
- ArtActiveSeg *right;
- art_boolean first = ART_TRUE;
-
- for (right = seg->right; right != NULL; right = seg->right) {
- int right_bneg = right->flags & ART_ACTIVE_FLAGS_BNEG;
-
- if (right->x[right_bneg ^ 1] >= x1)
- break;
- if (right->x[right_bneg] >= x1 &&
- x1 *right->a + ctx->y *right->b + right->c <= 0)
- break;
- if (right->y0 != ctx->y && right->y1 != ctx->y) {
- art_svp_intersect_break(ctx, right, x1, ctx->y,
- ART_BREAK_LEFT);
- }
- art_svp_intersect_swap_active(ctx, seg, right);
- if (first && right->left != NULL) {
- art_svp_intersect_test_cross(ctx, right->left, right,
- ART_BREAK_RIGHT);
- first = ART_FALSE;
- }
- }
- }
-
- seg->x[0] = x1;
- seg->x[1] = x1;
- seg->horiz_x = x1;
- seg->flags &= ~ART_ACTIVE_FLAGS_OUT;
-}
-
-/**
- * art_svp_intersect_insert_line: Insert a line into the active list.
- * @ctx: Intersector context.
- * @seg: Segment containing line to insert.
- *
- * Inserts the line into the intersector context, taking care of any
- * intersections, and adding the appropriate horizontal points to the
- * active list.
- **/
-static void
-art_svp_intersect_insert_line(ArtIntersectCtx *ctx, ArtActiveSeg *seg) {
- if (seg->y1 == seg->y0) {
- art_svp_intersect_horiz(ctx, seg, seg->x[0], seg->x[1]);
- } else {
- art_svp_intersect_insert_cross(ctx, seg);
- art_svp_intersect_add_horiz(ctx, seg);
- }
-}
-
-static void
-art_svp_intersect_process_intersection(ArtIntersectCtx *ctx,
- ArtActiveSeg *seg) {
- int n_stack = --seg->n_stack;
- seg->x[1] = seg->stack[n_stack - 1].x;
- seg->y1 = seg->stack[n_stack - 1].y;
- seg->x[0] = seg->stack[n_stack].x;
- seg->y0 = seg->stack[n_stack].y;
- seg->horiz_x = seg->x[0];
- art_svp_intersect_insert_line(ctx, seg);
-}
-
-static void
-art_svp_intersect_advance_cursor(ArtIntersectCtx *ctx, ArtActiveSeg *seg,
- ArtPriPoint *pri_pt) {
- const ArtSVPSeg *in_seg = seg->in_seg;
- int in_curs = seg->in_curs;
- ArtSvpWriter *swr = seg->flags & ART_ACTIVE_FLAGS_OUT ? ctx->out : NULL;
-
- if (swr != NULL)
- swr->add_point(swr, seg->seg_id, seg->x[1], seg->y1);
- if (in_curs + 1 == in_seg->n_points) {
- ArtActiveSeg *left = seg->left, *right = seg->right;
-
-#if 0
- if (swr != NULL)
- swr->close_segment(swr, seg->seg_id);
- seg->flags &= ~ART_ACTIVE_FLAGS_OUT;
-#endif
- seg->flags |= ART_ACTIVE_FLAGS_DEL;
- art_svp_intersect_add_horiz(ctx, seg);
- art_svp_intersect_active_delete(ctx, seg);
- if (left != NULL && right != NULL)
- art_svp_intersect_test_cross(ctx, left, right,
- (ArtBreakFlags)(ART_BREAK_LEFT | ART_BREAK_RIGHT));
- free(pri_pt);
- } else {
- seg->horiz_x = seg->x[1];
-
- art_svp_intersect_setup_seg(seg, pri_pt);
- art_pri_insert(ctx->pq, pri_pt);
- art_svp_intersect_insert_line(ctx, seg);
- }
-}
-
-static void
-art_svp_intersect_add_seg(ArtIntersectCtx *ctx, const ArtSVPSeg *in_seg) {
- ArtActiveSeg *seg = art_new(ArtActiveSeg, 1);
- ArtActiveSeg *test;
- double x0, y0;
- ArtActiveSeg *beg_range;
- ArtActiveSeg *last = NULL;
- ArtActiveSeg *left, *right;
- ArtPriPoint *pri_pt = art_new(ArtPriPoint, 1);
-
- seg->flags = 0;
- seg->in_seg = in_seg;
- seg->in_curs = 0;
-
- seg->n_stack_max = 4;
- seg->stack = art_new(ArtPoint, seg->n_stack_max);
-
- seg->horiz_delta_wind = 0;
-
- seg->wind_left = 0;
-
- pri_pt->user_data = seg;
- art_svp_intersect_setup_seg(seg, pri_pt);
- art_pri_insert(ctx->pq, pri_pt);
-
- /* Find insertion place for new segment */
- /* This is currently a left-to-right scan, but should be replaced
- with a binary search as soon as it's validated. */
-
- x0 = in_seg->points[0].x;
- y0 = in_seg->points[0].y;
- beg_range = NULL;
- for (test = ctx->active_head; test != NULL; test = test->right) {
- double d;
- int test_bneg = test->flags & ART_ACTIVE_FLAGS_BNEG;
-
- if (x0 < test->x[test_bneg]) {
- if (x0 < test->x[test_bneg ^ 1])
- break;
- d = x0 * test->a + y0 * test->b + test->c;
- if (d < 0)
- break;
- }
- last = test;
- }
-
- left = art_svp_intersect_add_point(ctx, x0, y0, last, (ArtBreakFlags)(ART_BREAK_LEFT | ART_BREAK_RIGHT));
- seg->left = left;
- if (left == NULL) {
- right = ctx->active_head;
- ctx->active_head = seg;
- } else {
- right = left->right;
- left->right = seg;
- }
- seg->right = right;
- if (right != NULL)
- right->left = seg;
-
- seg->delta_wind = in_seg->dir ? 1 : -1;
- seg->horiz_x = x0;
-
- art_svp_intersect_insert_line(ctx, seg);
-}
-
-/**
- * art_svp_intersect_horiz_commit: Commit points in horiz list to output.
- * @ctx: Intersection context.
- *
- * The main function of the horizontal commit is to output new
- * points to the output writer.
- *
- * This "commit" pass is also where winding numbers are assigned,
- * because doing it here provides much greater tolerance for inputs
- * which are not in strict SVP order.
- *
- * Each cluster in the horiz_list contains both segments that are in
- * the active list (ART_ACTIVE_FLAGS_DEL is false) and that are not,
- * and are scheduled to be deleted (ART_ACTIVE_FLAGS_DEL is true). We
- * need to deal with both.
