aboutsummaryrefslogtreecommitdiff
path: root/common/func.h
diff options
context:
space:
mode:
Diffstat (limited to 'common/func.h')
-rw-r--r--common/func.h248
1 files changed, 233 insertions, 15 deletions
diff --git a/common/func.h b/common/func.h
index 95df96123a..6aa5b76ed4 100644
--- a/common/func.h
+++ b/common/func.h
@@ -29,12 +29,18 @@
namespace Common {
+/**
+ * Generic unary function.
+ */
template<class Arg, class Result>
struct UnaryFunction {
typedef Arg ArgumenType;
typedef Result ResultType;
};
+/**
+ * Generic binary function.
+ */
template<class Arg1, class Arg2, class Result>
struct BinaryFunction {
typedef Arg1 FirstArgumentType;
@@ -42,16 +48,25 @@ struct BinaryFunction {
typedef Result ResultType;
};
+/**
+ * Predicate to check for equallity of two data elements.
+ */
template<class T>
struct EqualTo : public BinaryFunction<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x == y; }
};
+/**
+ * Predicate to check for x being less than y.
+ */
template<class T>
struct Less : public BinaryFunction<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x < y; }
};
+/**
+ * Predicate to check for x being greater than y.
+ */
template<class T>
struct Greater : public BinaryFunction<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x > y; }
@@ -63,15 +78,19 @@ private:
Op _op;
typename Op::FirstArgumentType _arg1;
public:
- Binder1st(const Op &op, const typename Op::FirstArgumentType &arg1) : _op(op), _arg1(arg1) {}
+ Binder1st(const Op &op, typename Op::FirstArgumentType arg1) : _op(op), _arg1(arg1) {}
typename Op::ResultType operator()(typename Op::SecondArgumentType v) const {
return _op(_arg1, v);
}
};
-template<class Op, class T>
-inline Binder1st<Op> bind1st(const Op &op, const T &t) {
+/**
+ * Transforms a binary function object into an unary function object.
+ * To achieve that the first parameter is bound to the passed value t.
+ */
+template<class Op>
+inline Binder1st<Op> bind1st(const Op &op, typename Op::FirstArgumentType t) {
return Binder1st<Op>(op, t);
}
@@ -81,15 +100,19 @@ private:
Op _op;
typename Op::SecondArgumentType _arg2;
public:
- Binder2nd(const Op &op, const typename Op::SecondArgumentType &arg2) : _op(op), _arg2(arg2) {}
+ Binder2nd(const Op &op, typename Op::SecondArgumentType arg2) : _op(op), _arg2(arg2) {}
typename Op::ResultType operator()(typename Op::FirstArgumentType v) const {
return _op(v, _arg2);
}
};
-template<class Op, class T>
-inline Binder2nd<Op> bind2nd(const Op &op, const T &t) {
+/**
+ * Transforms a binary function object into an unary function object.
+ * To achieve that the first parameter is bound to the passed value t.
+ */
+template<class Op>
+inline Binder2nd<Op> bind2nd(const Op &op, typename Op::SecondArgumentType t) {
return Binder2nd<Op>(op, t);
}
@@ -119,18 +142,24 @@ public:
}
};
+/**
+ * Creates an unary function object from a function pointer.
+ */
template<class Arg, class Result>
inline PointerToUnaryFunc<Arg, Result> ptr_fun(Result (*func)(Arg)) {
return PointerToUnaryFunc<Arg, Result>(func);
}
+/**
+ * Creates an binary function object from a function pointer.
+ */
template<class Arg1, class Arg2, class Result>
inline PointerToBinaryFunc<Arg1, Arg2, Result> ptr_fun(Result (*func)(Arg1, Arg2)) {
return PointerToBinaryFunc<Arg1, Arg2, Result>(func);
}
template<class Result, class T>
-class MemFunc0 : public UnaryFunction<T*, Result> {
+class MemFunc0 : public UnaryFunction<T *, Result> {
private:
Result (T::*_func)();
public:
@@ -143,20 +172,20 @@ public:
};
template<class Result, class T>
-class ConstMemFunc0 : public UnaryFunction<T*, Result> {
+class ConstMemFunc0 : public UnaryFunction<T *, Result> {
private:
Result (T::*_func)() const;
public:
typedef Result (T::*FuncType)() const;
ConstMemFunc0(const FuncType &func) : _func(func) {}
- Result operator()(T *v) const {
+ Result operator()(const T *v) const {
return (v->*_func)();
}
};
template<class Result, class Arg, class T>
-class MemFunc1 : public BinaryFunction<T*, Arg, Result> {
+class MemFunc1 : public BinaryFunction<T *, Arg, Result> {
private:
Result (T::*_func)(Arg);
public:
@@ -169,40 +198,166 @@ public:
};
template<class Result, class Arg, class T>
-class ConstMemFunc1 : public BinaryFunction<T*, Arg, Result> {
+class ConstMemFunc1 : public BinaryFunction<T *, Arg, Result> {
private:
Result (T::*_func)(Arg) const;
public:
typedef Result (T::*FuncType)(Arg) const;
ConstMemFunc1(const FuncType &func) : _func(func) {}
- Result operator()(T *v1, Arg v2) const {
+ Result operator()(const T *v1, Arg v2) const {
return (v1->*_func)(v2);
}
};
+/**
+ * Creates a unary function object from a class member function pointer.
