aboutsummaryrefslogtreecommitdiff
path: root/sound/softsynth/opl/opl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'sound/softsynth/opl/opl.cpp')
-rw-r--r--sound/softsynth/opl/opl.cpp1445
1 files changed, 1445 insertions, 0 deletions
diff --git a/sound/softsynth/opl/opl.cpp b/sound/softsynth/opl/opl.cpp
new file mode 100644
index 0000000000..416f38a8ce
--- /dev/null
+++ b/sound/softsynth/opl/opl.cpp
@@ -0,0 +1,1445 @@
+/*
+ * Copyright (C) 2002-2009 The DOSBox Team
+ * OPL2/OPL3 emulation library
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+
+/*
+ * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman
+ * Copyright (C) 1998-2001 Ken Silverman
+ * Ken Silverman's official web site: "http://www.advsys.net/ken"
+ */
+
+#include "opl.h"
+
+
+static fltype recipsamp; // inverse of sampling rate
+static Bit16s wavtable[WAVEPREC*3]; // wave form table
+
+// vibrato/tremolo tables
+static Bit32s vib_table[VIBTAB_SIZE];
+static Bit32s trem_table[TREMTAB_SIZE*2];
+
+static Bit32s vibval_const[BLOCKBUF_SIZE];
+static Bit32s tremval_const[BLOCKBUF_SIZE];
+
+// vibrato value tables (used per-operator)
+static Bit32s vibval_var1[BLOCKBUF_SIZE];
+static Bit32s vibval_var2[BLOCKBUF_SIZE];
+
+// vibrato/trmolo value table pointers
+static Bit32s *vibval1, *vibval2, *vibval3, *vibval4;
+static Bit32s *tremval1, *tremval2, *tremval3, *tremval4;
+
+
+// key scale level lookup table
+static const fltype kslmul[4] = {
+ 0.0, 0.5, 0.25, 1.0 // -> 0, 3, 1.5, 6 dB/oct
+};
+
+// frequency multiplicator lookup table
+static const fltype frqmul_tab[16] = {
+ 0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15
+};
+// calculated frequency multiplication values (depend on sampling rate)
+static float frqmul[16];
+
+// key scale levels
+static Bit8u kslev[8][16];
+
+// map a channel number to the register offset of the modulator (=register base)
+static const Bit8u modulatorbase[9] = {
+ 0,1,2,
+ 8,9,10,
+ 16,17,18
+};
+
+// map a register base to a modulator operator number or operator number
+#if defined(OPLTYPE_IS_OPL3)
+static const Bit8u regbase2modop[44] = {
+ 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set
+ 18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set
+};
+static const Bit8u regbase2op[44] = {
+ 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set
+ 18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set
+};
+#else
+static const Bit8u regbase2modop[22] = {
+ 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8
+};
+static const Bit8u regbase2op[22] = {
+ 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17
+};
+#endif
+
+
+// start of the waveform
+static Bit32u waveform[8] = {
+ WAVEPREC,
+ WAVEPREC>>1,
+ WAVEPREC,
+ (WAVEPREC*3)>>2,
+ 0,
+ 0,
+ (WAVEPREC*5)>>2,
+ WAVEPREC<<1
+};
+
+// length of the waveform as mask
+static Bit32u wavemask[8] = {
+ WAVEPREC-1,
+ WAVEPREC-1,
+ (WAVEPREC>>1)-1,
+ (WAVEPREC>>1)-1,
+ WAVEPREC-1,
+ ((WAVEPREC*3)>>2)-1,
+ WAVEPREC>>1,
+ WAVEPREC-1
+};
+
+// where the first entry resides
+static Bit32u wavestart[8] = {
+ 0,
+ WAVEPREC>>1,
+ 0,
+ WAVEPREC>>2,
+ 0,
+ 0,
+ 0,
+ WAVEPREC>>3
+};
+
+// envelope generator function constants
+static fltype attackconst[4] = {1/2.82624,1/2.25280,1/1.88416,1/1.59744};
+static fltype decrelconst[4] = {1/39.28064,1/31.41608,1/26.17344,1/22.44608};
+
+
+void operator_advance(op_type* op_pt, Bit32s vib) {
+ op_pt->wfpos = op_pt->tcount; // waveform position
+
+ // advance waveform time
+ op_pt->tcount += op_pt->tinc;
+ op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT;
+
+ op_pt->generator_pos += generator_add;
+}
+
+void operator_advance_drums(op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3) {
+ Bit32u c1 = op_pt1->tcount/FIXEDPT;
+ Bit32u c3 = op_pt3->tcount/FIXEDPT;
+ Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00;
+
+ Bit32u noisebit = rand()&1;
+
+ Bit32u snare_phase_bit = (((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1);
+
+ //Hihat
+ Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1)));
+ op_pt1->wfpos = inttm*FIXEDPT; // waveform position
+ // advance waveform time
+ op_pt1->tcount += op_pt1->tinc;
+ op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT;
+ op_pt1->generator_pos += generator_add;
+
+ //Snare
+ inttm = ((1+snare_phase_bit) ^ noisebit)<<8;
+ op_pt2->wfpos = inttm*FIXEDPT; // waveform position
+ // advance waveform time
+ op_pt2->tcount += op_pt2->tinc;
+ op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT;
+ op_pt2->generator_pos += generator_add;
+
+ //Cymbal
+ inttm = (1+phasebit)<<8;
+ op_pt3->wfpos = inttm*FIXEDPT; // waveform position
+ // advance waveform time
+ op_pt3->tcount += op_pt3->tinc;
+ op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT;
+ op_pt3->generator_pos += generator_add;
+}
+
+
+// output level is sustained, mode changes only when operator is turned off (->release)
+// or when the keep-sustained bit is turned off (->sustain_nokeep)
+void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem) {
+ if (op_pt->op_state != OF_TYPE_OFF) {
+ op_pt->lastcval = op_pt->cval;
+ Bit32u i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT);
+
+ // wform: -16384 to 16383 (0x4000)
+ // trem : 32768 to 65535 (0x10000)
+ // step_amp: 0.0 to 1.0
+ // vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000)
+
+ op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0);
+ }
+}
+
+
+// no action, operator is off
+void operator_off(op_type* /*op_pt*/) {
+}
+
+// output level is sustained, mode changes only when operator is turned off (->release)
+// or when the keep-sustained bit is turned off (->sustain_nokeep)
+void operator_sustain(op_type* op_pt) {
+ Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
+ for (Bit32u ct=0; ct<num_steps_add; ct++) {
+ op_pt->cur_env_step++;
+ }
+ op_pt->generator_pos -= num_steps_add*FIXEDPT;
+}
+
+// operator in release mode, if output level reaches zero the operator is turned off
+void operator_release(op_type* op_pt) {
+ // ??? boundary?