- **/
-static void
-art_svp_intersect_horiz_commit(ArtIntersectCtx *ctx) {
- ArtActiveSeg *seg;
- int winding_number = 0; /* initialization just to avoid warning */
- int horiz_wind = 0;
- double last_x = 0; /* initialization just to avoid warning */
-
- /* Output points to svp writer. */
- for (seg = ctx->horiz_first; seg != NULL;) {
- /* Find a cluster with common horiz_x, */
- ArtActiveSeg *curs;
- double x = seg->horiz_x;
-
- /* Generate any horizontal segments. */
- if (horiz_wind != 0) {
- ArtSvpWriter *swr = ctx->out;
- int seg_id;
-
- seg_id = swr->add_segment(swr, winding_number, horiz_wind,
- last_x, ctx->y);
- swr->add_point(swr, seg_id, x, ctx->y);
- swr->close_segment(swr, seg_id);
- }
-
- /* Find first active segment in cluster. */
-
- for (curs = seg; curs != NULL && curs->horiz_x == x;
- curs = curs->horiz_right)
- if (!(curs->flags & ART_ACTIVE_FLAGS_DEL))
- break;
-
- if (curs != NULL && curs->horiz_x == x) {
- /* There exists at least one active segment in this cluster. */
-
- /* Find beginning of cluster. */
- for (; curs->left != NULL; curs = curs->left)
- if (curs->left->horiz_x != x)
- break;
-
- if (curs->left != NULL)
- winding_number = curs->left->wind_left + curs->left->delta_wind;
- else
- winding_number = 0;
-
- do {
- if (!(curs->flags & ART_ACTIVE_FLAGS_OUT) ||
- curs->wind_left != winding_number) {
- ArtSvpWriter *swr = ctx->out;
-
- if (curs->flags & ART_ACTIVE_FLAGS_OUT) {
- swr->add_point(swr, curs->seg_id,
- curs->horiz_x, ctx->y);
- swr->close_segment(swr, curs->seg_id);
- }
-
- curs->seg_id = swr->add_segment(swr, winding_number,
- curs->delta_wind,
- x, ctx->y);
- curs->flags |= ART_ACTIVE_FLAGS_OUT;
- }
- curs->wind_left = winding_number;
- winding_number += curs->delta_wind;
- curs = curs->right;
- } while (curs != NULL && curs->horiz_x == x);
- }
-
- /* Skip past cluster. */
- do {
- ArtActiveSeg *next = seg->horiz_right;
-
- seg->flags &= ~ART_ACTIVE_FLAGS_IN_HORIZ;
- horiz_wind += seg->horiz_delta_wind;
- seg->horiz_delta_wind = 0;
- if (seg->flags & ART_ACTIVE_FLAGS_DEL) {
- if (seg->flags & ART_ACTIVE_FLAGS_OUT) {
- ArtSvpWriter *swr = ctx->out;
- swr->close_segment(swr, seg->seg_id);
- }
- art_svp_intersect_active_free(seg);
- }
- seg = next;
- } while (seg != NULL && seg->horiz_x == x);
-
- last_x = x;
- }
- ctx->horiz_first = NULL;
- ctx->horiz_last = NULL;
-}
-
-void
-art_svp_intersector(const ArtSVP *in, ArtSvpWriter *out) {
- ArtIntersectCtx *ctx;
- ArtPriQ *pq;
- ArtPriPoint *first_point;
-
- if (in->n_segs == 0)
- return;
-
- ctx = art_new(ArtIntersectCtx, 1);
- ctx->in = in;
- ctx->out = out;
- pq = art_pri_new();
- ctx->pq = pq;
-
- ctx->active_head = NULL;
-
- ctx->horiz_first = NULL;
- ctx->horiz_last = NULL;
-
- ctx->in_curs = 0;
- first_point = art_new(ArtPriPoint, 1);
- first_point->x = in->segs[0].points[0].x;
- first_point->y = in->segs[0].points[0].y;
- first_point->user_data = NULL;
- ctx->y = first_point->y;
- art_pri_insert(pq, first_point);
-
- while (!art_pri_empty(pq)) {
- ArtPriPoint *pri_point = art_pri_choose(pq);
- ArtActiveSeg *seg = (ArtActiveSeg *)pri_point->user_data;
-
- if (ctx->y != pri_point->y) {
- art_svp_intersect_horiz_commit(ctx);
- ctx->y = pri_point->y;
- }
-
- if (seg == NULL) {
- /* Insert new segment from input */
- const ArtSVPSeg *in_seg = &in->segs[ctx->in_curs++];
- art_svp_intersect_add_seg(ctx, in_seg);
- if (ctx->in_curs < in->n_segs) {
- const ArtSVPSeg *next_seg = &in->segs[ctx->in_curs];
- pri_point->x = next_seg->points[0].x;
- pri_point->y = next_seg->points[0].y;
- /* user_data is already NULL */
- art_pri_insert(pq, pri_point);
- } else
- free(pri_point);
- } else {
- int n_stack = seg->n_stack;
-
- if (n_stack > 1) {
- art_svp_intersect_process_intersection(ctx, seg);
- free(pri_point);
- } else {
- art_svp_intersect_advance_cursor(ctx, seg, pri_point);
- }
- }
- }
-
- art_svp_intersect_horiz_commit(ctx);
-
- art_pri_free(pq);
- free(ctx);
-}
diff --git a/engines/sword25/gfx/image/art_svp_intersect.h b/engines/sword25/gfx/image/art_svp_intersect.h
deleted file mode 100644
index 9db21aacff..0000000000
--- a/engines/sword25/gfx/image/art_svp_intersect.h
+++ /dev/null
@@ -1,73 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-#ifndef __ART_SVP_INTERSECT_H__
-#define __ART_SVP_INTERSECT_H__
-
-/* The funky new SVP intersector. */
-
-#include "art.h"
-
-#ifndef ART_WIND_RULE_DEFINED
-#define ART_WIND_RULE_DEFINED
-typedef enum {
- ART_WIND_RULE_NONZERO,
- ART_WIND_RULE_INTERSECT,
- ART_WIND_RULE_ODDEVEN,
- ART_WIND_RULE_POSITIVE
-} ArtWindRule;
-#endif
-
-typedef struct _ArtSvpWriter ArtSvpWriter;
-
-struct _ArtSvpWriter {
- int (*add_segment)(ArtSvpWriter *self, int wind_left, int delta_wind,
- double x, double y);
- void (*add_point)(ArtSvpWriter *self, int seg_id, double x, double y);
- void (*close_segment)(ArtSvpWriter *self, int seg_id);
-};
-
-ArtSvpWriter *
-art_svp_writer_rewind_new(ArtWindRule rule);
-
-ArtSVP *
-art_svp_writer_rewind_reap(ArtSvpWriter *self);
-
-int
-art_svp_seg_compare(const void *s1, const void *s2);
-
-void
-art_svp_intersector(const ArtSVP *in, ArtSvpWriter *out);
-
-#endif /* __ART_SVP_INTERSECT_H__ */
diff --git a/engines/sword25/gfx/image/art_svp_render_aa.cpp b/engines/sword25/gfx/image/art_svp_render_aa.cpp
deleted file mode 100644
index da8377ae86..0000000000
--- a/engines/sword25/gfx/image/art_svp_render_aa.cpp
+++ /dev/null
@@ -1,443 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-/* The spiffy antialiased renderer for sorted vector paths. */
-
-#include "art.h"
-#include "art_svp_render_aa.h"
-
-#include <math.h>
-#include <string.h> /* for memmove */
-
-#include <stdio.h>
-
-typedef double artfloat;
-
-struct _ArtSVPRenderAAIter {
- const ArtSVP *svp;
- int x0, x1;
- int y;
- int seg_ix;
-
- int *active_segs;
- int n_active_segs;
- int *cursor;
- artfloat *seg_x;
- artfloat *seg_dx;
-
- ArtSVPRenderAAStep *steps;
-};
-
-static void
-art_svp_render_insert_active(int i, int *active_segs, int n_active_segs,
- artfloat *seg_x, artfloat *seg_dx) {
- int j;
- artfloat x;
- int tmp1, tmp2;
-
- /* this is a cheap hack to get ^'s sorted correctly */
- x = seg_x[i] + 0.001 * seg_dx[i];
- for (j = 0; j < n_active_segs && seg_x[active_segs[j]] < x; j++);
-
- tmp1 = i;
- while (j < n_active_segs) {
- tmp2 = active_segs[j];
- active_segs[j] = tmp1;
- tmp1 = tmp2;
- j++;
- }
- active_segs[j] = tmp1;
-}
-
-static void
-art_svp_render_delete_active(int *active_segs, int j, int n_active_segs) {
- int k;
-
- for (k = j; k < n_active_segs; k++)
- active_segs[k] = active_segs[k + 1];
-}
-
-#define EPSILON 1e-6
-
-/* Render the sorted vector path in the given rectangle, antialiased.
-
- This interface uses a callback for the actual pixel rendering. The
- callback is called y1 - y0 times (once for each scan line). The y
- coordinate is given as an argument for convenience (it could be
- stored in the callback's private data and incremented on each
- call).
-
- The rendered polygon is represented in a semi-runlength format: a
- start value and a sequence of "steps". Each step has an x
- coordinate and a value delta. The resulting value at position x is
- equal to the sum of the start value and all step delta values for
- which the step x coordinate is less than or equal to x. An
- efficient algorithm will traverse the steps left to right, keeping
- a running sum.
-
- All x coordinates in the steps are guaranteed to be x0 <= x < x1.
- (This guarantee is a change from the gfonted vpaar renderer, and is
- designed to simplify the callback).
-
- There is now a further guarantee that no two steps will have the
- same x value. This may allow for further speedup and simplification
- of renderers.
-
- The value 0x8000 represents 0% coverage by the polygon, while
- 0xff8000 represents 100% coverage. This format is designed so that
- >> 16 results in a standard 0x00..0xff value range, with nice
- rounding.
-
- Status of this routine:
-
- Basic correctness: OK
-
- Numerical stability: pretty good, although probably not
- bulletproof.
-
- Speed: Needs more aggressive culling of bounding boxes. Can
- probably speed up the [x0,x1) clipping of step values. Can do more
- of the step calculation in fixed point.
-
- Precision: No known problems, although it should be tested
- thoroughly, especially for symmetry.
