aboutsummaryrefslogtreecommitdiff
path: root/engines/glk/level9/bitmap.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'engines/glk/level9/bitmap.cpp')
-rw-r--r--engines/glk/level9/bitmap.cpp1460
1 files changed, 1460 insertions, 0 deletions
diff --git a/engines/glk/level9/bitmap.cpp b/engines/glk/level9/bitmap.cpp
new file mode 100644
index 0000000000..976c8a1a8e
--- /dev/null
+++ b/engines/glk/level9/bitmap.cpp
@@ -0,0 +1,1460 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ */
+
+#include "glk/level9/level9_main.h"
+#include "common/file.h"
+
+namespace Glk {
+namespace Level9 {
+
+extern Bitmap *bitmap;
+
+void L9Allocate(L9BYTE **ptr, L9UINT32 Size);
+
+L9BOOL bitmap_exists(char *file) {
+ return Common::File::exists(file);
+}
+
+L9BYTE *bitmap_load(char *file, L9UINT32 *size) {
+ L9BYTE *data = NULL;
+
+ Common::File f;
+ if (f.open(file)) {
+ *size = f.size();
+ L9Allocate(&data, *size);
+ f.read(data, *size);
+
+ f.close();
+ }
+ return data;
+}
+
+Bitmap *bitmap_alloc(int x, int y) {
+ Bitmap *b = NULL;
+ L9Allocate((L9BYTE **)&b, sizeof(Bitmap) + (x * y));
+
+ b->width = x;
+ b->height = y;
+ b->bitmap = ((L9BYTE *)b) + sizeof(Bitmap);
+ b->npalette = 0;
+ return b;
+}
+
+/*
+ A PC or ST palette colour is a sixteen bit value in which the low three nybbles
+ hold the rgb colour values. The lowest nybble holds the blue value, the
+ second nybble the blue value and the third nybble the red value. (The high
+ nybble is ignored). Within each nybble, only the low three bits are used
+ IE the value can only be 0-7 not the full possible 0-15 and so the MSbit in
+ each nybble is always 0.
+*/
+Colour bitmap_pcst_colour(int big, int small) {
+ Colour col;
+ L9UINT32 r = big & 0xF;
+ L9UINT32 g = (small >> 4) & 0xF;
+ L9UINT32 b = small & 0xF;
+
+ r *= 0x49;
+ r >>= 1;
+ g *= 0x49;
+ g >>= 1;
+ b *= 0x49;
+ b >>= 1;
+
+ col.red = (L9BYTE)(r & 0xFF);
+ col.green = (L9BYTE)(g & 0xFF);
+ col.blue = (L9BYTE)(b & 0xFF);
+ return col;
+}
+
+/*
+ ST Bitmaps
+
+ On the ST different graphics file formats were used for the early V4
+ games (Knight Orc, Gnome Ranger) and the later V4 games (Lancelot,
+ Ingrid's Back, Time & Magik and Scapeghost).
+*/
+
+/*
+ Extracts the number of pixels requested from an eight-byte data block (4 bit-
+ planes) passed to it.
+
+ Note: On entry each one of four pointers is set to point to the start of each
+ bit-plane in the block. The function then indexes through each byte in
+ each bit plane. and uses shift and mask operations to extract each four
+ bit pixel into an L9PIXEL.
+
+ The bit belonging to the pixel in the current byte of the current bit-
+ plane is moved to its position in an eight-bit pixel. The byte is then
+ masked by a value to select only that bit and added to the final pixel
+ value.
+*/
+L9UINT32 bitmap_st1_decode_pixels(L9BYTE *pic, L9BYTE *data, L9UINT32 count, L9UINT32 pixels) {
+ L9UINT32 bitplane_length = count / 4; /* length of each bitplane */
+ L9BYTE *bitplane0 = data; /* address of bit0 bitplane */
+ L9BYTE *bitplane1 = data + (bitplane_length); /* address of bit1 bitplane */
+ L9BYTE *bitplane2 = data + (bitplane_length * 2); /* address of bit2 bitplane */
+ L9BYTE *bitplane3 = data + (bitplane_length * 3); /* address of bit3 bitplane */
+ L9UINT32 bitplane_index, pixel_index = 0; /* index variables */
+
+ for (bitplane_index = 0; bitplane_index < bitplane_length; bitplane_index++) {
+ /* build the eight pixels from the current bitplane bytes, high bit to low */
+
+ /* bit7 byte */
+ pic[pixel_index] = ((bitplane3[bitplane_index] >> 4) & 0x08)
+ + ((bitplane2[bitplane_index] >> 5) & 0x04)
+ + ((bitplane1[bitplane_index] >> 6) & 0x02)
+ + ((bitplane0[bitplane_index] >> 7) & 0x01);
+ if (pixels == ++pixel_index)
+ break;
+
+ /* bit6 byte */
+ pic[pixel_index] = ((bitplane3[bitplane_index] >> 3) & 0x08)
+ + ((bitplane2[bitplane_index] >> 4) & 0x04)
+ + ((bitplane1[bitplane_index] >> 5) & 0x02)
+ + ((bitplane0[bitplane_index] >> 6) & 0x01);
+ if (pixels == ++pixel_index)
+ break;
+
+ /* bit5 byte */
+ pic[pixel_index] = ((bitplane3[bitplane_index] >> 2) & 0x08)
+ + ((bitplane2[bitplane_index] >> 3) & 0x04)
+ + ((bitplane1[bitplane_index] >> 4) & 0x02)
+ + ((bitplane0[bitplane_index] >> 5) & 0x01);
+ if (pixels == ++pixel_index)
+ break;
+
+ /* bit4 byte */
+ pic[pixel_index] = ((bitplane3[bitplane_index] >> 1) & 0x08)
+ + ((bitplane2[bitplane_index] >> 2) & 0x04)
+ + ((bitplane1[bitplane_index] >> 3) & 0x02)
+ + ((bitplane0[bitplane_index] >> 4) & 0x01);
+ if (pixels == ++pixel_index)
+ break;
+
+ /* bit3 byte */
+ pic[pixel_index] = ((bitplane3[bitplane_index]) & 0x08)
+ + ((bitplane2[bitplane_index] >> 1) & 0x04)
+ + ((bitplane1[bitplane_index] >> 2) & 0x02)
+ + ((bitplane0[bitplane_index] >> 3) & 0x01);
+ if (pixels == ++pixel_index)
+ break;
+
+ /* bit2 byte */
+ pic[pixel_index] = ((bitplane3[bitplane_index] << 1) & 0x08)
+ + ((bitplane2[bitplane_index]) & 0x04)
+ + ((bitplane1[bitplane_index] >> 1) & 0x02)
+ + ((bitplane0[bitplane_index] >> 2) & 0x01);
+ if (pixels == ++pixel_index)
+ break;
+
+ /* bit1 byte */
+ pic[pixel_index] = ((bitplane3[bitplane_index] << 2) & 0x08)
+ + ((bitplane2[bitplane_index] << 1) & 0x04)
+ + ((bitplane1[bitplane_index]) & 0x02)
+ + ((bitplane0[bitplane_index] >> 1) & 0x01);
+ if (pixels == ++pixel_index)
+ break;
+
+ /* bit0 byte */
+ pic[pixel_index] = ((bitplane3[bitplane_index] << 3) & 0x08)
+ + ((bitplane2[bitplane_index] << 2) & 0x04)
+ + ((bitplane1[bitplane_index] << 1) & 0x02)
+ + ((bitplane0[bitplane_index]) & 0x01);
+ if (pixels == ++pixel_index)
+ break;
+ }
+
+ return pixel_index;
+}
+
+/*
+ The ST image file has the following format. It consists of a 44 byte header
+ followed by the image data.