+ if (op_pt->amp > 0.00000001) {
+ // release phase
+ op_pt->amp *= op_pt->releasemul;
+ }
+
+ Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
+ for (Bit32u ct=0; ct<num_steps_add; ct++) {
+ op_pt->cur_env_step++; // sample counter
+ if ((op_pt->cur_env_step & op_pt->env_step_r)==0) {
+ if (op_pt->amp <= 0.00000001) {
+ // release phase finished, turn off this operator
+ op_pt->amp = 0.0;
+ if (op_pt->op_state == OF_TYPE_REL) {
+ op_pt->op_state = OF_TYPE_OFF;
+ }
+ }
+ op_pt->step_amp = op_pt->amp;
+ }
+ }
+ op_pt->generator_pos -= num_steps_add*FIXEDPT;
+}
+
+// operator in decay mode, if sustain level is reached the output level is either
+// kept (sustain level keep enabled) or the operator is switched into release mode
+void operator_decay(op_type* op_pt) {
+ if (op_pt->amp > op_pt->sustain_level) {
+ // decay phase
+ op_pt->amp *= op_pt->decaymul;
+ }
+
+ Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
+ for (Bit32u ct=0; ct<num_steps_add; ct++) {
+ op_pt->cur_env_step++;
+ if ((op_pt->cur_env_step & op_pt->env_step_d)==0) {
+ if (op_pt->amp <= op_pt->sustain_level) {
+ // decay phase finished, sustain level reached
+ if (op_pt->sus_keep) {
+ // keep sustain level (until turned off)
+ op_pt->op_state = OF_TYPE_SUS;
+ op_pt->amp = op_pt->sustain_level;
+ } else {
+ // next: release phase
+ op_pt->op_state = OF_TYPE_SUS_NOKEEP;
+ }
+ }
+ op_pt->step_amp = op_pt->amp;
+ }
+ }
+ op_pt->generator_pos -= num_steps_add*FIXEDPT;
+}
+
+// operator in attack mode, if full output level is reached,
+// the operator is switched into decay mode
+void operator_attack(op_type* op_pt) {
+ op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0;
+
+ Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
+ for (Bit32u ct=0; ct<num_steps_add; ct++) {
+ op_pt->cur_env_step++; // next sample
+ if ((op_pt->cur_env_step & op_pt->env_step_a)==0) { // check if next step already reached
+ if (op_pt->amp > 1.0) {
+ // attack phase finished, next: decay
+ op_pt->op_state = OF_TYPE_DEC;
+ op_pt->amp = 1.0;
+ op_pt->step_amp = 1.0;
+ }
+ op_pt->step_skip_pos <<= 1;
+ if (op_pt->step_skip_pos==0) op_pt->step_skip_pos = 1;
+ if (op_pt->step_skip_pos & op_pt->env_step_skip_a) { // check if required to skip next step
+ op_pt->step_amp = op_pt->amp;
+ }
+ }
+ }
+ op_pt->generator_pos -= num_steps_add*FIXEDPT;
+}
+
+
+typedef void (*optype_fptr)(op_type*);
+
+optype_fptr opfuncs[6] = {
+ operator_attack,
+ operator_decay,
+ operator_release,
+ operator_sustain, // sustain phase (keeping level)
+ operator_release, // sustain_nokeep phase (release-style)
+ operator_off
+};
+
+void change_attackrate(Bitu regbase, op_type* op_pt) {
+ Bits attackrate = adlibreg[ARC_ATTR_DECR+regbase]>>4;
+ if (attackrate) {
+ fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*recipsamp);
+ // attack rate coefficients
+ op_pt->a0 = (fltype)(0.0377*f);
+ op_pt->a1 = (fltype)(10.73*f+1);
+ op_pt->a2 = (fltype)(-17.57*f);
+ op_pt->a3 = (fltype)(7.42*f);
+
+ Bits step_skip = attackrate*4 + op_pt->toff;
+ Bits steps = step_skip >> 2;
+ op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1;
+
+ Bits step_num = (step_skip<=48)?(4-(step_skip&3)):0;
+ static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa};
+ op_pt->env_step_skip_a = step_skip_mask[step_num];
+
+#if defined(OPLTYPE_IS_OPL3)
+ if (step_skip>=60) {
+#else
+ if (step_skip>=62) {
+#endif
+ op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0
+ op_pt->a1 = (fltype)(0.0);
+ op_pt->a2 = (fltype)(0.0);
+ op_pt->a3 = (fltype)(0.0);
+ }
+ } else {
+ // attack disabled
+ op_pt->a0 = 0.0;
+ op_pt->a1 = 1.0;
+ op_pt->a2 = 0.0;
+ op_pt->a3 = 0.0;
+ op_pt->env_step_a = 0;
+ op_pt->env_step_skip_a = 0;
+ }
+}
+
+void change_decayrate(Bitu regbase, op_type* op_pt) {
+ Bits decayrate = adlibreg[ARC_ATTR_DECR+regbase]&15;
+ // decaymul should be 1.0 when decayrate==0
+ if (decayrate) {
+ fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp);
+ op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2)))));
+ Bits steps = (decayrate*4 + op_pt->toff) >> 2;
+ op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1;
+ } else {
+ op_pt->decaymul = 1.0;
+ op_pt->env_step_d = 0;
+ }
+}
+
+void change_releaserate(Bitu regbase, op_type* op_pt) {
+ Bits releaserate = adlibreg[ARC_SUSL_RELR+regbase]&15;
+ // releasemul should be 1.0 when releaserate==0
+ if (releaserate) {
+ fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp);
+ op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2)))));