-
-*/
-
-ArtSVPRenderAAIter *
-art_svp_render_aa_iter(const ArtSVP *svp,
- int x0, int y0, int x1, int y1) {
- ArtSVPRenderAAIter *iter = art_new(ArtSVPRenderAAIter, 1);
-
- iter->svp = svp;
- iter->y = y0;
- iter->x0 = x0;
- iter->x1 = x1;
- iter->seg_ix = 0;
-
- iter->active_segs = art_new(int, svp->n_segs);
- iter->cursor = art_new(int, svp->n_segs);
- iter->seg_x = art_new(artfloat, svp->n_segs);
- iter->seg_dx = art_new(artfloat, svp->n_segs);
- iter->steps = art_new(ArtSVPRenderAAStep, x1 - x0);
- iter->n_active_segs = 0;
-
- return iter;
-}
-
-#define ADD_STEP(xpos, xdelta) \
- /* stereotype code fragment for adding a step */ \
- if (n_steps == 0 || steps[n_steps - 1].x < xpos) \
- { \
- sx = n_steps; \
- steps[sx].x = xpos; \
- steps[sx].delta = xdelta; \
- n_steps++; \
- } \
- else \
- { \
- for (sx = n_steps; sx > 0; sx--) \
- { \
- if (steps[sx - 1].x == xpos) \
- { \
- steps[sx - 1].delta += xdelta; \
- sx = n_steps; \
- break; \
- } \
- else if (steps[sx - 1].x < xpos) \
- { \
- break; \
- } \
- } \
- if (sx < n_steps) \
- { \
- memmove (&steps[sx + 1], &steps[sx], \
- (n_steps - sx) * sizeof(steps[0])); \
- steps[sx].x = xpos; \
- steps[sx].delta = xdelta; \
- n_steps++; \
- } \
- }
-
-void
-art_svp_render_aa_iter_step(ArtSVPRenderAAIter *iter, int *p_start,
- ArtSVPRenderAAStep **p_steps, int *p_n_steps) {
- const ArtSVP *svp = iter->svp;
- int *active_segs = iter->active_segs;
- int n_active_segs = iter->n_active_segs;
- int *cursor = iter->cursor;
- artfloat *seg_x = iter->seg_x;
- artfloat *seg_dx = iter->seg_dx;
- int i = iter->seg_ix;
- int j;
- int x0 = iter->x0;
- int x1 = iter->x1;
- int y = iter->y;
- int seg_index;
-
- int x;
- ArtSVPRenderAAStep *steps = iter->steps;
- int n_steps;
- artfloat y_top, y_bot;
- artfloat x_top, x_bot;
- artfloat x_min, x_max;
- int ix_min, ix_max;
- artfloat delta; /* delta should be int too? */
- int last, this_;
- int xdelta;
- artfloat rslope, drslope;
- int start;
- const ArtSVPSeg *seg;
- int curs;
- artfloat dy;
-
- int sx;
-
- /* insert new active segments */
- for (; i < svp->n_segs && svp->segs[i].bbox.y0 < y + 1; i++) {
- if (svp->segs[i].bbox.y1 > y &&
- svp->segs[i].bbox.x0 < x1) {
- seg = &svp->segs[i];
- /* move cursor to topmost vector which overlaps [y,y+1) */
- for (curs = 0; seg->points[curs + 1].y < y; curs++);
- cursor[i] = curs;
- dy = seg->points[curs + 1].y - seg->points[curs].y;
- if (fabs(dy) >= EPSILON)
- seg_dx[i] = (seg->points[curs + 1].x - seg->points[curs].x) /
- dy;
- else
- seg_dx[i] = 1e12;
- seg_x[i] = seg->points[curs].x +
- (y - seg->points[curs].y) * seg_dx[i];
- art_svp_render_insert_active(i, active_segs, n_active_segs++,
- seg_x, seg_dx);
- }
- }
-
- n_steps = 0;
-
- /* render the runlengths, advancing and deleting as we go */
- start = 0x8000;
-
- for (j = 0; j < n_active_segs; j++) {
- seg_index = active_segs[j];
- seg = &svp->segs[seg_index];
- curs = cursor[seg_index];
- while (curs != seg->n_points - 1 &&
- seg->points[curs].y < y + 1) {
- y_top = y;
- if (y_top < seg->points[curs].y)
- y_top = seg->points[curs].y;
- y_bot = y + 1;
- if (y_bot > seg->points[curs + 1].y)
- y_bot = seg->points[curs + 1].y;
- if (y_top != y_bot) {
- delta = (seg->dir ? 16711680.0 : -16711680.0) *
- (y_bot - y_top);
- x_top = seg_x[seg_index] + (y_top - y) * seg_dx[seg_index];
- x_bot = seg_x[seg_index] + (y_bot - y) * seg_dx[seg_index];
- if (x_top < x_bot) {
- x_min = x_top;
- x_max = x_bot;
- } else {
- x_min = x_bot;
- x_max = x_top;
- }
- ix_min = (int)floor(x_min);
- ix_max = (int)floor(x_max);
- if (ix_min >= x1) {
- /* skip; it starts to the right of the render region */
- } else if (ix_max < x0)
- /* it ends to the left of the render region */
- start += (int)delta;
- else if (ix_min == ix_max) {
- /* case 1, antialias a single pixel */
- xdelta = (ix_min + 1 - (x_min + x_max) * 0.5) * delta;
-
- ADD_STEP(ix_min, xdelta)
-
- if (ix_min + 1 < x1) {
- xdelta = delta - xdelta;
-
- ADD_STEP(ix_min + 1, xdelta)
- }
- } else {
- /* case 2, antialias a run */
- rslope = 1.0 / fabs(seg_dx[seg_index]);
- drslope = delta * rslope;
- last =
- drslope * 0.5 *
- (ix_min + 1 - x_min) * (ix_min + 1 - x_min);
- xdelta = last;
- if (ix_min >= x0) {
- ADD_STEP(ix_min, xdelta)
-
- x = ix_min + 1;
- } else {
- start += last;
- x = x0;
- }
- if (ix_max > x1)
- ix_max = x1;
- for (; x < ix_max; x++) {
- this_ = (seg->dir ? 16711680.0 : -16711680.0) * rslope *
- (x + 0.5 - x_min);
- xdelta = this_ - last;
- last = this_;
-
- ADD_STEP(x, xdelta)
- }
- if (x < x1) {
- this_ =
- delta * (1 - 0.5 *
- (x_max - ix_max) * (x_max - ix_max) *
- rslope);
- xdelta = this_ - last;
- last = this_;
-
- ADD_STEP(x, xdelta)
-
- if (x + 1 < x1) {
- xdelta = delta - last;
-
- ADD_STEP(x + 1, xdelta)
- }
- }
- }
- }
- curs++;
- if (curs != seg->n_points - 1 &&
- seg->points[curs].y < y + 1) {
- dy = seg->points[curs + 1].y - seg->points[curs].y;
- if (fabs(dy) >= EPSILON)
- seg_dx[seg_index] = (seg->points[curs + 1].x -
- seg->points[curs].x) / dy;
- else
- seg_dx[seg_index] = 1e12;
- seg_x[seg_index] = seg->points[curs].x +
- (y - seg->points[curs].y) * seg_dx[seg_index];
- }
- /* break here, instead of duplicating predicate in while? */
- }
- if (seg->points[curs].y >= y + 1) {
- curs--;
- cursor[seg_index] = curs;
- seg_x[seg_index] += seg_dx[seg_index];
- } else {
- art_svp_render_delete_active(active_segs, j--,
- --n_active_segs);
- }
- }
-
- *p_start = start;
- *p_steps = steps;
- *p_n_steps = n_steps;
-
- iter->seg_ix = i;
- iter->n_active_segs = n_active_segs;
- iter->y++;
-}
-
-void
-art_svp_render_aa_iter_done(ArtSVPRenderAAIter *iter) {
- free(iter->steps);
-
- free(iter->seg_dx);
- free(iter->seg_x);
- free(iter->cursor);
- free(iter->active_segs);
- free(iter);
-}
-
-/**
- * art_svp_render_aa: Render SVP antialiased.
- * @svp: The #ArtSVP to render.
- * @x0: Left coordinate of destination rectangle.
- * @y0: Top coordinate of destination rectangle.
- * @x1: Right coordinate of destination rectangle.
- * @y1: Bottom coordinate of destination rectangle.
- * @callback: The callback which actually paints the pixels.
- * @callback_data: Private data for @callback.
- *
- * Renders the sorted vector path in the given rectangle, antialiased.
- *
- * This interface uses a callback for the actual pixel rendering. The
- * callback is called @y1 - @y0 times (once for each scan line). The y
- * coordinate is given as an argument for convenience (it could be
- * stored in the callback's private data and incremented on each
- * call).
- *
- * The rendered polygon is represented in a semi-runlength format: a
- * start value and a sequence of "steps". Each step has an x
- * coordinate and a value delta. The resulting value at position x is
- * equal to the sum of the start value and all step delta values for
- * which the step x coordinate is less than or equal to x. An
- * efficient algorithm will traverse the steps left to right, keeping
- * a running sum.
- *
- * All x coordinates in the steps are guaranteed to be @x0 <= x < @x1.
- * (This guarantee is a change from the gfonted vpaar renderer from
- * which this routine is derived, and is designed to simplify the
- * callback).
- *
- * The value 0x8000 represents 0% coverage by the polygon, while
- * 0xff8000 represents 100% coverage. This format is designed so that
- * >> 16 results in a standard 0x00..0xff value range, with nice
- * rounding.