+
+ The header has the following format:
+ Bytes 0-31: sixteen entry ST palette
+ Bytes 32-33: padding
+ Bytes 34-35: big-endian word holding number of bitplanes needed to make
+ up a row of pixels*
+ Bytes 36-37: padding
+ Bytes 38-39: big-endian word holding number of rows in the image*
+ Bytes 40-41: padding**
+ Bytes 42-43: mask for pixels to show in last 16 pixel block. Again, this
+ is big endian
+
+ [*] these are probably big-endian unsigned longs but I have designated
+ the upper two bytes as padding because (a) Level 9 does not need
+ them as longs and (b) using unsigned shorts reduces byte sex induced
+ byte order juggling.
+ [**] not certain what this is for but I suspect that, like bytes 42-43
+ it is a mask to indicate which pixels to show, in this case in the
+ first 16 pixel block
+
+ The image data is essentially a memory dump of the video RAM representing
+ the image in lo-res mode. In lo-res mode each row is 320 pixels wide
+ and each pixel can be any one of sixteen colours - needs 4 bits to store.
+
+ In the ST video memory (in lo-res mode which we are dealing with here)
+ is organised as follows. The lowest point in memory in the frame buffer
+ represents the top-left of the screen, the highest the bottom-right.
+ Each row of pixels is stored in sequence.
+
+ Within each pixel row the pixels are stored as follows. Each row is
+ divided into groups of 16 pixels. Each sixteen pixel group is stored
+ in 8 bytes, logically four groups of two. Each two byte pair
+ is a bit-plane for that sixteen pixel group - that is it stores the
+ same bit of each pixel in that group. The first two bytes store the
+ lowest bit, the second pair the second bit &c.
+
+ The word at bytes 34-35 of the header stores the number of bitplanes
+ that make up each pixel row in the image. Multplying this number by
+ four gives the number of pixels in the row***. For title and frame
+ images that will be 320, for sub-images it will be less.
+
+ [***] Not always exactly. For GnomeRanger sub-images this value is 60
+ - implying there are 240 pixels per row. In fact there are only
+ 225 pixels in each row. To identify this situation look at the
+ big-endian word in bytes 42-43 of the header. This is a mask
+ telling you the pixels to use. Each bit represents one pixel in
+ the block, with the MSBit representing the first pixel and the
+ LSbit the last.
+
+ In this situation, the file does contain the entire sixteen
+ pixel block (it has to with the bitplane arrangement) but
+ the pixels which are not part of the image are just noise. When
+ decoding the image, the L9BITMAP produced has the actual pixel
+ dimensions - the surplus pixels are discarded.
+
+ I suspect, though I have not found an instance, that in theory
+ the same situation could apply at the start of a pixel row and that
+ in this case the big-endian word at bytes 40-41 is the mask.
+
+ Having obtained the pixel dimensions of the image the function uses
+ them to allocate memory for the bitmap and then extracts the pixel
+ information from the bitmap row by row. For each row eight byte blocks
+ are read from the image data and passed to UnpackSTv1Pixels along with
+ the number of pixels to extract (usually 16, possibly less for the last
+ block in a row.)
+*/
+L9BOOL bitmap_st1_decode(char *file, int x, int y) {
+ L9BYTE *data = NULL;
+ int i, xi, yi, max_x, max_y, last_block;
+ int bitplanes_row, bitmaps_row, pixel_count, get_pixels;
+
+ L9UINT32 size;
+ data = bitmap_load(file, &size);
+ if (data == NULL)
+ return FALSE;
+
+ bitplanes_row = data[35] + data[34] * 256;
+ bitmaps_row = bitplanes_row / 4;
+ max_x = bitplanes_row * 4;
+ max_y = data[39] + data[38] * 256;
+ last_block = data[43] + data[42] * 256;
+
+ /* Check if sub-image with rows shorter than max_x */
+ if (last_block != 0xFFFF) {
+ /* use last_block to adjust max_x */
+ i = 0;
+ while ((0x0001 & last_block) == 0) { /* test for ls bit set */
+ last_block >>= 1; /* if not, shift right one bit */
+ i++;
+ }
+ max_x = max_x - i;
+ }
+
+ if (max_x > MAX_BITMAP_WIDTH || max_y > MAX_BITMAP_HEIGHT) {
+ free(data);
+ return FALSE;
+ }
+
+ if ((x == 0) && (y == 0)) {
+ if (bitmap)
+ free(bitmap);
+ bitmap = bitmap_alloc(max_x, max_y);
+ }
+ if (bitmap == NULL) {
+ free(data);
+ return FALSE;
+ }
+
+ if (x + max_x > bitmap->width)
+ max_x = bitmap->width - x;
+ if (y + max_y > bitmap->height)
+ max_y = bitmap->height - y;
+
+ for (yi = 0; yi < max_y; yi++) {
+ pixel_count = 0;
+ for (xi = 0; xi < bitmaps_row; xi++) {
+ if ((max_x - pixel_count) < 16)
+ get_pixels = max_x - pixel_count;
+ else
+ get_pixels = 16;
+
+ pixel_count += bitmap_st1_decode_pixels(
+ bitmap->bitmap + ((y + yi) * bitmap->width) + x + (xi * 16),
+ data + 44 + (yi * bitplanes_row * 2) + (xi * 8), 8, get_pixels);
+ }
+ }
+
+ bitmap->npalette = 16;
+ for (i = 0; i < 16; i++)
+ bitmap->palette[i] = bitmap_pcst_colour(data[(i * 2)], data[1 + (i * 2)]);
+
+ free(data);
+ return TRUE;
+}
+
+void bitmap_st2_name(int num, char *dir, char *out) {
+ /* title picture is #30 */
+ if (num == 0)
+ num = 30;
+ sprintf(out, "%s%d.squ", dir, num);
+}
+
+/*
+ PC Bitmaps
+
+ On the PC different graphics file formats were used for the early V4
+ games (Knight Orc, Gnome Ranger) and the later V4 games (Lancelot,
+ Ingrid's Back, Time & Magik and Scapeghost).
+
+ The ST and the PC both use the same image file format for the later
+ V4 games (Lancelot, Ingrid's Back, Time & Magik and Scapeghost.)