+ Bits steps = (releaserate*4 + op_pt->toff) >> 2;
+ op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1;
+ } else {
+ op_pt->releasemul = 1.0;
+ op_pt->env_step_r = 0;
+ }
+}
+
+void change_sustainlevel(Bitu regbase, op_type* op_pt) {
+ Bits sustainlevel = adlibreg[ARC_SUSL_RELR+regbase]>>4;
+ // sustainlevel should be 0.0 when sustainlevel==15 (max)
+ if (sustainlevel<15) {
+ op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05)));
+ } else {
+ op_pt->sustain_level = 0.0;
+ }
+}
+
+void change_waveform(Bitu regbase, op_type* op_pt) {
+#if defined(OPLTYPE_IS_OPL3)
+ if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22
+#endif
+ // waveform selection
+ op_pt->cur_wmask = wavemask[wave_sel[regbase]];
+ op_pt->cur_wform = &wavtable[waveform[wave_sel[regbase]]];
+ // (might need to be adapted to waveform type here...)
+}
+
+void change_keepsustain(Bitu regbase, op_type* op_pt) {
+ op_pt->sus_keep = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0;
+ if (op_pt->op_state==OF_TYPE_SUS) {
+ if (!op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS_NOKEEP;
+ } else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP) {
+ if (op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS;
+ }
+}
+
+// enable/disable vibrato/tremolo LFO effects
+void change_vibrato(Bitu regbase, op_type* op_pt) {
+ op_pt->vibrato = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0;
+ op_pt->tremolo = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0;
+}
+
+// change amount of self-feedback
+void change_feedback(Bitu chanbase, op_type* op_pt) {
+ Bits feedback = adlibreg[ARC_FEEDBACK+chanbase]&14;
+ if (feedback) op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8)));
+ else op_pt->mfbi = 0;
+}
+
+void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt) {
+ // frequency
+ Bit32u frn = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)adlibreg[ARC_FREQ_NUM+chanbase];
+ // block number/octave
+ Bit32u oct = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])>>2)&7);
+ op_pt->freq_high = (Bit32s)((frn>>7)&7);
+
+ // keysplit
+ Bit32u note_sel = (adlibreg[8]>>6)&1;
+ op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)&note_sel);
+ op_pt->toff += (oct<<1);
+
+ // envelope scaling (KSR)
+ if (!(adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2;
+
+ // 20+a0+b0:
+ op_pt->tinc = (Bit32u)((((fltype)(frn<<oct))*frqmul[adlibreg[ARC_TVS_KSR_MUL+regbase]&15]));
+ // 40+a0+b0:
+ fltype vol_in = (fltype)((fltype)(adlibreg[ARC_KSL_OUTLEV+regbase]&63) +
+ kslmul[adlibreg[ARC_KSL_OUTLEV+regbase]>>6]*kslev[oct][frn>>6]);
+ op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14)));
+
+ // operator frequency changed, care about features that depend on it
+ change_attackrate(regbase,op_pt);
+ change_decayrate(regbase,op_pt);
+ change_releaserate(regbase,op_pt);
+}
+
+void enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type) {
+ // check if this is really an off-on transition
+ if (op_pt->act_state == OP_ACT_OFF) {
+ Bits wselbase = regbase;
+ if (wselbase>=ARC_SECONDSET) wselbase -= (ARC_SECONDSET-22); // second set starts at 22
+
+ op_pt->tcount = wavestart[wave_sel[wselbase]]*FIXEDPT;
+
+ // start with attack mode
+ op_pt->op_state = OF_TYPE_ATT;
+ op_pt->act_state |= act_type;
+ }
+}
+
+void disable_operator(op_type* op_pt, Bit32u act_type) {
+ // check if this is really an on-off transition
+ if (op_pt->act_state != OP_ACT_OFF) {
+ op_pt->act_state &= (~act_type);
+ if (op_pt->act_state == OP_ACT_OFF) {
+ if (op_pt->op_state != OF_TYPE_OFF) op_pt->op_state = OF_TYPE_REL;
+ }
+ }
+}
+
+void adlib_init(Bit32u samplerate) {
+ Bits i, j, oct;
+
+ int_samplerate = samplerate;
+
+ generator_add = (Bit32u)(INTFREQU*FIXEDPT/int_samplerate);
+
+
+ memset((void *)adlibreg,0,sizeof(adlibreg));
+ memset((void *)op,0,sizeof(op_type)*MAXOPERATORS);
+ memset((void *)wave_sel,0,sizeof(wave_sel));
+
+ for (i=0;i<MAXOPERATORS;i++) {
+ op[i].op_state = OF_TYPE_OFF;
+ op[i].act_state = OP_ACT_OFF;
+ op[i].amp = 0.0;
+ op[i].step_amp = 0.0;
+ op[i].vol = 0.0;
+ op[i].tcount = 0;
+ op[i].tinc = 0;
+ op[i].toff = 0;
+ op[i].cur_wmask = wavemask[0];
+ op[i].cur_wform = &wavtable[waveform[0]];
+ op[i].freq_high = 0;
+
+ op[i].generator_pos = 0;
+ op[i].cur_env_step = 0;
+ op[i].env_step_a = 0;
+ op[i].env_step_d = 0;
+ op[i].env_step_r = 0;
+ op[i].step_skip_pos = 0;
+ op[i].env_step_skip_a = 0;
+
+#if defined(OPLTYPE_IS_OPL3)
+ op[i].is_4op = false;
+ op[i].is_4op_attached = false;
+ op[i].left_pan = 1;