- *
- **/
-void
-art_svp_render_aa(const ArtSVP *svp,
- int x0, int y0, int x1, int y1,
- void (*callback)(void *callback_data,
- int y,
- int start,
- ArtSVPRenderAAStep *steps, int n_steps),
- void *callback_data) {
- ArtSVPRenderAAIter *iter;
- int y;
- int start;
- ArtSVPRenderAAStep *steps;
- int n_steps;
-
- iter = art_svp_render_aa_iter(svp, x0, y0, x1, y1);
-
-
- for (y = y0; y < y1; y++) {
- art_svp_render_aa_iter_step(iter, &start, &steps, &n_steps);
- (*callback)(callback_data, y, start, steps, n_steps);
- }
-
- art_svp_render_aa_iter_done(iter);
-}
diff --git a/engines/sword25/gfx/image/art_svp_render_aa.h b/engines/sword25/gfx/image/art_svp_render_aa.h
deleted file mode 100644
index 24bf2bb292..0000000000
--- a/engines/sword25/gfx/image/art_svp_render_aa.h
+++ /dev/null
@@ -1,70 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-#ifndef __ART_SVP_RENDER_AA_H__
-#define __ART_SVP_RENDER_AA_H__
-
-/* The spiffy antialiased renderer for sorted vector paths. */
-
-#include "art.h"
-
-typedef struct _ArtSVPRenderAAStep ArtSVPRenderAAStep;
-typedef struct _ArtSVPRenderAAIter ArtSVPRenderAAIter;
-
-struct _ArtSVPRenderAAStep {
- int x;
- int delta; /* stored with 16 fractional bits */
-};
-
-ArtSVPRenderAAIter *
-art_svp_render_aa_iter(const ArtSVP *svp,
- int x0, int y0, int x1, int y1);
-
-void
-art_svp_render_aa_iter_step(ArtSVPRenderAAIter *iter, int *p_start,
- ArtSVPRenderAAStep **p_steps, int *p_n_steps);
-
-void
-art_svp_render_aa_iter_done(ArtSVPRenderAAIter *iter);
-
-void
-art_svp_render_aa(const ArtSVP *svp,
- int x0, int y0, int x1, int y1,
- void (*callback)(void *callback_data,
- int y,
- int start,
- ArtSVPRenderAAStep *steps, int n_steps),
- void *callback_data);
-
-#endif /* __ART_SVP_RENDER_AA_H__ */
diff --git a/engines/sword25/gfx/image/art_svp_vpath.cpp b/engines/sword25/gfx/image/art_svp_vpath.cpp
deleted file mode 100644
index 63ca259fe3..0000000000
--- a/engines/sword25/gfx/image/art_svp_vpath.cpp
+++ /dev/null
@@ -1,207 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-/* Sort vector paths into sorted vector paths */
-
-#include "art.h"
-
-#include <stdlib.h>
-#include <math.h>
-
-/* reverse a list of points in place */
-static void
-reverse_points(ArtPoint *points, int n_points) {
- int i;
- ArtPoint tmp_p;
-
- for (i = 0; i < (n_points >> 1); i++) {
- tmp_p = points[i];
- points[i] = points[n_points - (i + 1)];
- points[n_points - (i + 1)] = tmp_p;
- }
-}
-
-/**
- * art_svp_from_vpath: Convert a vpath to a sorted vector path.
- * @vpath: #ArtVPath to convert.
- *
- * Converts a vector path into sorted vector path form. The svp form is
- * more efficient for rendering and other vector operations.
- *
- * Basically, the implementation is to traverse the vector path,
- * generating a new segment for each "run" of points in the vector
- * path with monotonically increasing Y values. All the resulting
- * values are then sorted.
- *
- * Note: I'm not sure that the sorting rule is correct with respect
- * to numerical stability issues.
- *
- * Return value: Resulting sorted vector path.
- **/
-ArtSVP *
-art_svp_from_vpath(ArtVpath *vpath) {
- int n_segs, n_segs_max;
- ArtSVP *svp;
- int dir;
- int new_dir;
- int i;
- ArtPoint *points;
- int n_points, n_points_max;
- double x, y;
- double x_min, x_max;
-
- n_segs = 0;
- n_segs_max = 16;
- svp = (ArtSVP *)malloc(sizeof(ArtSVP) +
- (n_segs_max - 1) * sizeof(ArtSVPSeg));
-
- dir = 0;
- n_points = 0;
- n_points_max = 0;
- points = NULL;
- i = 0;
-
- x = y = 0; /* unnecessary, given "first code must not be LINETO" invariant,
- but it makes gcc -Wall -ansi -pedantic happier */
- x_min = x_max = 0; /* same */
-
- while (vpath[i].code != ART_END) {
- if (vpath[i].code == ART_MOVETO || vpath[i].code == ART_MOVETO_OPEN) {
- if (points != NULL && n_points >= 2) {
- if (n_segs == n_segs_max) {
- n_segs_max <<= 1;
- svp = (ArtSVP *)realloc(svp, sizeof(ArtSVP) +
- (n_segs_max - 1) *
- sizeof(ArtSVPSeg));
- }
- svp->segs[n_segs].n_points = n_points;
- svp->segs[n_segs].dir = (dir > 0);
- if (dir < 0)
- reverse_points(points, n_points);
- svp->segs[n_segs].points = points;
- svp->segs[n_segs].bbox.x0 = x_min;
- svp->segs[n_segs].bbox.x1 = x_max;
- svp->segs[n_segs].bbox.y0 = points[0].y;
- svp->segs[n_segs].bbox.y1 = points[n_points - 1].y;
- n_segs++;
- points = NULL;
- }
-
- if (points == NULL) {
- n_points_max = 4;
- points = art_new(ArtPoint, n_points_max);
- }
-
- n_points = 1;
- points[0].x = x = vpath[i].x;
- points[0].y = y = vpath[i].y;
- x_min = x;
- x_max = x;
- dir = 0;
- } else { /* must be LINETO */
- new_dir = (vpath[i].y > y ||
- (vpath[i].y == y && vpath[i].x > x)) ? 1 : -1;
- if (dir && dir != new_dir) {
- /* new segment */
- x = points[n_points - 1].x;
- y = points[n_points - 1].y;
- if (n_segs == n_segs_max) {
- n_segs_max <<= 1;
- svp = (ArtSVP *)realloc(svp, sizeof(ArtSVP) +
- (n_segs_max - 1) *
- sizeof(ArtSVPSeg));
- }
- svp->segs[n_segs].n_points = n_points;
- svp->segs[n_segs].dir = (dir > 0);
- if (dir < 0)
- reverse_points(points, n_points);
- svp->segs[n_segs].points = points;
- svp->segs[n_segs].bbox.x0 = x_min;
- svp->segs[n_segs].bbox.x1 = x_max;
- svp->segs[n_segs].bbox.y0 = points[0].y;
- svp->segs[n_segs].bbox.y1 = points[n_points - 1].y;
- n_segs++;
-
- n_points = 1;
- n_points_max = 4;
- points = art_new(ArtPoint, n_points_max);
- points[0].x = x;
- points[0].y = y;
- x_min = x;
- x_max = x;
- }
-
- if (points != NULL) {
- if (n_points == n_points_max)
- art_expand(points, ArtPoint, n_points_max);
- points[n_points].x = x = vpath[i].x;
- points[n_points].y = y = vpath[i].y;
- if (x < x_min) x_min = x;
- else if (x > x_max) x_max = x;
- n_points++;
- }
- dir = new_dir;
- }
- i++;
- }
-
- if (points != NULL) {
- if (n_points >= 2) {
- if (n_segs == n_segs_max) {
- n_segs_max <<= 1;
- svp = (ArtSVP *)realloc(svp, sizeof(ArtSVP) +
- (n_segs_max - 1) *
- sizeof(ArtSVPSeg));
- }
- svp->segs[n_segs].n_points = n_points;
- svp->segs[n_segs].dir = (dir > 0);
- if (dir < 0)
- reverse_points(points, n_points);
- svp->segs[n_segs].points = points;
- svp->segs[n_segs].bbox.x0 = x_min;
- svp->segs[n_segs].bbox.x1 = x_max;
- svp->segs[n_segs].bbox.y0 = points[0].y;
- svp->segs[n_segs].bbox.y1 = points[n_points - 1].y;
- n_segs++;
- } else
- free(points);
- }
-
- svp->n_segs = n_segs;
-
- qsort(&svp->segs, n_segs, sizeof(ArtSVPSeg), art_svp_seg_compare);
-
- return svp;
-}
-
diff --git a/engines/sword25/gfx/image/art_svp_vpath.h b/engines/sword25/gfx/image/art_svp_vpath.h
deleted file mode 100644
index 59efc34146..0000000000
--- a/engines/sword25/gfx/image/art_svp_vpath.h
+++ /dev/null
@@ -1,45 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-#ifndef __ART_SVP_VPATH_H__
-#define __ART_SVP_VPATH_H__
-
-#include "art.h"
-
-/* Sort vector paths into sorted vector paths. */
-
-ArtSVP *
-art_svp_from_vpath(ArtVpath *vpath);
-
-#endif /* __ART_SVP_VPATH_H__ */
diff --git a/engines/sword25/gfx/image/art_svp_vpath_stroke.cpp b/engines/sword25/gfx/image/art_svp_vpath_stroke.cpp
deleted file mode 100644
index 7703ad26ea..0000000000
--- a/engines/sword25/gfx/image/art_svp_vpath_stroke.cpp
+++ /dev/null
@@ -1,657 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-#include "art.h"
-#include "art_svp_vpath_stroke.h"
-
-#include <stdlib.h>
-#include <math.h>
-
-#include "art_svp_intersect.h"
-#include "art_svp_vpath.h"
-
-#define EPSILON 1e-6
-#define EPSILON_2 1e-12
-
-#define yes_OPTIMIZE_INNER
-
-/* Render an arc segment starting at (xc + x0, yc + y0) to (xc + x1,
- yc + y1), centered at (xc, yc), and with given radius. Both x0^2 +
- y0^2 and x1^2 + y1^2 should be equal to radius^2.
