aboutsummaryrefslogtreecommitdiff
path: root/audio/softsynth/mt32/LegacyWaveGenerator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'audio/softsynth/mt32/LegacyWaveGenerator.cpp')
-rw-r--r--audio/softsynth/mt32/LegacyWaveGenerator.cpp347
1 files changed, 347 insertions, 0 deletions
diff --git a/audio/softsynth/mt32/LegacyWaveGenerator.cpp b/audio/softsynth/mt32/LegacyWaveGenerator.cpp
new file mode 100644
index 0000000000..139c89295f
--- /dev/null
+++ b/audio/softsynth/mt32/LegacyWaveGenerator.cpp
@@ -0,0 +1,347 @@
+/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
+ * Copyright (C) 2011, 2012, 2013 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation, either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+//#include <cmath>
+#include "mt32emu.h"
+#include "mmath.h"
+#include "LegacyWaveGenerator.h"
+
+#if MT32EMU_ACCURATE_WG == 1
+
+namespace MT32Emu {
+
+static const float MIDDLE_CUTOFF_VALUE = 128.0f;
+static const float RESONANCE_DECAY_THRESHOLD_CUTOFF_VALUE = 144.0f;
+static const float MAX_CUTOFF_VALUE = 240.0f;
+
+float LA32WaveGenerator::getPCMSample(unsigned int position) {
+ if (position >= pcmWaveLength) {
+ if (!pcmWaveLooped) {
+ return 0;
+ }
+ position = position % pcmWaveLength;
+ }
+ Bit16s pcmSample = pcmWaveAddress[position];
+ float sampleValue = EXP2F(((pcmSample & 32767) - 32787.0f) / 2048.0f);
+ return ((pcmSample & 32768) == 0) ? sampleValue : -sampleValue;
+}
+
+void LA32WaveGenerator::initSynth(const bool sawtoothWaveform, const Bit8u pulseWidth, const Bit8u resonance) {
+ this->sawtoothWaveform = sawtoothWaveform;
+ this->pulseWidth = pulseWidth;
+ this->resonance = resonance;
+
+ wavePos = 0.0f;
+ lastFreq = 0.0f;
+
+ pcmWaveAddress = NULL;
+ active = true;
+}
+
+void LA32WaveGenerator::initPCM(const Bit16s * const pcmWaveAddress, const Bit32u pcmWaveLength, const bool pcmWaveLooped, const bool pcmWaveInterpolated) {
+ this->pcmWaveAddress = pcmWaveAddress;
+ this->pcmWaveLength = pcmWaveLength;
+ this->pcmWaveLooped = pcmWaveLooped;
+ this->pcmWaveInterpolated = pcmWaveInterpolated;
+
+ pcmPosition = 0.0f;
+ active = true;
+}
+
+float LA32WaveGenerator::generateNextSample(const Bit32u ampVal, const Bit16u pitch, const Bit32u cutoffRampVal) {
+ if (!active) {
+ return 0.0f;
+ }
+
+ this->amp = amp;
+ this->pitch = pitch;
+
+ float sample = 0.0f;
+
+ // SEMI-CONFIRMED: From sample analysis:
+ // (1) Tested with a single partial playing PCM wave 77 with pitchCoarse 36 and no keyfollow, velocity follow, etc.
+ // This gives results within +/- 2 at the output (before any DAC bitshifting)
+ // when sustaining at levels 156 - 255 with no modifiers.
+ // (2) Tested with a special square wave partial (internal capture ID tva5) at TVA envelope levels 155-255.
+ // This gives deltas between -1 and 0 compared to the real output. Note that this special partial only produces
+ // positive amps, so negative still needs to be explored, as well as lower levels.
+ //
+ // Also still partially unconfirmed is the behaviour when ramping between levels, as well as the timing.
+
+ float amp = EXP2F(ampVal / -1024.0f / 4096.0f);
+ float freq = EXP2F(pitch / 4096.0f - 16.0f) * SAMPLE_RATE;
+
+ if (isPCMWave()) {
+ // Render PCM waveform
+ int len = pcmWaveLength;
+ int intPCMPosition = (int)pcmPosition;
+ if (intPCMPosition >= len && !pcmWaveLooped) {
+ // We're now past the end of a non-looping PCM waveform so it's time to die.
+ deactivate();
+ return 0.0f;
+ }
+ float positionDelta = freq * 2048.0f / SAMPLE_RATE;
+
+ // Linear interpolation
+ float firstSample = getPCMSample(intPCMPosition);
+ // We observe that for partial structures with ring modulation the interpolation is not applied to the slave PCM partial.
+ // It's assumed that the multiplication circuitry intended to perform the interpolation on the slave PCM partial
+ // is borrowed by the ring modulation circuit (or the LA32 chip has a similar lack of resources assigned to each partial pair).