+*/
+
+void bitmap_pc_name(int num, char *dir, char *out) {
+ /* title picture is #30 */
+ if (num == 0)
+ num = 30;
+ sprintf(out, "%s%d.pic", dir, num);
+}
+
+/*
+ The EGA standard for the IBM PCs and compatibles defines 64 colors, any
+ 16 of which can be mapped to the usable palette at any given time. If
+ you display these 64 colors in numerical order, 16 at a time, you get a
+ hodgepodge of colors in no logical order. The 64 EGA color numbers are
+ assigned in a way that the numbers can easily be converted to a relative
+ intensity of each of the three phosphor colors R,G,B. If the number is
+ converted to six bit binary, the most significant three bits represent
+ the 25% level of R,G,B in that order and the least significant three
+ bits represent the 75% level of R,G,B in that order. Take EGA color 53
+ for example. In binary, 53 is 110101. Since both R bits are on, R = 1.0.
+ Of the G bits only the 25% bit is on so G = 0.25. Of the B bits only the
+ 75% bit is on so B = 0.75.
+*/
+Colour bitmap_pc1_colour(int i) {
+ Colour col;
+ col.red = (((i & 4) >> 1) | ((i & 0x20) >> 5)) * 0x55;
+ col.green = ((i & 2) | ((i & 0x10) >> 4)) * 0x55;
+ col.blue = (((i & 1) << 1) | ((i & 8) >> 3)) * 0x55;
+ return col;
+}
+
+/*
+ The PC (v1) image file has the following format. It consists of a 22
+ byte header organised like this:
+
+ Byte 0: probably a file type flag
+ Byte 1: the MSB of the file's length as a word
+ Bytes 2-3: little-endian word with picture width in pixels
+ Bytes 4-5: little-endian word with picture height in pixel rows
+ Bytes 6-21: the image colour table. One EGA colour in each byte
+
+ The image data is extremely simple. The entire block is packed array
+ of 4-bit pixels - IE each byte holds two pixels - the first in the high
+ nybble, the second in the low. The pixel value is an index into the
+ image colour table. The pixels are organised with the top left first and
+ bottom left last, each row in turn.
+*/
+L9BOOL bitmap_pc1_decode(char *file, int x, int y) {
+ L9BYTE *data = NULL;
+ int i, xi, yi, max_x, max_y;
+
+ L9UINT32 size;
+ data = bitmap_load(file, &size);
+ if (data == NULL)
+ return FALSE;
+
+ max_x = data[2] + data[3] * 256;
+ max_y = data[4] + data[5] * 256;
+ if (max_x > MAX_BITMAP_WIDTH || max_y > MAX_BITMAP_HEIGHT) {
+ free(data);
+ return FALSE;
+ }
+
+ if ((x == 0) && (y == 0)) {
+ if (bitmap)
+ free(bitmap);
+ bitmap = bitmap_alloc(max_x, max_y);
+ }
+ if (bitmap == NULL) {
+ free(data);
+ return FALSE;
+ }
+
+ if (x + max_x > bitmap->width)
+ max_x = bitmap->width - x;
+ if (y + max_y > bitmap->height)
+ max_y = bitmap->height - y;
+
+ for (yi = 0; yi < max_y; yi++) {
+ for (xi = 0; xi < max_x; xi++) {
+ bitmap->bitmap[(bitmap->width * (y + yi)) + (x + xi)] =
+ (data[23 + ((yi * max_x) / 2) + (xi / 2)] >> ((1 - (xi & 1)) * 4)) & 0x0f;
+ }
+ }
+
+ bitmap->npalette = 16;
+ for (i = 0; i < 16; i++)
+ bitmap->palette[i] = bitmap_pc1_colour(data[6 + i]);
+
+ free(data);
+ return TRUE;
+}
+
+/*
+ The PC (v2) image file has the following format. It consists of a 44
+ byte header followed by the image data.
+
+ The header has the following format:
+ Bytes 0-1: "datalen": length of file -1 as a big-endian word*
+ Bytes 2-3: "flagbyte1 & flagbyte2": unknown, possibly type identifiers.
+ Usually 0xFF or 0xFE followed by 0x84, 0x72, 0xFF, 0xFE or
+ some other (of a fairly small range of possibles) byte.
+ Bytes 4-35: "colour_index[]": sixteen entry palette. Basically an ST
+ palette (even if in a PC image file. Each entry is a sixteen
+ bit value in which the low three nybbles hold the rgb colour
+ values. The lowest nybble holds the blue value, the second
+ nybble the blue value and the third nybble the red value. (The
+ high nybble is ignored). Within each nybble, only the low
+ three bits are used IE the value can only be 0-7 not the full
+ possible 0-15 and so the MSbit in each nybble is always 0.**,
+ Bytes 36-37: "width": image width in pixels as a big-endian word
+ Bytes 38-39: "numrows": image height in pixel rows as a big-endian word
+ Byte 40: "seedByte": seed byte to start picture decoding.
+ Byte 41: "padByte": unknown. Possibly padding to word align the next
+ element?
+ Bytes 42-297: "pixelTable": an array of 0x100 bytes used as a lookup table
+ for pixel values
+ Bytes 298-313: "bitStripTable": an array of 0x10 bytes used as a lookup table
+ for the number of bytes to strip from the bit stream for the pixel being
+ decoded
+ Bytes 314-569: "indexByteTable": an array of 0x100 bytes used as a lookup
+ table to index into bitStripTable and pixelTable****
+
+ The encoded image data then follows ending in a 0x00 at the file length stored
+ in the first two bytes of the file. there is then one extra byte holding a
+ checksum produced by the addition of all the bytes in the file (except the first
+ two and itself)*
+
+ [*] in some PC games the file is padded out beyond this length to the
+ nearest 0x80/0x00 boundary with the byte 0x1A. The valid data in the
+ file still finishes where this word says with the checkbyte following it.
+ [**] I imagine when a game was running on a PC this standard palette
+ was algorithimcally changed to suit the graphics mode being used
+ (Hercules, MDA, CGA, EGA, MCGA, VGA &c.)
+ [***] Note also, in image 1 of PC Time & Magik I think one palette entry
+ is bad as what should be white in the image is actually set to
+ a very pale yellow. This is corrected with the display of the next
+ sub-picture and I am pretty sure it is note a decoding problem
+ here as when run on the PC the same image has the same pale yellow
+ cast.
+ [****] for detail of how all this works see below
+
+ As this file format is intended for two very different platforms the decoded
+ imaged data is in a neutral, intermediate form. Each pixel is extracted as a
+ byte with only the low four bits significant. The pixel value is an index into
+ the sixteen entry palette.
+
+ The pixel data is compressed, presumably to allow a greater number of images
+ to be distributed on the (rather small) default ST & PC floppy disks (in both
+ cases about 370 Kbytes.)*****
+
+ Here's how to decode the data. The image data is actually a contiguous bit
+ stream with the byte structure on disk having almost no relevance to the
+ encoding. We access the bit stream via a two-byte buffer arranged as a word.
+
+ Preparation:
+
+ Initially, move the first byte from the image data into the low byte of
+ theBitStreamBuffer and move the second byte of the image data into the
+ high byte of theBitStreamBuffer.
+
+ Set a counter (theBufferBitCounter) to 8 which you will use to keep track
+ of when it is necesary to refill the buffer.
+
+ Set a L9BYTE variable (theNewPixel) to byte 40 (seedByte) of the header.
+ We need to do this because as part of identifying the pixel being
+ extracted we need to know the value of the previous pixel extracted. Since
+ none exists at this point we must prime this variable with the correct
+ value.