-
- A positive value of radius means curve to the left, negative means
- curve to the right.
-*/
-static void
-art_svp_vpath_stroke_arc(ArtVpath **p_vpath, int *pn, int *pn_max,
- double xc, double yc,
- double x0, double y0,
- double x1, double y1,
- double radius,
- double flatness) {
- double theta;
- double th_0, th_1;
- int n_pts;
- int i;
- double aradius;
-
- aradius = fabs(radius);
- theta = 2 * M_SQRT2 * sqrt(flatness / aradius);
- th_0 = atan2(y0, x0);
- th_1 = atan2(y1, x1);
- if (radius > 0) {
- /* curve to the left */
- if (th_0 < th_1) th_0 += M_PI * 2;
- n_pts = ceil((th_0 - th_1) / theta);
- } else {
- /* curve to the right */
- if (th_1 < th_0) th_1 += M_PI * 2;
- n_pts = ceil((th_1 - th_0) / theta);
- }
-#ifdef VERBOSE
- printf("start %f %f; th_0 = %f, th_1 = %f, r = %f, theta = %f\n", x0, y0, th_0, th_1, radius, theta);
-#endif
- art_vpath_add_point(p_vpath, pn, pn_max,
- ART_LINETO, xc + x0, yc + y0);
- for (i = 1; i < n_pts; i++) {
- theta = th_0 + (th_1 - th_0) * i / n_pts;
- art_vpath_add_point(p_vpath, pn, pn_max,
- ART_LINETO, xc + cos(theta) * aradius,
- yc + sin(theta) * aradius);
-#ifdef VERBOSE
- printf("mid %f %f\n", cos(theta) * radius, sin(theta) * radius);
-#endif
- }
- art_vpath_add_point(p_vpath, pn, pn_max,
- ART_LINETO, xc + x1, yc + y1);
-#ifdef VERBOSE
- printf("end %f %f\n", x1, y1);
-#endif
-}
-
-/* Assume that forw and rev are at point i0. Bring them to i1,
- joining with the vector i1 - i2.
-
- This used to be true, but isn't now that the stroke_raw code is
- filtering out (near)zero length vectors: {It so happens that all
- invocations of this function maintain the precondition i1 = i0 + 1,
- so we could decrease the number of arguments by one. We haven't
- done that here, though.}
-
- forw is to the line's right and rev is to its left.
-
- Precondition: no zero-length vectors, otherwise a divide by
- zero will happen. */
-static void
-render_seg(ArtVpath **p_forw, int *pn_forw, int *pn_forw_max,
- ArtVpath **p_rev, int *pn_rev, int *pn_rev_max,
- ArtVpath *vpath, int i0, int i1, int i2,
- ArtPathStrokeJoinType join,
- double line_width, double miter_limit, double flatness) {
- double dx0, dy0;
- double dx1, dy1;
- double dlx0, dly0;
- double dlx1, dly1;
- double dmx, dmy;
- double dmr2;
- double scale;
- double cross;
-
-#ifdef VERBOSE
- printf("join style = %d\n", join);
-#endif
-
- /* The vectors of the lines from i0 to i1 and i1 to i2. */
- dx0 = vpath[i1].x - vpath[i0].x;
- dy0 = vpath[i1].y - vpath[i0].y;
-
- dx1 = vpath[i2].x - vpath[i1].x;
- dy1 = vpath[i2].y - vpath[i1].y;
-
- /* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
- 90 degrees, and scaled to the length of line_width. */
- scale = line_width / sqrt(dx0 * dx0 + dy0 * dy0);
- dlx0 = dy0 * scale;
- dly0 = -dx0 * scale;
-
- /* Set dl[xy]1 to the vector from i1 to i2, rotated counterclockwise
- 90 degrees, and scaled to the length of line_width. */
- scale = line_width / sqrt(dx1 * dx1 + dy1 * dy1);
- dlx1 = dy1 * scale;
- dly1 = -dx1 * scale;
-
-#ifdef VERBOSE
- printf("%% render_seg: (%g, %g) - (%g, %g) - (%g, %g)\n",
- vpath[i0].x, vpath[i0].y,
- vpath[i1].x, vpath[i1].y,
- vpath[i2].x, vpath[i2].y);
-
- printf("%% render_seg: d[xy]0 = (%g, %g), dl[xy]0 = (%g, %g)\n",
- dx0, dy0, dlx0, dly0);
-
- printf("%% render_seg: d[xy]1 = (%g, %g), dl[xy]1 = (%g, %g)\n",
- dx1, dy1, dlx1, dly1);
-#endif
-
- /* now, forw's last point is expected to be colinear along d[xy]0
- to point i0 - dl[xy]0, and rev with i0 + dl[xy]0. */
-
- /* positive for positive area (i.e. left turn) */
- cross = dx1 * dy0 - dx0 * dy1;
-
- dmx = (dlx0 + dlx1) * 0.5;
- dmy = (dly0 + dly1) * 0.5;
- dmr2 = dmx * dmx + dmy * dmy;
-
- if (join == ART_PATH_STROKE_JOIN_MITER &&
- dmr2 * miter_limit * miter_limit < line_width * line_width)
- join = ART_PATH_STROKE_JOIN_BEVEL;
-
- /* the case when dmr2 is zero or very small bothers me
- (i.e. near a 180 degree angle)
- ALEX: So, we avoid the optimization when dmr2 is very small. This should
- be safe since dmx/y is only used in optimization and in MITER case, and MITER
- should be converted to BEVEL when dmr2 is very small. */
- if (dmr2 > EPSILON_2) {
- scale = line_width * line_width / dmr2;
- dmx *= scale;
- dmy *= scale;
- }
-
- if (cross *cross < EPSILON_2 && dx0 *dx1 + dy0 *dy1 >= 0) {
- /* going straight */
-#ifdef VERBOSE
- printf("%% render_seg: straight\n");
-#endif
- art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
- ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
- art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
- ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
- } else if (cross > 0) {
- /* left turn, forw is outside and rev is inside */
-
-#ifdef VERBOSE
- printf("%% render_seg: left\n");
-#endif
- if (
-#ifdef NO_OPTIMIZE_INNER
- 0 &&
-#endif
- (dmr2 > EPSILON_2) &&
- /* check that i1 + dm[xy] is inside i0-i1 rectangle */
- (dx0 + dmx) * dx0 + (dy0 + dmy) * dy0 > 0 &&
- /* and that i1 + dm[xy] is inside i1-i2 rectangle */
- ((dx1 - dmx) * dx1 + (dy1 - dmy) * dy1 > 0)
-#ifdef PEDANTIC_INNER
- &&
- /* check that i1 + dl[xy]1 is inside i0-i1 rectangle */
- (dx0 + dlx1) * dx0 + (dy0 + dly1) * dy0 > 0 &&
- /* and that i1 + dl[xy]0 is inside i1-i2 rectangle */
- ((dx1 - dlx0) * dx1 + (dy1 - dly0) * dy1 > 0)
-#endif
- ) {
- /* can safely add single intersection point */
- art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
- ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
- } else {
- /* need to loop-de-loop the inside */
- art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
- ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
- art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
- ART_LINETO, vpath[i1].x, vpath[i1].y);
- art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
- ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
- }
-
- if (join == ART_PATH_STROKE_JOIN_BEVEL) {
- /* bevel */
- art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
- ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
- art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
- ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
- } else if (join == ART_PATH_STROKE_JOIN_MITER) {
- art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
- ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
- } else if (join == ART_PATH_STROKE_JOIN_ROUND)
- art_svp_vpath_stroke_arc(p_forw, pn_forw, pn_forw_max,
- vpath[i1].x, vpath[i1].y,
- -dlx0, -dly0,
- -dlx1, -dly1,
- line_width,
- flatness);
- } else {
- /* right turn, rev is outside and forw is inside */
-#ifdef VERBOSE
- printf("%% render_seg: right\n");
-#endif
-
- if (
-#ifdef NO_OPTIMIZE_INNER
- 0 &&
-#endif
- (dmr2 > EPSILON_2) &&
- /* check that i1 - dm[xy] is inside i0-i1 rectangle */
- (dx0 - dmx) * dx0 + (dy0 - dmy) * dy0 > 0 &&
- /* and that i1 - dm[xy] is inside i1-i2 rectangle */
- ((dx1 + dmx) * dx1 + (dy1 + dmy) * dy1 > 0)
-#ifdef PEDANTIC_INNER
- &&
- /* check that i1 - dl[xy]1 is inside i0-i1 rectangle */
- (dx0 - dlx1) * dx0 + (dy0 - dly1) * dy0 > 0 &&
- /* and that i1 - dl[xy]0 is inside i1-i2 rectangle */
- ((dx1 + dlx0) * dx1 + (dy1 + dly0) * dy1 > 0)
-#endif
- ) {
- /* can safely add single intersection point */
- art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
- ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
- } else {
- /* need to loop-de-loop the inside */
- art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
- ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
- art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
- ART_LINETO, vpath[i1].x, vpath[i1].y);
- art_vpath_add_point(p_forw, pn_forw, pn_forw_max,
- ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
- }
-
- if (join == ART_PATH_STROKE_JOIN_BEVEL) {
- /* bevel */
- art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
- ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