+ if (pcmWaveInterpolated) {
+ sample = firstSample + (getPCMSample(intPCMPosition + 1) - firstSample) * (pcmPosition - intPCMPosition);
+ } else {
+ sample = firstSample;
+ }
+
+ float newPCMPosition = pcmPosition + positionDelta;
+ if (pcmWaveLooped) {
+ newPCMPosition = fmod(newPCMPosition, (float)pcmWaveLength);
+ }
+ pcmPosition = newPCMPosition;
+ } else {
+ // Render synthesised waveform
+ wavePos *= lastFreq / freq;
+ lastFreq = freq;
+
+ float resAmp = EXP2F(1.0f - (32 - resonance) / 4.0f);
+ {
+ //static const float resAmpFactor = EXP2F(-7);
+ //resAmp = EXP2I(resonance << 10) * resAmpFactor;
+ }
+
+ // The cutoffModifier may not be supposed to be directly added to the cutoff -
+ // it may for example need to be multiplied in some way.
+ // The 240 cutoffVal limit was determined via sample analysis (internal Munt capture IDs: glop3, glop4).
+ // More research is needed to be sure that this is correct, however.
+ float cutoffVal = cutoffRampVal / 262144.0f;
+ if (cutoffVal > MAX_CUTOFF_VALUE) {
+ cutoffVal = MAX_CUTOFF_VALUE;
+ }
+
+ // Wave length in samples
+ float waveLen = SAMPLE_RATE / freq;
+
+ // Init cosineLen
+ float cosineLen = 0.5f * waveLen;
+ if (cutoffVal > MIDDLE_CUTOFF_VALUE) {
+ cosineLen *= EXP2F((cutoffVal - MIDDLE_CUTOFF_VALUE) / -16.0f); // found from sample analysis
+ }
+
+ // Start playing in center of first cosine segment
+ // relWavePos is shifted by a half of cosineLen
+ float relWavePos = wavePos + 0.5f * cosineLen;
+ if (relWavePos > waveLen) {
+ relWavePos -= waveLen;
+ }
+
+ // Ratio of positive segment to wave length
+ float pulseLen = 0.5f;
+ if (pulseWidth > 128) {
+ pulseLen = EXP2F((64 - pulseWidth) / 64.0f);
+ //static const float pulseLenFactor = EXP2F(-192 / 64);
+ //pulseLen = EXP2I((256 - pulseWidthVal) << 6) * pulseLenFactor;
+ }
+ pulseLen *= waveLen;
+
+ float hLen = pulseLen - cosineLen;
+
+ // Ignore pulsewidths too high for given freq
+ if (hLen < 0.0f) {
+ hLen = 0.0f;
+ }
+
+ // Ignore pulsewidths too high for given freq and cutoff
+ float lLen = waveLen - hLen - 2 * cosineLen;
+ if (lLen < 0.0f) {
+ lLen = 0.0f;
+ }
+
+ // Correct resAmp for cutoff in range 50..66
+ if ((cutoffVal >= 128.0f) && (cutoffVal < 144.0f)) {
+ resAmp *= sinf(FLOAT_PI * (cutoffVal - 128.0f) / 32.0f);
+ }
+
+ // Produce filtered square wave with 2 cosine waves on slopes
+
+ // 1st cosine segment
+ if (relWavePos < cosineLen) {
+ sample = -cosf(FLOAT_PI * relWavePos / cosineLen);
+ } else
+
+ // high linear segment
+ if (relWavePos < (cosineLen + hLen)) {
+ sample = 1.f;
+ } else
+
+ // 2nd cosine segment
+ if (relWavePos < (2 * cosineLen + hLen)) {
+ sample = cosf(FLOAT_PI * (relWavePos - (cosineLen + hLen)) / cosineLen);
+ } else {
+
+ // low linear segment
+ sample = -1.f;
+ }
+
+ if (cutoffVal < 128.0f) {
+
+ // Attenuate samples below cutoff 50
+ // Found by sample analysis
+ sample *= EXP2F(-0.125f * (128.0f - cutoffVal));
+ } else {
+
+ // Add resonance sine. Effective for cutoff > 50 only
+ float resSample = 1.0f;
+
+ // Resonance decay speed factor
+ float resAmpDecayFactor = Tables::getInstance().resAmpDecayFactor[resonance >> 2];
+
+ // Now relWavePos counts from the middle of first cosine
+ relWavePos = wavePos;
+
+ // negative segments
+ if (!(relWavePos < (cosineLen + hLen))) {
+ resSample = -resSample;
+ relWavePos -= cosineLen + hLen;
+
+ // From the digital captures, the decaying speed of the resonance sine is found a bit different for the positive and the negative segments
+ resAmpDecayFactor += 0.25f;