+
+ Extraction:
+
+ Set up a loop which you will execute once for each pixel to be extracted
+ and within that loop do as follows.
+
+ Copy the low byte of theBitStreamBuffer to an L9BYTE
+ (theNewPixelIndexSelector). Examine theNewPixelIndexSelector. If this
+ is 0xFF this flags that the index to the new pixel is present as a
+ literal in the bit stream; if it is NOT 0xFF then the new pixel index
+ value has to be decoded.
+
+ If theNewPixelIndexSelector is NOT 0xFF do as follows:
+
+ Set the variable theNewPixelIndex to the byte in the
+ indexByteTable array of the header indexed by
+ theNewPixelIndexSelector.
+
+ Set the variable theBufferBitStripCount to the value in the
+ bitStripTable array of the header indexed by theNewPixelIndex.
+
+ One-by-one use right bit shift (>>) to remove
+ theBufferBitStripCount bits from theBitStreamBuffer. After each
+ shift decrement theBufferBitCounter and check whether it has
+ reached 0. If it has, get the next byte from the image data and
+ insert it in the high byte of theBitStreamBuffer and reset
+ theBufferBitCounter to 8. What is happening here is as we remove
+ each bit from the bottom of the bit stream buffer we check to see
+ if there are any bits left in the high byte of the buffer. As soon
+ as we know there are none, we refill it with the next eight bits
+ from the image data.
+
+ When this 'bit-stripping' is finished, other than actually identifying
+ the new pixel we are nearly done. I will leave that for the moment and
+ look at what happens if the low byte of theBitStreamBuffer we put in
+ theNewPixelIndexSelector was actually 0xFF:
+
+ In this case, instead of the above routine we begin by removing
+ the low eight bits from the theBitStreamBuffer. We use the same
+ ono-by-one bit shift right process described above to do this,
+ again checking after each shift if it is necesary to refill the
+ buffer's high byte.
+
+ When the eight bits have been removed we set theNewPixelIndex to
+ the value of the low four bits of theBitStreamBuffer. Having done
+ that we again one-by-one strip off those low four bits from the
+ theBitStreamBuffer, again checking if we need to refill the buffer
+ high byte.
+
+ Irrespective of whether we initially had 0xFF in
+ theNewPixelIndexSelector we now have a new value in theNewPixelIndex.
+ This value is used as follows to obtain the new pixel value.
+
+ The variable theNewPixel contains either the seedByte or the value of
+ the previously extracted pixel. In either case this is a 4-bit value
+ in the lower 4 bits. Use the left bit shift operator (or multiply by
+ 16) to shift those four bits into the high four bits of theNewPixel.
+
+ Add the value in theNewPixelIndex (it is a 4-bit value) to
+ theNewPixel. The resulting value is used as an index into the
+ pixelTable array of the header to get the actual new pixel value so
+ theNewPixel = header.pixelTable[theNewPixel] gets us our new pixel and
+ primes theNewPixel for the same process next time around the loop.
+
+ Having got our new pixel it is stored in the next empty space in the
+ bitmap and we loop back and start again.
+
+ [*****] I am not sure how the compression was done - someone with a better
+ understanding of this area may be able to work out the method from the above.
+ I worked out how to decode it by spending many, many hours tracing through the
+ code in a debugger - thanks to the now defunct HiSoft for their DevPac ST and
+ Gerin Philippe for NoSTalgia <http://users.skynet.be/sky39147/>.
+*/
+L9BOOL bitmap_pc2_decode(char *file, int x, int y) {
+ L9BYTE *data = NULL;
+ int i, xi, yi, max_x, max_y;
+
+ L9BYTE theNewPixel, theNewPixelIndex;
+ L9BYTE theBufferBitCounter, theNewPixelIndexSelector, theBufferBitStripCount;
+ L9UINT16 theBitStreamBuffer, theImageDataIndex;
+ L9BYTE *theImageFileData;
+
+ L9UINT32 size;
+ data = bitmap_load(file, &size);
+ if (data == NULL)
+ return FALSE;
+
+ max_x = data[37] + data[36] * 256;
+ max_y = data[39] + data[38] * 256;
+ if (max_x > MAX_BITMAP_WIDTH || max_y > MAX_BITMAP_HEIGHT) {
+ free(data);
+ return FALSE;
+ }
+
+ if ((x == 0) && (y == 0)) {
+ if (bitmap)
+ free(bitmap);
+ bitmap = bitmap_alloc(max_x, max_y);
+ }
+ if (bitmap == NULL) {
+ free(data);
+ return FALSE;
+ }
+
+ if (x + max_x > bitmap->width)
+ max_x = bitmap->width - x;
+ if (y + max_y > bitmap->height)
+ max_y = bitmap->height - y;
+
+ /* prime the new pixel variable with the seed byte */
+ theNewPixel = data[40];
+ /* initialise the index to the image data */
+ theImageDataIndex = 0;
+ /* prime the bit stream buffer */
+ theImageFileData = data + 570;
+ theBitStreamBuffer = theImageFileData[theImageDataIndex++];
+ theBitStreamBuffer = theBitStreamBuffer +
+ (0x100 * theImageFileData[theImageDataIndex++]);
+ /* initialise the bit stream buffer bit counter */
+ theBufferBitCounter = 8;
+
+ for (yi = 0; yi < max_y; yi++) {
+ for (xi = 0; xi < max_x; xi++) {
+ theNewPixelIndexSelector = (theBitStreamBuffer & 0x00FF);
+ if (theNewPixelIndexSelector != 0xFF) {
+ /* get index for new pixel and bit strip count */
+ theNewPixelIndex = (data + 314)[theNewPixelIndexSelector];
+ /* get the bit strip count */
+ theBufferBitStripCount = (data + 298)[theNewPixelIndex];
+ /* strip theBufferBitStripCount bits from theBitStreamBuffer */
+ while (theBufferBitStripCount > 0) {
+ theBitStreamBuffer = theBitStreamBuffer >> 1;
+ theBufferBitStripCount--;
+ theBufferBitCounter--;
+ if (theBufferBitCounter == 0) {
+ /* need to refill the theBitStreamBuffer high byte */
+ theBitStreamBuffer = theBitStreamBuffer +
+ (0x100 * theImageFileData[theImageDataIndex++]);
+ /* re-initialise the bit stream buffer bit counter */
+ theBufferBitCounter = 8;
+ }
+ }
+ } else {
+ /* strip the 8 bits holding 0xFF from theBitStreamBuffer */
+ theBufferBitStripCount = 8;
+ while (theBufferBitStripCount > 0) {
+ theBitStreamBuffer = theBitStreamBuffer >> 1;
+ theBufferBitStripCount--;
+ theBufferBitCounter--;
+ if (theBufferBitCounter == 0) {
+ /* need to refill the theBitStreamBuffer high byte */
+ theBitStreamBuffer = theBitStreamBuffer +
+ (0x100 * theImageFileData[theImageDataIndex++]);
+ /* re-initialise the bit stream buffer bit counter */
+ theBufferBitCounter = 8;
+ }
+ }
+ /* get the literal pixel index value from the bit stream */