- art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
- ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
- } else if (join == ART_PATH_STROKE_JOIN_MITER) {
- art_vpath_add_point(p_rev, pn_rev, pn_rev_max,
- ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
- } else if (join == ART_PATH_STROKE_JOIN_ROUND)
- art_svp_vpath_stroke_arc(p_rev, pn_rev, pn_rev_max,
- vpath[i1].x, vpath[i1].y,
- dlx0, dly0,
- dlx1, dly1,
- -line_width,
- flatness);
-
- }
-}
-
-/* caps i1, under the assumption of a vector from i0 */
-static void
-render_cap(ArtVpath **p_result, int *pn_result, int *pn_result_max,
- ArtVpath *vpath, int i0, int i1,
- ArtPathStrokeCapType cap, double line_width, double flatness) {
- double dx0, dy0;
- double dlx0, dly0;
- double scale;
- int n_pts;
- int i;
-
- dx0 = vpath[i1].x - vpath[i0].x;
- dy0 = vpath[i1].y - vpath[i0].y;
-
- /* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
- 90 degrees, and scaled to the length of line_width. */
- scale = line_width / sqrt(dx0 * dx0 + dy0 * dy0);
- dlx0 = dy0 * scale;
- dly0 = -dx0 * scale;
-
-#ifdef VERBOSE
- printf("cap style = %d\n", cap);
-#endif
-
- switch (cap) {
- case ART_PATH_STROKE_CAP_BUTT:
- art_vpath_add_point(p_result, pn_result, pn_result_max,
- ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
- art_vpath_add_point(p_result, pn_result, pn_result_max,
- ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
- break;
- case ART_PATH_STROKE_CAP_ROUND:
- n_pts = ceil(M_PI / (2.0 * M_SQRT2 * sqrt(flatness / line_width)));
- art_vpath_add_point(p_result, pn_result, pn_result_max,
- ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
- for (i = 1; i < n_pts; i++) {
- double theta, c_th, s_th;
-
- theta = M_PI * i / n_pts;
- c_th = cos(theta);
- s_th = sin(theta);
- art_vpath_add_point(p_result, pn_result, pn_result_max,
- ART_LINETO,
- vpath[i1].x - dlx0 * c_th - dly0 * s_th,
- vpath[i1].y - dly0 * c_th + dlx0 * s_th);
- }
- art_vpath_add_point(p_result, pn_result, pn_result_max,
- ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
- break;
- case ART_PATH_STROKE_CAP_SQUARE:
- art_vpath_add_point(p_result, pn_result, pn_result_max,
- ART_LINETO,
- vpath[i1].x - dlx0 - dly0,
- vpath[i1].y - dly0 + dlx0);
- art_vpath_add_point(p_result, pn_result, pn_result_max,
- ART_LINETO,
- vpath[i1].x + dlx0 - dly0,
- vpath[i1].y + dly0 + dlx0);
- break;
- }
-}
-
-/**
- * art_svp_from_vpath_raw: Stroke a vector path, raw version
- * @vpath: #ArtVPath to stroke.
- * @join: Join style.
- * @cap: Cap style.
- * @line_width: Width of stroke.
- * @miter_limit: Miter limit.
- * @flatness: Flatness.
- *
- * Exactly the same as art_svp_vpath_stroke(), except that the resulting
- * stroke outline may self-intersect and have regions of winding number
- * greater than 1.
- *
- * Return value: Resulting raw stroked outline in svp format.
- **/
-ArtVpath *
-art_svp_vpath_stroke_raw(ArtVpath *vpath,
- ArtPathStrokeJoinType join,
- ArtPathStrokeCapType cap,
- double line_width,
- double miter_limit,
- double flatness) {
- int begin_idx, end_idx;
- int i;
- ArtVpath *forw, *rev;
- int n_forw, n_rev;
- int n_forw_max, n_rev_max;
- ArtVpath *result;
- int n_result, n_result_max;
- double half_lw = 0.5 * line_width;
- int closed;
- int last, this_, next, second;
- double dx, dy;
-
- n_forw_max = 16;
- forw = art_new(ArtVpath, n_forw_max);
-
- n_rev_max = 16;
- rev = art_new(ArtVpath, n_rev_max);
-
- n_result = 0;
- n_result_max = 16;
- result = art_new(ArtVpath, n_result_max);
-
- for (begin_idx = 0; vpath[begin_idx].code != ART_END; begin_idx = end_idx) {
- n_forw = 0;
- n_rev = 0;
-
- closed = (vpath[begin_idx].code == ART_MOVETO);
-
- /* we don't know what the first point joins with until we get to the
- last point and see if it's closed. So we start with the second
- line in the path.
-
- Note: this is not strictly true (we now know it's closed from
- the opening pathcode), but why fix code that isn't broken?
- */
-
- this_ = begin_idx;
- /* skip over identical points at the beginning of the subpath */
- for (i = this_ + 1; vpath[i].code == ART_LINETO; i++) {
- dx = vpath[i].x - vpath[this_].x;
- dy = vpath[i].y - vpath[this_].y;
- if (dx * dx + dy * dy > EPSILON_2)
- break;
- }
- next = i;
- second = next;
-
- /* invariant: this doesn't coincide with next */
- while (vpath[next].code == ART_LINETO) {
- last = this_;
- this_ = next;
- /* skip over identical points after the beginning of the subpath */
- for (i = this_ + 1; vpath[i].code == ART_LINETO; i++) {
- dx = vpath[i].x - vpath[this_].x;
- dy = vpath[i].y - vpath[this_].y;
- if (dx * dx + dy * dy > EPSILON_2)
- break;
- }
- next = i;
- if (vpath[next].code != ART_LINETO) {
- /* reached end of path */
- /* make "closed" detection conform to PostScript
- semantics (i.e. explicit closepath code rather than
- just the fact that end of the path is the beginning) */
- if (closed &&
- vpath[this_].x == vpath[begin_idx].x &&
- vpath[this_].y == vpath[begin_idx].y) {
- int j;
-
- /* path is closed, render join to beginning */
- render_seg(&forw, &n_forw, &n_forw_max,
- &rev, &n_rev, &n_rev_max,
- vpath, last, this_, second,
- join, half_lw, miter_limit, flatness);
-
-#ifdef VERBOSE
- printf("%% forw %d, rev %d\n", n_forw, n_rev);
-#endif
- /* do forward path */
- art_vpath_add_point(&result, &n_result, &n_result_max,
- ART_MOVETO, forw[n_forw - 1].x,
- forw[n_forw - 1].y);
- for (j = 0; j < n_forw; j++)
- art_vpath_add_point(&result, &n_result, &n_result_max,
- ART_LINETO, forw[j].x,
- forw[j].y);
-
- /* do reverse path, reversed */
- art_vpath_add_point(&result, &n_result, &n_result_max,
- ART_MOVETO, rev[0].x,
- rev[0].y);
- for (j = n_rev - 1; j >= 0; j--)
- art_vpath_add_point(&result, &n_result, &n_result_max,
- ART_LINETO, rev[j].x,
- rev[j].y);
- } else {
- /* path is open */
- int j;
-
- /* add to forw rather than result to ensure that
- forw has at least one point. */
- render_cap(&forw, &n_forw, &n_forw_max,
- vpath, last, this_,
- cap, half_lw, flatness);
- art_vpath_add_point(&result, &n_result, &n_result_max,
- ART_MOVETO, forw[0].x,
- forw[0].y);
- for (j = 1; j < n_forw; j++)
- art_vpath_add_point(&result, &n_result, &n_result_max,
- ART_LINETO, forw[j].x,
- forw[j].y);
- for (j = n_rev - 1; j >= 0; j--)
- art_vpath_add_point(&result, &n_result, &n_result_max,
- ART_LINETO, rev[j].x,
- rev[j].y);
- render_cap(&result, &n_result, &n_result_max,
- vpath, second, begin_idx,
- cap, half_lw, flatness);
- art_vpath_add_point(&result, &n_result, &n_result_max,
- ART_LINETO, forw[0].x,
- forw[0].y);
- }
- } else
- render_seg(&forw, &n_forw, &n_forw_max,
- &rev, &n_rev, &n_rev_max,
- vpath, last, this_, next,
- join, half_lw, miter_limit, flatness);
- }
- end_idx = next;
- }
-
- free(forw);
- free(rev);
-#ifdef VERBOSE
- printf("%% n_result = %d\n", n_result);
-#endif
- art_vpath_add_point(&result, &n_result, &n_result_max, ART_END, 0, 0);
- return result;
-}
-
-#define noVERBOSE
-
-#ifdef VERBOSE
-
-#define XOFF 50
-#define YOFF 700
-
-static void
-print_ps_vpath(ArtVpath *vpath) {
- int i;
-
- for (i = 0; vpath[i].code != ART_END; i++) {
- switch (vpath[i].code) {
- case ART_MOVETO:
- printf("%g %g moveto\n", XOFF + vpath[i].x, YOFF - vpath[i].y);
- break;
- case ART_LINETO:
- printf("%g %g lineto\n", XOFF + vpath[i].x, YOFF - vpath[i].y);
- break;
- default:
- break;
- }
- }
- printf("stroke showpage\n");
-}
-
-static void
-print_ps_svp(ArtSVP *vpath) {
- int i, j;
-
- printf("%% begin\n");
- for (i = 0; i < vpath->n_segs; i++) {
- printf("%g setgray\n", vpath->segs[i].dir ? 0.7 : 0);
- for (j = 0; j < vpath->segs[i].n_points; j++) {
- printf("%g %g %s\n",
- XOFF + vpath->segs[i].points[j].x,
- YOFF - vpath->segs[i].points[j].y,
- j ? "lineto" : "moveto");
- }
- printf("stroke\n");
- }
-
- printf("showpage\n");
-}
-#endif
-
-/* Render a vector path into a stroked outline.