+ op[i].right_pan = 1;
+#endif
+ }
+
+ recipsamp = 1.0 / (fltype)int_samplerate;
+ for (i=15;i>=0;i--) {
+ frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*recipsamp);
+ }
+
+ status = 0;
+ index = 0;
+
+
+ // create vibrato table
+ vib_table[0] = 8;
+ vib_table[1] = 4;
+ vib_table[2] = 0;
+ vib_table[3] = -4;
+ for (i=4; i<VIBTAB_SIZE; i++) vib_table[i] = vib_table[i-4]*-1;
+
+ // vibrato at ~6.1 ?? (opl3 docs say 6.1, opl4 docs say 6.0, y8950 docs say 6.4)
+ vibtab_add = static_cast<Bit32u>(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/int_samplerate);
+ vibtab_pos = 0;
+
+ for (i=0; i<BLOCKBUF_SIZE; i++) vibval_const[i] = 0;
+
+
+ // create tremolo table
+ Bit32s trem_table_int[TREMTAB_SIZE];
+ for (i=0; i<14; i++) trem_table_int[i] = i-13; // upwards (13 to 26 -> -0.5/6 to 0)
+ for (i=14; i<41; i++) trem_table_int[i] = -i+14; // downwards (26 to 0 -> 0 to -1/6)
+ for (i=41; i<53; i++) trem_table_int[i] = i-40-26; // upwards (1 to 12 -> -1/6 to -0.5/6)
+
+ for (i=0; i<TREMTAB_SIZE; i++) {
+ // 0.0 .. -26/26*4.8/6 == [0.0 .. -0.8], 4/53 steps == [1 .. 0.57]
+ fltype trem_val1=(fltype)(((fltype)trem_table_int[i])*4.8/26.0/6.0); // 4.8db
+ fltype trem_val2=(fltype)((fltype)((Bit32s)(trem_table_int[i]/4))*1.2/6.0/6.0); // 1.2db (larger stepping)
+
+ trem_table[i] = (Bit32s)(pow(FL2,trem_val1)*FIXEDPT);
+ trem_table[TREMTAB_SIZE+i] = (Bit32s)(pow(FL2,trem_val2)*FIXEDPT);
+ }
+
+ // tremolo at 3.7hz
+ tremtab_add = (Bit32u)((fltype)TREMTAB_SIZE * TREM_FREQ * FIXEDPT_LFO / (fltype)int_samplerate);
+ tremtab_pos = 0;
+
+ for (i=0; i<BLOCKBUF_SIZE; i++) tremval_const[i] = FIXEDPT;
+
+
+ static Bitu initfirstime = 0;
+ if (!initfirstime) {
+ initfirstime = 1;
+
+ // create waveform tables
+ for (i=0;i<(WAVEPREC>>1);i++) {
+ wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC));
+ wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC));
+ wavtable[i] = wavtable[(i<<1) +WAVEPREC];
+ // table to be verified, alternative: (zero-less)
+/* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1)-1)*PI/WAVEPREC));
+ wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1) )*PI/WAVEPREC));
+ wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */
+ }
+ for (i=0;i<(WAVEPREC>>3);i++) {
+ wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384;
+ wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384;
+ }
+
+ // key scale level table verified ([table in book]*8/3)
+ kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37;
+ kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47;
+ kslev[7][8] = 48;
+ for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41);
+ for (j=6;j>=0;j--) {
+ for (i=0;i<16;i++) {
+ oct = (Bits)kslev[j+1][i]-8;
+ if (oct < 0) oct = 0;
+ kslev[j][i] = (Bit8u)oct;
+ }
+ }
+ }
+
+}
+
+
+
+void adlib_write(Bitu idx, Bit8u val) {
+ Bit32u second_set = idx&0x100;
+ adlibreg[idx] = val;
+
+ switch (idx&0xf0) {
+ case ARC_CONTROL:
+ // here we check for the second set registers, too:
+ switch (idx) {
+ case 0x02: // timer1 counter
+ case 0x03: // timer2 counter
+ break;
+ case 0x04:
+ // IRQ reset, timer mask/start
+ if (val&0x80) {
+ // clear IRQ bits in status register
+ status &= ~0x60;
+ } else {
+ status = 0;
+ }
+ break;
+#if defined(OPLTYPE_IS_OPL3)
+ case 0x04|ARC_SECONDSET:
+ // 4op enable/disable switches for each possible channel
+ op[0].is_4op = (val&1)>0;
+ op[3].is_4op_attached = op[0].is_4op;
+ op[1].is_4op = (val&2)>0;
+ op[4].is_4op_attached = op[1].is_4op;
+ op[2].is_4op = (val&4)>0;
+ op[5].is_4op_attached = op[2].is_4op;
+ op[18].is_4op = (val&8)>0;
+ op[21].is_4op_attached = op[18].is_4op;
+ op[19].is_4op = (val&16)>0;
+ op[22].is_4op_attached = op[19].is_4op;
+ op[20].is_4op = (val&32)>0;
+ op[23].is_4op_attached = op[20].is_4op;
+ break;
+ case 0x05|ARC_SECONDSET:
+ break;
+#endif
+ case 0x08:
+ // CSW, note select
+ break;
+ default:
+ break;
+ }
+ break;
+ case ARC_TVS_KSR_MUL:
+ case ARC_TVS_KSR_MUL+0x10: {
+ // tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication
+ int num = idx&7;
+ Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff;
+ if ((num<6) && (base<22)) {
+ Bitu modop = regbase2modop[second_set?(base+22):base];
+ Bitu regbase = base+second_set;
+ Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop;
+
+ // change tremolo/vibrato and sustain keeping of this operator
+ op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)];
+ change_keepsustain(regbase,op_ptr);
+ change_vibrato(regbase,op_ptr);
+