+ theNewPixelIndex = (0x000F & theBitStreamBuffer);
+ theBufferBitStripCount = 4;
+ /* strip 4 bits from theBitStreamBuffer */
+ while (theBufferBitStripCount > 0) {
+ theBitStreamBuffer = theBitStreamBuffer >> 1;
+ theBufferBitStripCount--;
+ theBufferBitCounter--;
+ if (theBufferBitCounter == 0) {
+ /* need to refill the theBitStreamBuffer high byte */
+ theBitStreamBuffer = theBitStreamBuffer +
+ (0x100 * theImageFileData[theImageDataIndex++]);
+ /* re-initialise the bit stream buffer bit counter */
+ theBufferBitCounter = 8;
+ }
+ }
+ }
+
+ /* shift the previous pixel into the high four bits of theNewPixel */
+ theNewPixel = (0xF0 & (theNewPixel << 4));
+ /* add the index to the new pixel to theNewPixel */
+ theNewPixel = theNewPixel + theNewPixelIndex;
+ /* extract the nex pixel from the table */
+ theNewPixel = (data + 42)[theNewPixel];
+ /* store new pixel in the bitmap */
+ bitmap->bitmap[(bitmap->width * (y + yi)) + (x + xi)] = theNewPixel;
+ }
+ }
+
+ bitmap->npalette = 16;
+ for (i = 0; i < 16; i++)
+ bitmap->palette[i] = bitmap_pcst_colour(data[4 + (i * 2)], data[5 + (i * 2)]);
+
+ free(data);
+ return TRUE;
+}
+
+BitmapType bitmap_pc_type(char *file) {
+ BitmapType type = PC2_BITMAPS;
+
+ Common::File f;
+ if (f.open(file)) {
+ L9BYTE data[6];
+ int x, y;
+
+ if (f.read(data, sizeof(data)) != sizeof(data) && !f.eos())
+ return NO_BITMAPS;
+ f.close();
+
+ x = data[2] + data[3] * 256;
+ y = data[4] + data[5] * 256;
+
+ if ((x == 0x0140) && (y == 0x0087))
+ type = PC1_BITMAPS;
+ if ((x == 0x00E0) && (y == 0x0074))
+ type = PC1_BITMAPS;
+ if ((x == 0x0140) && (y == 0x0087))
+ type = PC1_BITMAPS;
+ if ((x == 0x00E1) && (y == 0x0076))
+ type = PC1_BITMAPS;
+ }
+
+ return type;
+}
+
+/*
+ Amiga Bitmaps
+*/
+
+void bitmap_noext_name(int num, char *dir, char *out) {
+ if (num == 0) {
+ sprintf(out, "%stitle", dir);
+ if (Common::File::exists(out))
+ return;
+
+ num = 30;
+ }
+
+ sprintf(out, "%s%d", dir, num);
+}
+
+int bitmap_amiga_intensity(int col) {
+ return (int)(pow((double)col / 15, 1.0 / 0.8) * 0xff);
+}
+
+/*
+ Amiga palette colours are word length structures with the red, green and blue
+ values stored in the second, third and lowest nybles respectively. The high
+ nybble is always zero.
+*/
+Colour bitmap_amiga_colour(int i1, int i2) {
+ Colour col;
+ col.red = bitmap_amiga_intensity(i1 & 0xf);
+ col.green = bitmap_amiga_intensity(i2 >> 4);
+ col.blue = bitmap_amiga_intensity(i2 & 0xf);
+ return col;
+}
+
+/*
+ The Amiga image file has the following format. It consists of a 44 byte
+ header followed by the image data.
+
+ The header has the following format:
+ Bytes 0-63: thirty-two entry Amiga palette
+ Bytes 64-65: padding
+ Bytes 66-67: big-endian word holding picture width in pixels*
+ Bytes 68-69: padding
+ Bytes 70-71: big-endian word holding number of pixel rows in the image*
+
+ [*] these are probably big-endian unsigned longs but I have designated
+ the upper two bytes as padding because (a) Level 9 does not need
+ them as longs and (b) using unsigned shorts reduces byte sex induced
+ byte order juggling.
+
+ The images are designed for an Amiga low-res mode screen - that is they
+ assume a 320*256 (or 320 * 200 if NSTC display) screen with a palette of
+ 32 colours from the possible 4096.
+
+ The image data is organised the same way that Amiga video memory is. The
+ entire data block is divided into five equal length bit planes with the
+ first bit plane holding the low bit of each 5-bit pixel, the second bitplane
+ the second bit of the pixel and so on up to the fifth bit plane holding the
+ high bit of the f5-bit pixel.
+*/
+L9BOOL bitmap_amiga_decode(char *file, int x, int y) {
+ L9BYTE *data = NULL;
+ int i, xi, yi, max_x, max_y, p, b;
+
+ L9UINT32 size;
+ data = bitmap_load(file, &size);
+ if (data == NULL)
+ return FALSE;
+
+ max_x = (((((data[64] << 8) | data[65]) << 8) | data[66]) << 8) | data[67];
+ max_y = (((((data[68] << 8) | data[69]) << 8) | data[70]) << 8) | data[71];
+ if (max_x > MAX_BITMAP_WIDTH || max_y > MAX_BITMAP_HEIGHT) {
+ free(data);
+ return FALSE;
+ }
+
+ if ((x == 0) && (y == 0)) {
+ if (bitmap)
+ free(bitmap);
+ bitmap = bitmap_alloc(max_x, max_y);
+ }
+ if (bitmap == NULL) {
+ free(data);
+ return FALSE;
+ }
+
+ if (x + max_x > bitmap->width)
+ max_x = bitmap->width - x;
+ if (y + max_y > bitmap->height)
+ max_y = bitmap->height - y;
+
+ for (yi = 0; yi < max_y; yi++) {
+ for (xi = 0; xi < max_x; xi++) {
+ p = 0;
+ for (b = 0; b < 5; b++)
+ p |= ((data[72 + (max_x / 8) * (max_y * b + yi) + xi / 8] >> (7 - (xi % 8))) & 1) << b;
+ bitmap->bitmap[(bitmap->width * (y + yi)) + (x + xi)] = p;
+ }
+ }
+
+ bitmap->npalette = 32;
+ for (i = 0; i < 32; i++)
+ bitmap->palette[i] = bitmap_amiga_colour(data[i * 2], data[i * 2 + 1]);
+
+ free(data);
+ return TRUE;
+}
+
+BitmapType bitmap_noext_type(char *file) {
+ Common::File f;
+ if (f.open(file)) {
+ L9BYTE data[72];
+ int x, y;
+
+ if (f.read(data, sizeof(data)) != sizeof(data) && !f.eos())
+ return NO_BITMAPS;
+ f.close();
+
+ x = data[67] + data[66] * 256;
+ y = data[71] + data[70] * 256;
+
+ if ((x == 0x0140) && (y == 0x0088))
+ return AMIGA_BITMAPS;
+ if ((x == 0x0140) && (y == 0x0087))
+ return AMIGA_BITMAPS;
+ if ((x == 0x00E0) && (y == 0x0075))
+ return AMIGA_BITMAPS;
+ if ((x == 0x00E4) && (y == 0x0075))
+ return AMIGA_BITMAPS;
+ if ((x == 0x00E0) && (y == 0x0076))
+ return AMIGA_BITMAPS;
+ if ((x == 0x00DB) && (y == 0x0076))
+ return AMIGA_BITMAPS;
+
+ x = data[3] + data[2] * 256;
+ y = data[7] + data[6] * 256;
+
+ if ((x == 0x0200) && (y == 0x00D8))
+ return MAC_BITMAPS;
+ if ((x == 0x0168) && (y == 0x00BA))
+ return MAC_BITMAPS;
+ if ((x == 0x0168) && (y == 0x00BC))
+ return MAC_BITMAPS;
+ if ((x == 0x0200) && (y == 0x00DA))
+ return MAC_BITMAPS;
+ if ((x == 0x0168) && (y == 0x00DA))
+ return MAC_BITMAPS;
+
+ x = data[35] + data[34] * 256;
+ y = data[39] + data[38] * 256;
+
+ if ((x == 0x0050) && (y == 0x0087))
+ return ST1_BITMAPS;
+ if ((x == 0x0038) && (y == 0x0074))
+ return ST1_BITMAPS;
+ }
+
+ return NO_BITMAPS;
+}
+
+/*
+ Macintosh Bitmaps
+*/
+
+/*
+ The Mac image file format is very simple. The header is ten bytes
+ with the width of the image in pixels in the first long and the
+ height (in pixel rows) in the second long - both are big-endian.