-
- Status of this routine:
-
- Basic correctness: Only miter and bevel line joins are implemented,
- and only butt line caps. Otherwise, seems to be fine.
-
- Numerical stability: We cheat (adding random perturbation). Thus,
- it seems very likely that no numerical stability problems will be
- seen in practice.
-
- Speed: Should be pretty good.
-
- Precision: The perturbation fuzzes the coordinates slightly,
- but not enough to be visible. */
-/**
- * art_svp_vpath_stroke: Stroke a vector path.
- * @vpath: #ArtVPath to stroke.
- * @join: Join style.
- * @cap: Cap style.
- * @line_width: Width of stroke.
- * @miter_limit: Miter limit.
- * @flatness: Flatness.
- *
- * Computes an svp representing the stroked outline of @vpath. The
- * width of the stroked line is @line_width.
- *
- * Lines are joined according to the @join rule. Possible values are
- * ART_PATH_STROKE_JOIN_MITER (for mitered joins),
- * ART_PATH_STROKE_JOIN_ROUND (for round joins), and
- * ART_PATH_STROKE_JOIN_BEVEL (for bevelled joins). The mitered join
- * is converted to a bevelled join if the miter would extend to a
- * distance of more than @miter_limit * @line_width from the actual
- * join point.
- *
- * If there are open subpaths, the ends of these subpaths are capped
- * according to the @cap rule. Possible values are
- * ART_PATH_STROKE_CAP_BUTT (squared cap, extends exactly to end
- * point), ART_PATH_STROKE_CAP_ROUND (rounded half-circle centered at
- * the end point), and ART_PATH_STROKE_CAP_SQUARE (squared cap,
- * extending half @line_width past the end point).
- *
- * The @flatness parameter controls the accuracy of the rendering. It
- * is most important for determining the number of points to use to
- * approximate circular arcs for round lines and joins. In general, the
- * resulting vector path will be within @flatness pixels of the "ideal"
- * path containing actual circular arcs. I reserve the right to use
- * the @flatness parameter to convert bevelled joins to miters for very
- * small turn angles, as this would reduce the number of points in the
- * resulting outline path.
- *
- * The resulting path is "clean" with respect to self-intersections, i.e.
- * the winding number is 0 or 1 at each point.
- *
- * Return value: Resulting stroked outline in svp format.
- **/
-ArtSVP *
-art_svp_vpath_stroke(ArtVpath *vpath,
- ArtPathStrokeJoinType join,
- ArtPathStrokeCapType cap,
- double line_width,
- double miter_limit,
- double flatness) {
- ArtVpath *vpath_stroke;
- ArtSVP *svp, *svp2;
- ArtSvpWriter *swr;
-
- vpath_stroke = art_svp_vpath_stroke_raw(vpath, join, cap,
- line_width, miter_limit, flatness);
- svp = art_svp_from_vpath(vpath_stroke);
- free(vpath_stroke);
-
- swr = art_svp_writer_rewind_new(ART_WIND_RULE_NONZERO);
- art_svp_intersector(svp, swr);
-
- svp2 = art_svp_writer_rewind_reap(swr);
- art_svp_free(svp);
- return svp2;
-}
diff --git a/engines/sword25/gfx/image/art_svp_vpath_stroke.h b/engines/sword25/gfx/image/art_svp_vpath_stroke.h
deleted file mode 100644
index a313c6b58a..0000000000
--- a/engines/sword25/gfx/image/art_svp_vpath_stroke.h
+++ /dev/null
@@ -1,71 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-#ifndef __ART_SVP_VPATH_STROKE_H__
-#define __ART_SVP_VPATH_STROKE_H__
-
-/* Sort vector paths into sorted vector paths. */
-
-#include "art.h"
-
-typedef enum {
- ART_PATH_STROKE_JOIN_MITER,
- ART_PATH_STROKE_JOIN_ROUND,
- ART_PATH_STROKE_JOIN_BEVEL
-} ArtPathStrokeJoinType;
-
-typedef enum {
- ART_PATH_STROKE_CAP_BUTT,
- ART_PATH_STROKE_CAP_ROUND,
- ART_PATH_STROKE_CAP_SQUARE
-} ArtPathStrokeCapType;
-
-ArtSVP *
-art_svp_vpath_stroke(ArtVpath *vpath,
- ArtPathStrokeJoinType join,
- ArtPathStrokeCapType cap,
- double line_width,
- double miter_limit,
- double flatness);
-
-/* This version may have winding numbers exceeding 1. */
-ArtVpath *
-art_svp_vpath_stroke_raw(ArtVpath *vpath,
- ArtPathStrokeJoinType join,
- ArtPathStrokeCapType cap,
- double line_width,
- double miter_limit,
- double flatness);
-
-#endif /* __ART_SVP_VPATH_STROKE_H__ */
diff --git a/engines/sword25/gfx/image/art_vpath_bpath.cpp b/engines/sword25/gfx/image/art_vpath_bpath.cpp
deleted file mode 100644
index 1191c1fa08..0000000000
--- a/engines/sword25/gfx/image/art_vpath_bpath.cpp
+++ /dev/null
@@ -1,276 +0,0 @@
-/* ScummVM - Graphic Adventure Engine
- *
- * ScummVM is the legal property of its developers, whose names
- * are too numerous to list here. Please refer to the COPYRIGHT
- * file distributed with this source distribution.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
-
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
-
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * $URL$
- * $Id$
- *
- */
-
-/*
- * This code is based on Libart_LGPL - library of basic graphic primitives
- *
- * Copyright (c) 1998 Raph Levien
- *
- * Licensed under GNU LGPL v2
- *
- */
-
-/* Basic constructors and operations for bezier paths */
-
-#include "art.h"
-
-#include <math.h>
-
-#define RENDER_LEVEL 4
-#define RENDER_SIZE (1 << (RENDER_LEVEL))
-
-/**
- * art_vpath_render_bez: Render a bezier segment into the vpath.
- * @p_vpath: Where the pointer to the #ArtVpath structure is stored.
- * @pn_points: Pointer to the number of points in *@p_vpath.
- * @pn_points_max: Pointer to the number of points allocated.
- * @x0: X coordinate of starting bezier point.
- * @y0: Y coordinate of starting bezier point.
- * @x1: X coordinate of first bezier control point.
- * @y1: Y coordinate of first bezier control point.
- * @x2: X coordinate of second bezier control point.
- * @y2: Y coordinate of second bezier control point.
- * @x3: X coordinate of ending bezier point.
- * @y3: Y coordinate of ending bezier point.
- * @flatness: Flatness control.
- *
- * Renders a bezier segment into the vector path, reallocating and
- * updating *@p_vpath and *@pn_vpath_max as necessary. *@pn_vpath is
- * incremented by the number of vector points added.
- *
- * This step includes (@x0, @y0) but not (@x3, @y3).
- *
- * The @flatness argument guides the amount of subdivision. The Adobe
- * PostScript reference manual defines flatness as the maximum
- * deviation between the any point on the vpath approximation and the
- * corresponding point on the "true" curve, and we follow this
- * definition here. A value of 0.25 should ensure high quality for aa
- * rendering.