+ * The parameter passed to the function object is the 'this' pointer to
+ * be used for the function call.
+ */
template<class Result, class T>
inline MemFunc0<Result, T> mem_fun(Result (T::*f)()) {
return MemFunc0<Result, T>(f);
}
+/**
+ * Creates a unary function object from a class member function pointer.
+ * The parameter passed to the function object is the 'this' pointer to
+ * be used for the function call.
+ */
template<class Result, class T>
inline ConstMemFunc0<Result, T> mem_fun(Result (T::*f)() const) {
return ConstMemFunc0<Result, T>(f);
}
+/**
+ * Creates a binary function object from a class member function pointer.
+ * The first parameter passed to the function object is the 'this' pointer to
+ * be used for the function call.
+ * The second one is the parameter passed to the member function.
+ */
template<class Result, class Arg, class T>
inline MemFunc1<Result, Arg, T> mem_fun(Result (T::*f)(Arg)) {
return MemFunc1<Result, Arg, T>(f);
}
+/**
+ * Creates a binary function object from a class member function pointer.
+ * The first parameter passed to the function object is the 'this' pointer to
+ * be used for the function call.
+ * The second one is the parameter passed to the member function.
+ */
template<class Result, class Arg, class T>
inline ConstMemFunc1<Result, Arg, T> mem_fun(Result (T::*f)(Arg) const) {
return ConstMemFunc1<Result, Arg, T>(f);
}
+template<class Result, class T>
+class MemFuncRef0 : public UnaryFunction<T &, Result> {
+private:
+ Result (T::*_func)();
+public:
+ typedef Result (T::*FuncType)();
+
+ MemFuncRef0(const FuncType &func) : _func(func) {}
+ Result operator()(T &v) const {
+ return (v.*_func)();
+ }
+};
+
+template<class Result, class T>
+class ConstMemFuncRef0 : public UnaryFunction<T &, Result> {
+private:
+ Result (T::*_func)() const;
+public:
+ typedef Result (T::*FuncType)() const;
+
+ ConstMemFuncRef0(const FuncType &func) : _func(func) {}
+ Result operator()(const T &v) const {
+ return (v.*_func)();
+ }
+};
+
+template<class Result, class Arg, class T>
+class MemFuncRef1 : public BinaryFunction<T &, Arg, Result> {
+private:
+ Result (T::*_func)(Arg);
+public:
+ typedef Result (T::*FuncType)(Arg);
+
+ MemFuncRef1(const FuncType &func) : _func(func) {}
+ Result operator()(T &v1, Arg v2) const {
+ return (v1.*_func)(v2);
+ }
+};
+
+template<class Result, class Arg, class T>
+class ConstMemFuncRef1 : public BinaryFunction<T &, Arg, Result> {
+private:
+ Result (T::*_func)(Arg) const;
+public:
+ typedef Result (T::*FuncType)(Arg) const;
+
+ ConstMemFuncRef1(const FuncType &func) : _func(func) {}
+ Result operator()(const T &v1, Arg v2) const {
+ return (v1.*_func)(v2);
+ }
+};
+
+/**
+ * Creates a unary function object from a class member function pointer.
+ * The parameter passed to the function object is the object instance to
+ * be used for the function call. Note unlike mem_fun, it takes a reference
+ * as parameter. Note unlike mem_fun, it takes a reference
+ * as parameter.
+ */
+template<class Result, class T>
+inline MemFuncRef0<Result, T> mem_fun_ref(Result (T::*f)()) {
+ return MemFuncRef0<Result, T>(f);
+}
+
+/**
+ * Creates a unary function object from a class member function pointer.
+ * The parameter passed to the function object is the object instance to
+ * be used for the function call. Note unlike mem_fun, it takes a reference
+ * as parameter.
+ */
+template<class Result, class T>
+inline ConstMemFuncRef0<Result, T> mem_fun_Ref(Result (T::*f)() const) {
+ return ConstMemFuncRef0<Result, T>(f);
+}
+
+/**
+ * Creates a binary function object from a class member function pointer.
+ * The first parameter passed to the function object is the object instance to
+ * be used for the function call. Note unlike mem_fun, it takes a reference
+ * as parameter.
+ * The second one is the parameter passed to the member function.
+ */
+template<class Result, class Arg, class T>
+inline MemFuncRef1<Result, Arg, T> mem_fun_ref(Result (T::*f)(Arg)) {
+ return MemFuncRef1<Result, Arg, T>(f);
+}
+
+/**
+ * Creates a binary function object from a class member function pointer.
+ * The first parameter passed to the function object is the object instance to
+ * be used for the function call. Note unlike mem_fun, it takes a reference
+ * as parameter.
+ * The second one is the parameter passed to the member function.