+ (In both cases I treat these as unsigned shorts to minimise byte
+ twiddling when working around byte sex issues). There follow two
+ unidentified bytes - possibly image type identifiers or maybe
+ valid pixel masks for the beginning and end of pixel rows in
+ sub-images.
+
+ The image data is extremely simple. The entire block is a packed array
+ of 1-bit pixels - I.E. each byte holds eight pixels - with 1 representing
+ white and 0 representing black. The pixels are organised with the top
+ left first and bottom left last, each row in turn.
+
+ The image sizes are 512 * 216 pixels for main images and 360 * 186 pixels
+ for sub-images.
+*/
+L9BOOL bitmap_mac_decode(char *file, int x, int y) {
+ L9BYTE *data = NULL;
+ int xi, yi, max_x, max_y;
+
+ L9UINT32 size;
+ data = bitmap_load(file, &size);
+ if (data == NULL)
+ return FALSE;
+
+ max_x = data[3] + data[2] * 256;
+ max_y = data[7] + data[6] * 256;
+ if (max_x > MAX_BITMAP_WIDTH || max_y > MAX_BITMAP_HEIGHT) {
+ free(data);
+ return FALSE;
+ }
+
+ if (x > 0) /* Mac bug, apparently */
+ x = 78;
+
+ if ((x == 0) && (y == 0)) {
+ if (bitmap)
+ free(bitmap);
+ bitmap = bitmap_alloc(max_x, max_y);
+ }
+ if (bitmap == NULL) {
+ free(data);
+ return FALSE;
+ }
+
+ if (x + max_x > bitmap->width)
+ max_x = bitmap->width - x;
+ if (y + max_y > bitmap->height)
+ max_y = bitmap->height - y;
+
+ for (yi = 0; yi < max_y; yi++) {
+ for (xi = 0; xi < max_x; xi++) {
+ bitmap->bitmap[(bitmap->width * (y + yi)) + (x + xi)] =
+ (data[10 + (max_x / 8) * yi + xi / 8] >> (7 - (xi % 8))) & 1;
+ }
+ }
+
+ bitmap->npalette = 2;
+ bitmap->palette[0].red = 0;
+ bitmap->palette[0].green = 0;
+ bitmap->palette[0].blue = 0;
+ bitmap->palette[1].red = 0xff;
+ bitmap->palette[1].green = 0xff;
+ bitmap->palette[1].blue = 0xff;
+
+ free(data);
+ return TRUE;
+}
+
+/*
+ C64 Bitmaps, also related formats (BBC B, Amstrad CPC and Spectrum +3)
+*/
+
+/* Commodore 64 palette from Vice */
+const Colour bitmap_c64_colours[] = {
+ {0x00, 0x00, 0x00 },
+ {0xff, 0xff, 0xff },
+ {0x89, 0x40, 0x36 },
+ {0x7a, 0xbf, 0xc7 },
+ {0x8a, 0x46, 0xae },
+ {0x68, 0xa9, 0x41 },
+ {0x3e, 0x31, 0xa2 },
+ {0xd0, 0xdc, 0x71 },
+ {0x90, 0x5f, 0x25 },
+ {0x5c, 0x47, 0x00 },
+ {0xbb, 0x77, 0x6d },
+ {0x55, 0x55, 0x55 },
+ {0x80, 0x80, 0x80 },
+ {0xac, 0xea, 0x88 },
+ {0x7c, 0x70, 0xda },
+ {0xab, 0xab, 0xab }
+};
+
+const Colour bitmap_bbc_colours[] = {
+ {0x00, 0x00, 0x00 },
+ {0xff, 0x00, 0x00 },
+ {0x00, 0xff, 0x00 },
+ {0xff, 0xff, 0x00 },
+ {0x00, 0x00, 0xff },
+ {0xff, 0x00, 0xff },
+ {0x00, 0xff, 0xff },
+ {0xff, 0xff, 0xff }
+};
+
+void bitmap_c64_name(int num, char *dir, char *out) {
+ if (num == 0)
+ sprintf(out, "%stitle mpic", dir);
+ else
+ sprintf(out, "%spic%d", dir, num);
+}
+
+void bitmap_bbc_name(int num, char *dir, char *out) {
+ if (num == 0) {
+ sprintf(out, "%sP.Title", dir);
+ if (Common::File::exists(out))
+ return;
+
+ sprintf(out, "%stitle", dir);
+ } else {
+ sprintf(out, "%sP.Pic%d", dir, num);
+ if (Common::File::exists(out))
+ return;
+
+ sprintf(out, "%spic%d", dir, num);
+ }
+}
+
+void bitmap_cpc_name(int num, char *dir, char *out) {
+ if (num == 0)
+ sprintf(out, "%stitle.pic", dir);
+ else if (num == 1)
+ sprintf(out, "%s1.pic", dir);
+ else
+ sprintf(out, "%sallpics.pic", dir);
+}
+
+BitmapType bitmap_c64_type(char *file) {
+ BitmapType type = C64_BITMAPS;
+
+ Common::File f;
+ if (f.open(file)) {
+ L9UINT32 size = f.size();
+ f.close();
+
+ if (size == 10048)
+ type = BBC_BITMAPS;
+ if (size == 6494)
+ type = BBC_BITMAPS;
+ }
+
+ return type;
+}
+
+/*
+ The C64 graphics file format is (loosely) based on the layout of
+ C64 graphics memory. There are in fact two formats (i) the
+ standard game images and (ii) title pictures. For both formats
+ the file begins within the 2-byte pair 0x00 and 0x20.
+
+ The images are "multi-color bitmap mode" images which means they
+ have rows of 160 double width pixels and can be up to 200 rows
+ long. (The title images are 200 lines long, the game images are
+ 136 lines long.) Unlike Amiga, Mac, ST and PC graphics there are
+ no "main" and "sub" images. All game graphics have the same
+ dimensions and each completely replaces its predecessor.