+ // change frequency calculations of this operator as
+ // key scale rate and frequency multiplicator can be changed
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) {
+ // operator uses frequency of channel
+ change_frequency(chanbase-3,regbase,op_ptr);
+ } else {
+ change_frequency(chanbase,regbase,op_ptr);
+ }
+#else
+ change_frequency(chanbase,base,op_ptr);
+#endif
+ }
+ }
+ break;
+ case ARC_KSL_OUTLEV:
+ case ARC_KSL_OUTLEV+0x10: {
+ // key scale level; output rate
+ int num = idx&7;
+ Bitu base = (idx-ARC_KSL_OUTLEV)&0xff;
+ if ((num<6) && (base<22)) {
+ Bitu modop = regbase2modop[second_set?(base+22):base];
+ Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop;
+
+ // change frequency calculations of this operator as
+ // key scale level and output rate can be changed
+ op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)];
+#if defined(OPLTYPE_IS_OPL3)
+ Bitu regbase = base+second_set;
+ if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) {
+ // operator uses frequency of channel
+ change_frequency(chanbase-3,regbase,op_ptr);
+ } else {
+ change_frequency(chanbase,regbase,op_ptr);
+ }
+#else
+ change_frequency(chanbase,base,op_ptr);
+#endif
+ }
+ }
+ break;
+ case ARC_ATTR_DECR:
+ case ARC_ATTR_DECR+0x10: {
+ // attack/decay rates
+ int num = idx&7;
+ Bitu base = (idx-ARC_ATTR_DECR)&0xff;
+ if ((num<6) && (base<22)) {
+ Bitu regbase = base+second_set;
+
+ // change attack rate and decay rate of this operator
+ op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]];
+ change_attackrate(regbase,op_ptr);
+ change_decayrate(regbase,op_ptr);
+ }
+ }
+ break;
+ case ARC_SUSL_RELR:
+ case ARC_SUSL_RELR+0x10: {
+ // sustain level; release rate
+ int num = idx&7;
+ Bitu base = (idx-ARC_SUSL_RELR)&0xff;
+ if ((num<6) && (base<22)) {
+ Bitu regbase = base+second_set;
+
+ // change sustain level and release rate of this operator
+ op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]];
+ change_releaserate(regbase,op_ptr);
+ change_sustainlevel(regbase,op_ptr);
+ }
+ }
+ break;
+ case ARC_FREQ_NUM: {
+ // 0xa0-0xa8 low8 frequency
+ Bitu base = (idx-ARC_FREQ_NUM)&0xff;
+ if (base<9) {
+ Bits opbase = second_set?(base+18):base;
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break;
+#endif
+ // regbase of modulator:
+ Bits modbase = modulatorbase[base]+second_set;
+
+ Bitu chanbase = base+second_set;
+
+ change_frequency(chanbase,modbase,&op[opbase]);
+ change_frequency(chanbase,modbase+3,&op[opbase+9]);
+#if defined(OPLTYPE_IS_OPL3)
+ // for 4op channels all four operators are modified to the frequency of the channel
+ if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) {
+ change_frequency(chanbase,modbase+8,&op[opbase+3]);
+ change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]);
+ }
+#endif
+ }
+ }
+ break;
+ case ARC_KON_BNUM: {
+ if (idx == ARC_PERC_MODE) {
+#if defined(OPLTYPE_IS_OPL3)
+ if (second_set) return;
+#endif
+
+ if ((val&0x30) == 0x30) { // BassDrum active
+ enable_operator(16,&op[6],OP_ACT_PERC);
+ change_frequency(6,16,&op[6]);
+ enable_operator(16+3,&op[6+9],OP_ACT_PERC);
+ change_frequency(6,16+3,&op[6+9]);
+ } else {
+ disable_operator(&op[6],OP_ACT_PERC);
+ disable_operator(&op[6+9],OP_ACT_PERC);
+ }
+ if ((val&0x28) == 0x28) { // Snare active
+ enable_operator(17+3,&op[16],OP_ACT_PERC);
+ change_frequency(7,17+3,&op[16]);
+ } else {
+ disable_operator(&op[16],OP_ACT_PERC);
+ }
+ if ((val&0x24) == 0x24) { // TomTom active
+ enable_operator(18,&op[8],OP_ACT_PERC);
+ change_frequency(8,18,&op[8]);
+ } else {
+ disable_operator(&op[8],OP_ACT_PERC);
+ }
+ if ((val&0x22) == 0x22) { // Cymbal active
+ enable_operator(18+3,&op[8+9],OP_ACT_PERC);
+ change_frequency(8,18+3,&op[8+9]);
+ } else {
+ disable_operator(&op[8+9],OP_ACT_PERC);
+ }
+ if ((val&0x21) == 0x21) { // Hihat active
+ enable_operator(17,&op[7],OP_ACT_PERC);
+ change_frequency(7,17,&op[7]);
+ } else {
+ disable_operator(&op[7],OP_ACT_PERC);
+ }
+
+ break;
+ }
+ // regular 0xb0-0xb8
+ Bitu base = (idx-ARC_KON_BNUM)&0xff;
+ if (base<9) {
+ Bits opbase = second_set?(base+18):base;
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break;
+#endif
+ // regbase of modulator:
+ Bits modbase = modulatorbase[base]+second_set;
+
+ if (val&32) {
+ // operator switched on
+ enable_operator(modbase,&op[opbase],OP_ACT_NORMAL); // modulator (if 2op)
+ enable_operator(modbase+3,&op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op)
+#if defined(OPLTYPE_IS_OPL3)
+ // for 4op channels all four operators are switched on