-**/
-static void
-art_vpath_render_bez(ArtVpath **p_vpath, int *pn, int *pn_max,
- double x0, double y0,
- double x1, double y1,
- double x2, double y2,
- double x3, double y3,
- double flatness) {
- double x3_0, y3_0;
- double z3_0_dot;
- double z1_dot, z2_dot;
- double z1_perp, z2_perp;
- double max_perp_sq;
-
- double x_m, y_m;
- double xa1, ya1;
- double xa2, ya2;
- double xb1, yb1;
- double xb2, yb2;
-
- /* It's possible to optimize this routine a fair amount.
-
- First, once the _dot conditions are met, they will also be met in
- all further subdivisions. So we might recurse to a different
- routine that only checks the _perp conditions.
-
- Second, the distance _should_ decrease according to fairly
- predictable rules (a factor of 4 with each subdivision). So it might
- be possible to note that the distance is within a factor of 4 of
- acceptable, and subdivide once. But proving this might be hard.
-
- Third, at the last subdivision, x_m and y_m can be computed more
- expeditiously (as in the routine above).
-
- Finally, if we were able to subdivide by, say 2 or 3, this would
- allow considerably finer-grain control, i.e. fewer points for the
- same flatness tolerance. This would speed things up downstream.
-
- In any case, this routine is unlikely to be the bottleneck. It's
- just that I have this undying quest for more speed...
-
- */
-
- x3_0 = x3 - x0;
- y3_0 = y3 - y0;
-
- /* z3_0_dot is dist z0-z3 squared */
- z3_0_dot = x3_0 * x3_0 + y3_0 * y3_0;
-
- if (z3_0_dot < 0.001) {
- /* if start and end point are almost identical, the flatness tests
- * don't work properly, so fall back on testing whether both of
- * the other two control points are the same as the start point,
- * too.
- */
- if (hypot(x1 - x0, y1 - y0) < 0.001
- && hypot(x2 - x0, y2 - y0) < 0.001)
- goto nosubdivide;
- else
- goto subdivide;
- }
-
- /* we can avoid subdivision if:
-
- z1 has distance no more than flatness from the z0-z3 line
-
- z1 is no more z0'ward than flatness past z0-z3
-
- z1 is more z0'ward than z3'ward on the line traversing z0-z3
-
- and correspondingly for z2 */
-
- /* perp is distance from line, multiplied by dist z0-z3 */
- max_perp_sq = flatness * flatness * z3_0_dot;
-
- z1_perp = (y1 - y0) * x3_0 - (x1 - x0) * y3_0;
- if (z1_perp * z1_perp > max_perp_sq)
- goto subdivide;
-
- z2_perp = (y3 - y2) * x3_0 - (x3 - x2) * y3_0;
- if (z2_perp * z2_perp > max_perp_sq)
- goto subdivide;
-
- z1_dot = (x1 - x0) * x3_0 + (y1 - y0) * y3_0;
- if (z1_dot < 0 && z1_dot * z1_dot > max_perp_sq)
- goto subdivide;
-
- z2_dot = (x3 - x2) * x3_0 + (y3 - y2) * y3_0;
- if (z2_dot < 0 && z2_dot * z2_dot > max_perp_sq)
- goto subdivide;
-
- if (z1_dot + z1_dot > z3_0_dot)
- goto subdivide;
-
- if (z2_dot + z2_dot > z3_0_dot)
- goto subdivide;
-
-
-nosubdivide:
- /* don't subdivide */
- art_vpath_add_point(p_vpath, pn, pn_max,
- ART_LINETO, x3, y3);
- return;
-
-subdivide:
-
- xa1 = (x0 + x1) * 0.5;
- ya1 = (y0 + y1) * 0.5;
- xa2 = (x0 + 2 * x1 + x2) * 0.25;
- ya2 = (y0 + 2 * y1 + y2) * 0.25;
- xb1 = (x1 + 2 * x2 + x3) * 0.25;
- yb1 = (y1 + 2 * y2 + y3) * 0.25;
- xb2 = (x2 + x3) * 0.5;
- yb2 = (y2 + y3) * 0.5;
- x_m = (xa2 + xb1) * 0.5;
- y_m = (ya2 + yb1) * 0.5;
-#ifdef VERBOSE
- printf("%g,%g %g,%g %g,%g %g,%g\n", xa1, ya1, xa2, ya2,
- xb1, yb1, xb2, yb2);
-#endif
- art_vpath_render_bez(p_vpath, pn, pn_max,
- x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, flatness);
- art_vpath_render_bez(p_vpath, pn, pn_max,
- x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, flatness);
-}
-
-/**
- * art_bez_path_to_vec: Create vpath from bezier path.
- * @bez: Bezier path.
- * @flatness: Flatness control.
- *
- * Creates a vector path closely approximating the bezier path defined by
- * @bez. The @flatness argument controls the amount of subdivision. In
- * general, the resulting vpath deviates by at most @flatness pixels
- * from the "ideal" path described by @bez.
- *
- * Return value: Newly allocated vpath.
- **/
-ArtVpath *
-art_bez_path_to_vec(const ArtBpath *bez, double flatness) {
- ArtVpath *vec;
- int vec_n, vec_n_max;
- int bez_index;
- double x, y;
-
- vec_n = 0;
- vec_n_max = RENDER_SIZE;
- vec = art_new(ArtVpath, vec_n_max);
-
- /* Initialization is unnecessary because of the precondition that the
- bezier path does not begin with LINETO or CURVETO, but is here
- to make the code warning-free. */
- x = 0;
- y = 0;
-
- bez_index = 0;
- do {
-#ifdef VERBOSE
- printf("%s %g %g\n",
- bez[bez_index].code == ART_CURVETO ? "curveto" :
- bez[bez_index].code == ART_LINETO ? "lineto" :
- bez[bez_index].code == ART_MOVETO ? "moveto" :
- bez[bez_index].code == ART_MOVETO_OPEN ? "moveto-open" :
- "end", bez[bez_index].x3, bez[bez_index].y3);
-#endif
- /* make sure space for at least one more code */
- if (vec_n >= vec_n_max)
- art_expand(vec, ArtVpath, vec_n_max);
- switch (bez[bez_index].code) {
- case ART_MOVETO_OPEN:
- case ART_MOVETO:
- case ART_LINETO:
- x = bez[bez_index].x3;
- y = bez[bez_index].y3;
- vec[vec_n].code = bez[bez_index].code;
- vec[vec_n].x = x;
- vec[vec_n].y = y;
- vec_n++;
- break;
- case ART_END:
- vec[vec_n].code = bez[bez_index].code;
- vec[vec_n].x = 0;
- vec[vec_n].y = 0;
- vec_n++;
- break;
- case ART_CURVETO:
-#ifdef VERBOSE
- printf("%g,%g %g,%g %g,%g %g,%g\n", x, y,
- bez[bez_index].x1, bez[bez_index].y1,
- bez[bez_index].x2, bez[bez_index].y2,
- bez[bez_index].x3, bez[bez_index].y3);
-#endif
- art_vpath_render_bez(&vec, &vec_n, &vec_n_max,
- x, y,
- bez[bez_index].x1, bez[bez_index].y1,
- bez[bez_index].x2, bez[bez_index].y2,
- bez[bez_index].x3, bez[bez_index].y3,
- flatness);
- x = bez[bez_index].x3;
- y = bez[bez_index].y3;
- break;
- }
- } while (bez[bez_index++].code != ART_END);
- return vec;
-}
-
diff --git a/engines/sword25/gfx/image/vectorimagerenderer.cpp b/engines/sword25/gfx/image/vectorimagerenderer.cpp
index e1b6ac9122..16d1abf9f9 100644
--- a/engines/sword25/gfx/image/vectorimagerenderer.cpp
+++ b/engines/sword25/gfx/image/vectorimagerenderer.cpp
@@ -41,9 +41,7 @@
*
*/
-#include "art_svp_vpath.h"
-#include "art_svp_vpath_stroke.h"
-#include "art_svp_render_aa.h"
+#include "art.h"
#include "sword25/gfx/image/vectorimage.h"
#include "graphics/colormasks.h"
diff --git a/engines/sword25/module.mk b/engines/sword25/module.mk
index 917e6d51d8..c936565a1c 100644
--- a/engines/sword25/module.mk
+++ b/engines/sword25/module.mk
@@ -35,11 +35,6 @@ MODULE_OBJS := \
gfx/image/vectorimage.o \
gfx/image/vectorimagerenderer.o \
gfx/image/art.o \
- gfx/image/art_svp_intersect.o \
- gfx/image/art_svp_render_aa.o \
- gfx/image/art_svp_vpath.o \
- gfx/image/art_svp_vpath_stroke.o \
- gfx/image/art_vpath_bpath.o \
input/inputengine.o \
input/inputengine_script.o \
kernel/callbackregistry.o \