+ */
+template<class Result, class Arg, class T>
+inline ConstMemFuncRef1<Result, Arg, T> mem_fun_ref(Result (T::*f)(Arg) const) {
+ return ConstMemFuncRef1<Result, Arg, T>(f);
+}
+
// functor code
+/**
+ * Generic functor object for function objects without parameters.
+ *
+ * @see Functor1
+ */
template<class Res>
struct Functor0 {
virtual ~Functor0() {}
@@ -211,6 +366,18 @@ struct Functor0 {
virtual Res operator()() const = 0;
};
+/**
+ * Functor object for a class member function without parameter.
+ *
+ * Example creation:
+ *
+ * Foo bar;
+ * Functor0Men<void, Foo> myFunctor(&bar, &Foo::myFunc);
+ *
+ * Example usage:
+ *
+ * myFunctor();
+ */
template<class Res, class T>
class Functor0Mem : public Functor0<Res> {
public:
@@ -218,7 +385,7 @@ public:
Functor0Mem(T *t, const FuncType &func) : _t(t), _func(func) {}
- bool isValid() const { return _func != 0; }
+ bool isValid() const { return _func != 0 && _t != 0; }
Res operator()() const {
return (_t->*_func)();
}
@@ -227,6 +394,38 @@ private:
const FuncType _func;
};
+/**
+ * Generic functor object for unary function objects.
+ *
+ * A typical usage for an unary function object is for executing opcodes
+ * in a script interpreter. To achieve that one can create an Common::Array
+ * object with 'Functor1<Arg, Res> *' as type. Now after the right engine version
+ * has been determined and the opcode table to use is found one could easily
+ * add the opcode implementations like this:
+ *
+ * Common::Array<Functor1<ScriptState, void> *> opcodeTable;
+ * opcodeTable[0] = new Functor1Mem<ScriptState, void, MyEngine_v1>(&myEngine, &MyEngine_v1::o1_foo);
+ * opcodeTable[1] = new Functor1Mem<ScriptState, void, MyEngine_v2>(&myEngine, &MyEngine_v2::o2_foo);
+ * // unimplemented/unused opcode
+ * opcodeTable[2] = 0;
+ * etc.
+ *
+ * This makes it easy to add member functions of different classes as
+ * opcode functions to the function table. Since with the generic
+ * Functor1<ScriptState, void> object the only requirement for an
+ * function to be used is 'ScriptState' as argument and 'void' as return
+ * value.
+ *
+ * Now for calling the opcodes one has simple to do:
+ * if (opcodeTable[opcodeNum] && opcodeTable[opcodeNum]->isValid())
+ * (*opcodeTable[opcodeNum])(scriptState);
+ * else
+ * warning("Unimplemented opcode %d", opcodeNum);
+ *
+ * If you want to see an real world example check the kyra engine.
+ * Files: engines/kyra/script.cpp and .h and engine/kyra/script_*.cpp
+ * are interesting for that matter.
+ */
template<class Arg, class Res>
struct Functor1 : public Common::UnaryFunction<Arg, Res> {
virtual ~Functor1() {}
@@ -235,6 +434,13 @@ struct Functor1 : public Common::UnaryFunction<Arg, Res> {
virtual Res operator()(Arg) const = 0;
};
+/**
+ * Functor object for an unary class member function.
+ * Usage is like with Functor0Mem. The resulting functor object
+ * will take one parameter though.
+ *
+ * @see Functor0Men
+ */
template<class Arg, class Res, class T>
class Functor1Mem : public Functor1<Arg, Res> {
public:
@@ -242,7 +448,7 @@ public:
Functor1Mem(T *t, const FuncType &func) : _t(t), _func(func) {}
- bool isValid() const { return _func != 0; }
+ bool isValid() const { return _func != 0 && _t != 0; }
Res operator()(Arg v1) const {
return (_t->*_func)(v1);
}
@@ -251,6 +457,11 @@ private:
const FuncType _func;
};
+/**
+ * Generic functor object for binary function objects.
+ *
+ * @see Functor1
+ */
template<class Arg1, class Arg2, class Res>
struct Functor2 : public Common::BinaryFunction<Arg1, Arg2, Res> {
virtual ~Functor2() {}
@@ -259,6 +470,13 @@ struct Functor2 : public Common::BinaryFunction<Arg1, Arg2, Res> {
virtual Res operator()(Arg1, Arg2) const = 0;
};
+/**
+ * Functor object for a binary class member function.
+ * Usage is like with Functor0Mem. The resulting functor object
+ * will take two parameter though.
+ *
+ * @see Functor0Men
+ */
template<class Arg1, class Arg2, class Res, class T>
class Functor2Mem : public Functor2<Arg1, Arg2, Res> {
public:
@@ -266,7 +484,7 @@ public:
Functor2Mem(T *t, const FuncType &func) : _t(t), _func(func) {}
- bool isValid() const { return _func != 0; }
+ bool isValid() const { return _func != 0 && _t != 0; }
Res operator()(Arg1 v1, Arg2 v2) const {
return (_t->*_func)(v1, v2);
}