+ if ((adlibreg[0x105]&1) && op[opbase].is_4op) {
+ // turn on chan+3 operators as well
+ enable_operator(modbase+8,&op[opbase+3],OP_ACT_NORMAL);
+ enable_operator(modbase+3+8,&op[opbase+3+9],OP_ACT_NORMAL);
+ }
+#endif
+ } else {
+ // operator switched off
+ disable_operator(&op[opbase],OP_ACT_NORMAL);
+ disable_operator(&op[opbase+9],OP_ACT_NORMAL);
+#if defined(OPLTYPE_IS_OPL3)
+ // for 4op channels all four operators are switched off
+ if ((adlibreg[0x105]&1) && op[opbase].is_4op) {
+ // turn off chan+3 operators as well
+ disable_operator(&op[opbase+3],OP_ACT_NORMAL);
+ disable_operator(&op[opbase+3+9],OP_ACT_NORMAL);
+ }
+#endif
+ }
+
+ Bitu chanbase = base+second_set;
+
+ // change frequency calculations of modulator and carrier (2op) as
+ // the frequency of the channel has changed
+ change_frequency(chanbase,modbase,&op[opbase]);
+ change_frequency(chanbase,modbase+3,&op[opbase+9]);
+#if defined(OPLTYPE_IS_OPL3)
+ // for 4op channels all four operators are modified to the frequency of the channel
+ if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) {
+ // change frequency calculations of chan+3 operators as well
+ change_frequency(chanbase,modbase+8,&op[opbase+3]);
+ change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]);
+ }
+#endif
+ }
+ }
+ break;
+ case ARC_FEEDBACK: {
+ // 0xc0-0xc8 feedback/modulation type (AM/FM)
+ Bitu base = (idx-ARC_FEEDBACK)&0xff;
+ if (base<9) {
+ Bits opbase = second_set?(base+18):base;
+ Bitu chanbase = base+second_set;
+ change_feedback(chanbase,&op[opbase]);
+#if defined(OPLTYPE_IS_OPL3)
+ // OPL3 panning
+ op[opbase].left_pan = ((val&0x10)>>4);
+ op[opbase].right_pan = ((val&0x20)>>5);
+#endif
+ }
+ }
+ break;
+ case ARC_WAVE_SEL:
+ case ARC_WAVE_SEL+0x10: {
+ int num = idx&7;
+ Bitu base = (idx-ARC_WAVE_SEL)&0xff;
+ if ((num<6) && (base<22)) {
+#if defined(OPLTYPE_IS_OPL3)
+ Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[]
+ // change waveform
+ if (adlibreg[0x105]&1) wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible
+ else wave_sel[wselbase] = val&3;
+ op_type* op_ptr = &op[regbase2modop[wselbase]+((num<3) ? 0 : 9)];
+ change_waveform(wselbase,op_ptr);
+#else
+ if (adlibreg[0x01]&0x20) {
+ // wave selection enabled, change waveform
+ wave_sel[base] = val&3;
+ op_type* op_ptr = &op[regbase2modop[base]+((num<3) ? 0 : 9)];
+ change_waveform(base,op_ptr);
+ }
+#endif
+ }
+ }
+ break;
+ default:
+ break;
+ }
+}
+
+
+Bitu adlib_reg_read(Bitu port) {
+#if defined(OPLTYPE_IS_OPL3)
+ // opl3-detection routines require ret&6 to be zero
+ if ((port&1)==0) {
+ return status;
+ }
+ return 0x00;
+#else
+ // opl2-detection routines require ret&6 to be 6
+ if ((port&1)==0) {
+ return status|6;
+ }
+ return 0xff;
+#endif
+}
+
+void adlib_write_index(Bitu port, Bit8u val) {
+ index = val;
+#if defined(OPLTYPE_IS_OPL3)
+ if ((port&3)!=0) {
+ // possibly second set
+ if (((adlibreg[0x105]&1)!=0) || (index==5)) index |= ARC_SECONDSET;
+ }
+#endif
+}
+
+static inline void clipit16(Bit32s ival, Bit16s* outval) {
+ if (ival<32768) {
+ if (ival>-32769) {
+ *outval=(Bit16s)ival;
+ } else {
+ *outval = -32768;
+ }
+ } else {
+ *outval = 32767;
+ }
+}
+
+
+
+// be careful with this
+// uses cptr and chanval, outputs into outbufl(/outbufr)
+// for opl3 check if opl3-mode is enabled (which uses stereo panning)
+#undef CHANVAL_OUT
+#if defined(OPLTYPE_IS_OPL3)
+#define CHANVAL_OUT \
+ if (adlibreg[0x105]&1) { \
+ outbufl[i] += chanval*cptr[0].left_pan; \
+ outbufr[i] += chanval*cptr[0].right_pan; \
+ } else { \
+ outbufl[i] += chanval; \
+ }
+#else
+#define CHANVAL_OUT \
+ outbufl[i] += chanval;
+#endif
+
+void adlib_getsample(Bit16s* sndptr, Bits numsamples) {
+ Bits i, endsamples;
+ op_type* cptr;
+
+ Bit32s outbufl[BLOCKBUF_SIZE];
+#if defined(OPLTYPE_IS_OPL3)
+ // second output buffer (right channel for opl3 stereo)
+ Bit32s outbufr[BLOCKBUF_SIZE];
+#endif
+
+ // vibrato/tremolo lookup tables (global, to possibly be used by all operators)
+ Bit32s vib_lut[BLOCKBUF_SIZE];
+ Bit32s trem_lut[BLOCKBUF_SIZE];
+
+ Bits samples_to_process = numsamples;
+
+ for (Bits cursmp=0; cursmp<samples_to_process; cursmp+=endsamples) {
+ endsamples = samples_to_process-cursmp;
+ if (endsamples>BLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE;
+
+ memset((void*)&outbufl,0,endsamples*sizeof(Bit32s));
+#if defined(OPLTYPE_IS_OPL3)
+ // clear second output buffer (opl3 stereo)
+ if (adlibreg[0x105]&1) memset((void*)&outbufr,0,endsamples*sizeof(Bit32s));