+ }
+
+ // Resonance sine WG
+ resSample *= sinf(FLOAT_PI * relWavePos / cosineLen);
+
+ // Resonance sine amp
+ float resAmpFadeLog2 = -0.125f * resAmpDecayFactor * (relWavePos / cosineLen); // seems to be exact
+ float resAmpFade = EXP2F(resAmpFadeLog2);
+
+ // Now relWavePos set negative to the left from center of any cosine
+ relWavePos = wavePos;
+
+ // negative segment
+ if (!(wavePos < (waveLen - 0.5f * cosineLen))) {
+ relWavePos -= waveLen;
+ } else
+
+ // positive segment
+ if (!(wavePos < (hLen + 0.5f * cosineLen))) {
+ relWavePos -= cosineLen + hLen;
+ }
+
+ // To ensure the output wave has no breaks, two different windows are appied to the beginning and the ending of the resonance sine segment
+ if (relWavePos < 0.5f * cosineLen) {
+ float syncSine = sinf(FLOAT_PI * relWavePos / cosineLen);
+ if (relWavePos < 0.0f) {
+ // The window is synchronous square sine here
+ resAmpFade *= syncSine * syncSine;
+ } else {
+ // The window is synchronous sine here
+ resAmpFade *= syncSine;
+ }
+ }
+
+ sample += resSample * resAmp * resAmpFade;
+ }
+
+ // sawtooth waves
+ if (sawtoothWaveform) {
+ sample *= cosf(FLOAT_2PI * wavePos / waveLen);
+ }
+
+ wavePos++;
+
+ // wavePos isn't supposed to be > waveLen
+ if (wavePos > waveLen) {
+ wavePos -= waveLen;
+ }
+ }
+
+ // Multiply sample with current TVA value
+ sample *= amp;
+ return sample;
+}
+
+void LA32WaveGenerator::deactivate() {
+ active = false;
+}
+
+bool LA32WaveGenerator::isActive() const {
+ return active;
+}
+
+bool LA32WaveGenerator::isPCMWave() const {
+ return pcmWaveAddress != NULL;
+}
+
+void LA32PartialPair::init(const bool ringModulated, const bool mixed) {
+ this->ringModulated = ringModulated;
+ this->mixed = mixed;
+ masterOutputSample = 0.0f;
+ slaveOutputSample = 0.0f;
+}
+
+void LA32PartialPair::initSynth(const PairType useMaster, const bool sawtoothWaveform, const Bit8u pulseWidth, const Bit8u resonance) {
+ if (useMaster == MASTER) {
+ master.initSynth(sawtoothWaveform, pulseWidth, resonance);
+ } else {
+ slave.initSynth(sawtoothWaveform, pulseWidth, resonance);
+ }
+}
+
+void LA32PartialPair::initPCM(const PairType useMaster, const Bit16s *pcmWaveAddress, const Bit32u pcmWaveLength, const bool pcmWaveLooped) {
+ if (useMaster == MASTER) {
+ master.initPCM(pcmWaveAddress, pcmWaveLength, pcmWaveLooped, true);
+ } else {
+ slave.initPCM(pcmWaveAddress, pcmWaveLength, pcmWaveLooped, !ringModulated);
+ }
+}
+
+void LA32PartialPair::generateNextSample(const PairType useMaster, const Bit32u amp, const Bit16u pitch, const Bit32u cutoff) {
+ if (useMaster == MASTER) {
+ masterOutputSample = master.generateNextSample(amp, pitch, cutoff);
+ } else {
+ slaveOutputSample = slave.generateNextSample(amp, pitch, cutoff);
+ }
+}
+
+Bit16s LA32PartialPair::nextOutSample() {
+ float outputSample;
+ if (ringModulated) {
+ float ringModulatedSample = masterOutputSample * slaveOutputSample;
+ outputSample = mixed ? masterOutputSample + ringModulatedSample : ringModulatedSample;
+ } else {
+ outputSample = masterOutputSample + slaveOutputSample;
+ }
+ return Bit16s(outputSample * 8192.0f);
+}
+
+void LA32PartialPair::deactivate(const PairType useMaster) {
+ if (useMaster == MASTER) {
+ master.deactivate();
+ masterOutputSample = 0.0f;
+ } else {
+ slave.deactivate();
+ slaveOutputSample = 0.0f;
+ }
+}
+
+bool LA32PartialPair::isActive(const PairType useMaster) const {
+ return useMaster == MASTER ? master.isActive() : slave.isActive();
+}
+
+}
+
+#endif // #if MT32EMU_ACCURATE_WG == 1