+
+ The graphics files used on the Amstrad CPC and Spectrum +3 are also
+ virtually identical to C64 graphics files. This choice was presumably
+ made because although the CPC screen was more capable than the c64 it
+ was (in low resolution) the same size (160*200) and presumably
+ algorothmic conversion conversion of the colours was trivial for
+ the interpreter. In addition (a) the artwork already existed so no
+ extra expense would be incurred and (b) by accepting the C64's
+ limitation of only four colours in each 4*8 pixel block (but still
+ with sixteen colours on screen) they got a compressed file format
+ allowing more pictures on each disk.
+
+ The file organisation is rather different though. Only picture
+ one and the title picture are separate files. All the other
+ pictures (2-29) are stored in one large file "allpics.pic".
+
+ On these platforms the picture 1 file and title picture file have
+ an AMSDOS header (a 128 byte block of metadata) which contains a
+ checksum of the first 66 bytes of the header in a little-endian
+ word at bytes 67 & 68. On the original C64 platform there was a
+ simple two byte header. Following the header the data is organised
+ exactly as in the C64 game and title image files. The
+ 'allpics.pic" file has no header and consists of 0x139E blocks
+ each forming a picture, in the C64 game file format (minus the two
+ byte header).
+*/
+L9BOOL bitmap_c64_decode(char *file, BitmapType type, int num) {
+ L9BYTE *data = NULL;
+ int i = 0, xi, yi, max_x = 0, max_y = 0, cx, cy, px, py, p;
+ int off = 0, off_scr = 0, off_col = 0, off_bg = 0, col_comp = 0;
+
+ L9UINT32 size;
+ data = bitmap_load(file, &size);
+ if (data == NULL)
+ return FALSE;
+
+ if (type == C64_BITMAPS) {
+ if (size == 10018) { /* C64 title picture */
+ max_x = 320;
+ max_y = 200;
+ off = 2;
+ off_scr = 8002;
+ off_bg = 9003;
+ off_col = 9018;
+ col_comp = 0;
+ } else if (size == 6464) { /* C64 picture */
+ max_x = 320;
+ max_y = 136;
+ off = 2;
+ off_scr = 5442;
+ off_col = 6122;
+ off_bg = 6463;
+ col_comp = 1;
+ } else
+ return FALSE;
+ } else if (type == BBC_BITMAPS) {
+ if (size == 10058) { /* BBC title picture */
+ max_x = 320;
+ max_y = 200;
+ off = 10;
+ off_scr = 8010;
+ off_bg = 9011;
+ off_col = 9026;
+ col_comp = 0;
+ } else if (size == 10048) { /* BBC title picture */
+ max_x = 320;
+ max_y = 200;
+ off = 0;
+ off_scr = 8000;
+ off_bg = 9001;
+ off_col = 9016;
+ col_comp = 0;
+ } else if (size == 6504) { /* BBC picture */
+ max_x = 320;
+ max_y = 136;
+ off = 10;
+ off_scr = 5450;
+ off_col = 6130;
+ off_bg = 6471;
+ col_comp = 1;
+ } else if (size == 6494) { /* BBC picture */
+ max_x = 320;
+ max_y = 136;
+ off = 0;
+ off_scr = 5440;
+ off_col = 6120;
+ off_bg = 6461;
+ col_comp = 1;
+ } else
+ return FALSE;
+ } else if (type == CPC_BITMAPS) {
+ if (num == 0) { /* CPC/+3 title picture */
+ max_x = 320;
+ max_y = 200;
+ off = 128;
+ off_scr = 8128;
+ off_bg = 9128;
+ off_col = 9144;
+ col_comp = 0;
+ } else if (num == 1) { /* First CPC/+3 picture */
+ max_x = 320;
+ max_y = 136;
+ off = 128;
+ off_scr = 5568;
+ off_col = 6248;
+ off_bg = 6588;
+ col_comp = 1;
+ } else if (num >= 2 && num <= 29) { /* Subsequent CPC/+3 pictures */
+ max_x = 320;
+ max_y = 136;
+ off = ((num - 2) * 6462);
+ off_scr = 5440 + ((num - 2) * 6462);
+ off_col = 6120 + ((num - 2) * 6462);
+ off_bg = 6460 + ((num - 2) * 6462);
+ col_comp = 1;
+ } else
+ return FALSE;
+ }
+
+ if (bitmap)
+ free(bitmap);
+ bitmap = bitmap_alloc(max_x, max_y);
+ if (bitmap == NULL) {
+ free(data);
+ return FALSE;
+ }
+
+ for (yi = 0; yi < max_y; yi++) {
+ for (xi = 0; xi < max_x / 2; xi++) {
+ cx = xi / 4;
+ px = xi % 4;
+ cy = yi / 8;
+ py = yi % 8;
+
+ p = data[off + (cy * 40 + cx) * 8 + py];
+ p = (p >> ((3 - px) * 2)) & 3;
+
+ switch (p) {
+ case 0:
+ i = data[off_bg] & 0x0f;
+ break;
+ case 1:
+ i = data[off_scr + cy * 40 + cx] >> 4;
+ break;
+ case 2:
+ i = data[off_scr + cy * 40 + cx] & 0x0f;
+ break;
+ case 3:
+ if (col_comp)
+ i = (data[off_col + (cy * 40 + cx) / 2] >> ((1 - (cx % 2)) * 4)) & 0x0f;
+ else
+ i = data[off_col + (cy * 40 + cx)] & 0x0f;
+ break;
+ }
+
+ bitmap->bitmap[(bitmap->width * yi) + (xi * 2)] = i;
+ bitmap->bitmap[(bitmap->width * yi) + (xi * 2) + 1] = i;
+ }
+ }
+
+ bitmap->npalette = 16;
+ for (i = 0; i < 16; i++)
+ bitmap->palette[i] = bitmap_c64_colours[i];
+
+ free(data);
+ return TRUE;
+}
+
+/*
+ The graphics files used by the BBC B are virtually identical
+ to C64 graphics files. I assume that (as with the CPC and
+ Spectrum+3) this choice was made because the BBC mode 2 screen,
+ was nearly the same size (160*256) and had roughly the same capability
+ as the C64 screen (displays 16 colours, although eight of those ar
+ just the first eight flashing).
+
+ In addition (a) the artwork already existed so no extra expense would
+ be incurred and (b) by accepting the C64's limitation of only four
+ colours in each 4*8 pixel block (but still with sixteen colours on
+ screen) they got a compressed file format allowing more pictures
+ on each disk.
+
+ The file organisation is very close to the C64. The naming system
+ can be the same eg "PIC12", but another form is also used :
+ "P.Pic12". Unlike the C64 the BBC has well defined title images,
+ called "TITLE" or P.Title. All pictures are in separate files.
+
+ The only difference seems to be:
+
+ * There is either *no* header before the image data or a simple
+ 10 byte header which I think *may* be a file system header
+ left in place by the extractor system.