+#endif
+
+ // calculate vibrato/tremolo lookup tables
+ Bit32s vib_tshift = ((adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching
+ for (i=0;i<endsamples;i++) {
+ // cycle through vibrato table
+ vibtab_pos += vibtab_add;
+ if (vibtab_pos/FIXEDPT_LFO>=VIBTAB_SIZE) vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO;
+ vib_lut[i] = vib_table[vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents
+
+ // cycle through tremolo table
+ tremtab_pos += tremtab_add;
+ if (tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE) tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO;
+ if (adlibreg[ARC_PERC_MODE]&0x80) trem_lut[i] = trem_table[tremtab_pos/FIXEDPT_LFO];
+ else trem_lut[i] = trem_table[TREMTAB_SIZE+tremtab_pos/FIXEDPT_LFO];
+ }
+
+ if (adlibreg[ARC_PERC_MODE]&0x20) {
+ //BassDrum
+ cptr = &op[6];
+ if (adlibreg[ARC_FEEDBACK+6]&1) {
+ // additive synthesis
+ if (cptr[9].op_state != OF_TYPE_OFF) {
+ if (cptr[9].vibrato) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[9],vibval1[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],0,tremval1[i]);
+
+ Bit32s chanval = cptr[9].cval*2;
+ CHANVAL_OUT
+ }
+ }
+ } else {
+ // frequency modulation
+ if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[0].op_state != OF_TYPE_OFF)) {
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[9].cval*2;
+ CHANVAL_OUT
+ }
+ }
+ }
+
+ //TomTom (j=8)
+ if (op[8].op_state != OF_TYPE_OFF) {
+ cptr = &op[8];
+ if (cptr[0].vibrato) {
+ vibval3 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval3[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval3 = vibval_const;
+
+ if (cptr[0].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
+ else tremval3 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval3[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]); //TomTom
+ operator_output(&cptr[0],0,tremval3[i]);
+ Bit32s chanval = cptr[0].cval*2;
+ CHANVAL_OUT
+ }
+ }
+
+ //Snare/Hihat (j=7), Cymbal (j=8)
+ if ((op[7].op_state != OF_TYPE_OFF) || (op[16].op_state != OF_TYPE_OFF) ||
+ (op[17].op_state != OF_TYPE_OFF)) {
+ cptr = &op[7];
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ cptr = &op[8];
+ if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) {
+ vibval4 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval4[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval4 = vibval_const;
+
+ if (cptr[9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table
+ else tremval4 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance_drums(&op[7],vibval1[i],&op[7+9],vibval2[i],&op[8+9],vibval4[i]);
+
+ opfuncs[op[7].op_state](&op[7]); //Hihat
+ operator_output(&op[7],0,tremval1[i]);
+
+ opfuncs[op[7+9].op_state](&op[7+9]); //Snare
+ operator_output(&op[7+9],0,tremval2[i]);
+
+ opfuncs[op[8+9].op_state](&op[8+9]); //Cymbal
+ operator_output(&op[8+9],0,tremval4[i]);
+
+ Bit32s chanval = (op[7].cval + op[7+9].cval + op[8+9].cval)*2;
+ CHANVAL_OUT
+ }
+ }
+ }
+
+ Bitu max_channel = NUM_CHANNELS;
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1)==0) max_channel = NUM_CHANNELS/2;
+#endif
+ for (Bits cur_ch=max_channel-1; cur_ch>=0; cur_ch--) {
+ // skip drum/percussion operators
+ if ((adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue;
+
+ Bitu k = cur_ch;
+#if defined(OPLTYPE_IS_OPL3)
+ if (cur_ch < 9) {
+ cptr = &op[cur_ch];
+ } else {
+ cptr = &op[cur_ch+9]; // second set is operator18-operator35
+ k += (-9+256); // second set uses registers 0x100 onwards
+ }
+ // check if this operator is part of a 4-op
+ if ((adlibreg[0x105]&1) && cptr->is_4op_attached) continue;
+#else
+ cptr = &op[cur_ch];
+#endif
+
+ // check for FM/AM
+ if (adlibreg[ARC_FEEDBACK+k]&1) {
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && cptr->is_4op) {
+ if (adlibreg[ARC_FEEDBACK+k+3]&1) {
+ // AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4)
+ if (cptr[0].op_state != OF_TYPE_OFF) {
+ if (cptr[0].vibrato) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ Bit32s chanval = cptr[0].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) {
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[9],vibval1[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],0,tremval1[i]);
+
+ operator_advance(&cptr[3],0);
+ opfuncs[cptr[3].op_state](&cptr[3]);
+ operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[3].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ if (cptr[3+9].op_state != OF_TYPE_OFF) {
+ if (cptr[3+9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[3+9],0);
+ opfuncs[cptr[3+9].op_state](&cptr[3+9]);
+ operator_output(&cptr[3+9],0,tremval1[i]);
+
+ Bit32s chanval = cptr[3+9].cval;
+ CHANVAL_OUT
+ }
+ }
+ } else {
+ // AM-FM-style synthesis (op1[fb] + (op2 * op3 * op4))
+ if (cptr[0].op_state != OF_TYPE_OFF) {
+ if (cptr[0].vibrato) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ Bit32s chanval = cptr[0].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+ if (cptr[3+9].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
+ else tremval3 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[9],vibval1[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],0,tremval1[i]);
+
+ operator_advance(&cptr[3],0);
+ opfuncs[cptr[3].op_state](&cptr[3]);
+ operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]);
+
+ operator_advance(&cptr[3+9],0);
+ opfuncs[cptr[3+9].op_state](&cptr[3+9]);
+ operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval3[i]);
+
+ Bit32s chanval = cptr[3+9].cval;
+ CHANVAL_OUT
+ }
+ }
+ }
+ continue;
+ }
+#endif
+ // 2op additive synthesis
+ if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue;
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ // carrier1
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ // carrier2
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],0,tremval2[i]);
+
+ Bit32s chanval = cptr[9].cval + cptr[0].cval;
+ CHANVAL_OUT
+ }
+ } else {
+#if defined(OPLTYPE_IS_OPL3)
+ if ((adlibreg[0x105]&1) && cptr->is_4op) {
+ if (adlibreg[ARC_FEEDBACK+k+3]&1) {
+ // FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4))
+ if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) {
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[9].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
+ if (cptr[3].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[3+9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[3],0);
+ opfuncs[cptr[3].op_state](&cptr[3]);
+ operator_output(&cptr[3],0,tremval1[i]);
+
+ operator_advance(&cptr[3+9],0);
+ opfuncs[cptr[3+9].op_state](&cptr[3+9]);
+ operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[3+9].cval;
+ CHANVAL_OUT
+ }
+ }
+
+ } else {
+ // FM-FM-style synthesis (op1[fb] * op2 * op3 * op4)
+ if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF) ||
+ (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+ if (cptr[3].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
+ else tremval3 = tremval_const;
+ if (cptr[3+9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table
+ else tremval4 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
+
+ operator_advance(&cptr[3],0);
+ opfuncs[cptr[3].op_state](&cptr[3]);
+ operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval3[i]);
+
+ operator_advance(&cptr[3+9],0);
+ opfuncs[cptr[3+9].op_state](&cptr[3+9]);
+ operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval4[i]);
+
+ Bit32s chanval = cptr[3+9].cval;
+ CHANVAL_OUT
+ }
+ }
+ }
+ continue;
+ }
+#endif
+ // 2op frequency modulation
+ if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue;
+ if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
+ vibval1 = vibval_var1;
+ for (i=0;i<endsamples;i++)
+ vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval1 = vibval_const;
+ if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
+ vibval2 = vibval_var2;
+ for (i=0;i<endsamples;i++)
+ vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
+ } else vibval2 = vibval_const;
+ if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
+ else tremval1 = tremval_const;
+ if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
+ else tremval2 = tremval_const;
+
+ // calculate channel output
+ for (i=0;i<endsamples;i++) {
+ // modulator
+ operator_advance(&cptr[0],vibval1[i]);
+ opfuncs[cptr[0].op_state](&cptr[0]);
+ operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
+
+ // carrier
+ operator_advance(&cptr[9],vibval2[i]);
+ opfuncs[cptr[9].op_state](&cptr[9]);
+ operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
+
+ Bit32s chanval = cptr[9].cval;
+ CHANVAL_OUT
+ }
+ }
+ }
+
+#if defined(OPLTYPE_IS_OPL3)
+ if (adlibreg[0x105]&1) {
+ // convert to 16bit samples (stereo)
+ for (i=0;i<endsamples;i++) {
+ clipit16(outbufl[i],sndptr++);
+ clipit16(outbufr[i],sndptr++);
+ }
+ } else {
+ // convert to 16bit samples (mono)
+ for (i=0;i<endsamples;i++) {
+ clipit16(outbufl[i],sndptr++);
+ clipit16(outbufl[i],sndptr++);
+ }
+ }
+#else
+ // convert to 16bit samples
+ for (i=0;i<endsamples;i++)
+ clipit16(outbufl[i],sndptr++);
+#endif
+
+ }
+}