+
+ * There is an extra 32 bytes following the data at the end of
+ each file. These bytes encode a table to convert between the 16
+ C64 colours and 16, four-pixel pix-patterns used to let the BBC
+ (with only 8 colours) represent the sixteen possible C64 colours.
+
+ A pix-pattern looks like this:
+
+ | Even | Odd |
+ | Column | Column |
+ -----------------------------
+ Even Row |Pixel 1 | Pixel 2 |
+ ---------|--------|---------|
+ Odd Row |Pixel 3 | Pixel 4 |
+ -----------------------------
+
+ Each of the four pixel *can* be any of the eight BBC Mode 2
+ steady colours. In practice they seem either to be all the
+ same or a simple check of two colours - the pixels in the
+ odd row being in the reverse order to those in the even row.
+
+ When converting a C64 pixel to a BBC pixel the game uses the
+ value of the C64 pixel as an index into the array of sixteen
+ BBC pix-patterns. The game looks at the selected pattern and
+ chooses the BBC pixel colour thus: if the pixel is in an even
+ numbered row and an even numbered column, it uses Pixel 1 from
+ the pattern, if in an even row but an odd column, it uses Pixel 3
+ and so on.
+
+ The pix-pattern data is encoded thus: the first sixteen bytes
+ encode the even row pixels for the patterns, one byte per
+ pattern, and in the same way the second sixteen bytes encode
+ the odd row pixels for each pattern. For example for the
+ pattern representing C64 colour 0 the even row pixels are encoded
+ in the first byte and the odd row pixels in the sixteenth byte.
+
+ Within each byte the pixels are encoded in this way:
+
+ Bit 7 6 5 4 3 2 1 0
+ -------------------------------------
+ 0 0 1 0 0 1 1 1
+ | | | | | | | |
+ +---|---+---|---+---|---+---|----- Even Pixel 0101 (5)
+ | | | |
+ +-------+-------+-------+----- Odd Pixel 0011 (3)
+
+ This function calls the C64 decoding routines to do the actual
+ loading. See the comments to that function for details of how the
+ image is encoded and stored.
+*/
+L9BOOL bitmap_bbc_decode(char *file, BitmapType type, int num) {
+ unsigned char patRowData[32];
+ unsigned char patArray[16][2][2];
+ int i, j, k, isOddColumn, isOddRow;
+ L9BYTE pixel;
+
+ if (bitmap_c64_decode(file, type, num) == FALSE)
+ return FALSE;
+
+ Common::File f;
+ if (!f.open(file))
+ return FALSE;
+
+ /* Seek to the offset of the pixPat data and read in the data */
+ f.seek(f.size() - 32, SEEK_SET);
+ if (f.read(patRowData, 32) != 32 && !f.eos())
+ return FALSE;
+ f.close();
+
+ /* Extract the patterns */
+ i = 0;
+ for (k = 0; k < 2; k++) {
+ for (j = 0; j < 16; j++) {
+ /* Extract the even col pixel for this pattern row */
+ patArray[j][k][0] =
+ ((patRowData[i] >> 4) & 0x8) + ((patRowData[i] >> 3) & 0x4) +
+ ((patRowData[i] >> 2) & 0x2) + ((patRowData[i] >> 1) & 0x1);
+ /* Extract the odd col pixel for this pattern row */
+ patArray[j][k][1] =
+ ((patRowData[i] >> 3) & 0x8) + ((patRowData[i] >> 2) & 0x4) +
+ ((patRowData[i] >> 1) & 0x2) + (patRowData[i] & 0x1);
+ i++;
+ }
+ }
+
+ /* Convert the image. Each BBC pixel is represented by two pixels here */
+ i = 0;
+ isOddRow = 0;
+ for (j = 0; j < bitmap->height; j++) {
+ isOddColumn = 0;
+ for (k = 0; k < bitmap->width / 2; k++) {
+ pixel = bitmap->bitmap[i];
+ bitmap->bitmap[i] = patArray[pixel][isOddColumn][isOddRow];
+ bitmap->bitmap[i + 1] = patArray[pixel][isOddColumn][isOddRow];
+ isOddColumn ^= 1;
+ i += 2;
+ }
+ isOddRow ^= 1;
+ }
+
+ bitmap->npalette = 8;
+ for (i = 0; i < 8; i++)
+ bitmap->palette[i] = bitmap_bbc_colours[i];
+
+ return TRUE;
+}
+
+BitmapType DetectBitmaps(char *dir) {
+ char file[MAX_PATH];
+
+ bitmap_noext_name(2, dir, file);
+ if (bitmap_exists(file))
+ return bitmap_noext_type(file);
+
+ bitmap_pc_name(2, dir, file);
+ if (bitmap_exists(file))
+ return bitmap_pc_type(file);
+
+ bitmap_c64_name(2, dir, file);
+ if (bitmap_exists(file))
+ return bitmap_c64_type(file);
+
+ bitmap_bbc_name(2, dir, file);
+ if (bitmap_exists(file))
+ return BBC_BITMAPS;
+
+ bitmap_cpc_name(2, dir, file);
+ if (bitmap_exists(file))
+ return CPC_BITMAPS;
+
+ bitmap_st2_name(2, dir, file);
+ if (bitmap_exists(file))
+ return ST2_BITMAPS;
+
+ return NO_BITMAPS;
+}
+
+Bitmap *DecodeBitmap(char *dir, BitmapType type, int num, int x, int y) {
+ char file[MAX_PATH];
+
+ switch (type) {
+ case PC1_BITMAPS:
+ bitmap_pc_name(num, dir, file);
+ if (bitmap_pc1_decode(file, x, y))
+ return bitmap;
+ break;
+
+ case PC2_BITMAPS:
+ bitmap_pc_name(num, dir, file);
+ if (bitmap_pc2_decode(file, x, y))
+ return bitmap;
+ break;
+
+ case AMIGA_BITMAPS:
+ bitmap_noext_name(num, dir, file);
+ if (bitmap_amiga_decode(file, x, y))
+ return bitmap;
+ break;
+
+ case C64_BITMAPS:
+ bitmap_c64_name(num, dir, file);
+ if (bitmap_c64_decode(file, type, num))
+ return bitmap;
+ break;
+
+ case BBC_BITMAPS:
+ bitmap_bbc_name(num, dir, file);
+ if (bitmap_bbc_decode(file, type, num))
+ return bitmap;
+ break;
+
+ case CPC_BITMAPS:
+ bitmap_cpc_name(num, dir, file);
+ if (bitmap_c64_decode(file, type, num)) /* Nearly identical to C64 */
+ return bitmap;
+ break;
+
+ case MAC_BITMAPS:
+ bitmap_noext_name(num, dir, file);
+ if (bitmap_mac_decode(file, x, y))
+ return bitmap;
+ break;
+
+ case ST1_BITMAPS:
+ bitmap_noext_name(num, dir, file);
+ if (bitmap_st1_decode(file, x, y))
+ return bitmap;
+ break;
+
+ case ST2_BITMAPS:
+ bitmap_st2_name(num, dir, file);
+ if (bitmap_pc2_decode(file, x, y))
+ return bitmap;
+ break;
+
+ default:
+ break;
+ }
+
+ return NULL;
+}
+
+} // End of namespace Level9
+} // End of namespace Glk