aboutsummaryrefslogtreecommitdiff
path: root/sword2/memory.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'sword2/memory.cpp')
-rw-r--r--sword2/memory.cpp288
1 files changed, 130 insertions, 158 deletions
diff --git a/sword2/memory.cpp b/sword2/memory.cpp
index 9499579862..0b6c9baef0 100644
--- a/sword2/memory.cpp
+++ b/sword2/memory.cpp
@@ -43,82 +43,53 @@
#include "memory.h"
#include "resman.h"
-uint32 total_blocks;
-uint32 total_free_memory;
+MemoryManager memory;
#define MEMORY_POOL (1024 * 12000)
-// address of init malloc to be freed later
-uint8 *free_memman;
-
-// list of defined memory handles - each representing a block of memory.
-mem mem_list[MAX_mem_blocks];
-
-uint32 base_mem_block;
-
// #define MEMDEBUG 1
-// Used to determine if the required size can be obtained if the defragger is
-// allowed to run.
-
-int32 VirtualDefrag(uint32 size);
-
-// Start position of the Defragger as indicated by its sister VirtualDefrag.
-int32 suggestedStart = 0;
-
-void Close_memory_manager(void) { // Tony2Oct96
- free(free_memman);
+void MemoryManager::exit(void) {
+ free(_freeMemman);
}
-void Init_memory_manager(void) {
+void MemoryManager::init(void) {
uint32 j;
uint8 *memory_base;
- total_free_memory = MEMORY_POOL;
+ _suggestedStart = 0;
+
+ _totalFreeMemory = MEMORY_POOL;
// malloc memory and adjust for long boundaries
- memory_base = (uint8 *) malloc(total_free_memory);
+ memory_base = (uint8 *) malloc(_totalFreeMemory);
if (!memory_base) { //could not grab the memory
- error("Init_memory_manager() couldn't malloc %d bytes", total_free_memory);
+ error("Init_memory_manager() couldn't malloc %d bytes", _totalFreeMemory);
}
// the original malloc address
- free_memman = memory_base;
-
-#if 0
- // FIXME: I don't think it's necessary to force alignment here,
- // because memory_base is the address returned by malloc(), and
- // according to my C book "every allocated region from malloc must
- // be aligned for any type".
-
- // force to long word boundary
- memory_base += 3;
- memory_base = (uint8 *) ((uint32) memory_base & 0xfffffffc); // ** was (int)memory_base
- // total_free_memory -= 3; //play safe
-#endif
+ _freeMemman = memory_base;
// set all but first handle to unused
for (j = 1; j < MAX_mem_blocks; j++)
- mem_list[j].state = MEM_null;
+ _memList[j].state = MEM_null;
// total used (free, locked or floating)
- total_blocks = 1;
+ _totalBlocks = 1;
- mem_list[0].ad = memory_base;
- mem_list[0].state = MEM_free;
- mem_list[0].age = 0;
- mem_list[0].size = total_free_memory;
- mem_list[0].parent = -1; // we are base - for now
- mem_list[0].child = -1; // we are the end as well
- mem_list[0].uid = UID_memman; // init id
+ _memList[0].ad = memory_base;
+ _memList[0].state = MEM_free;
+ _memList[0].age = 0;
+ _memList[0].size = _totalFreeMemory;
+ _memList[0].parent = -1; // we are base - for now
+ _memList[0].child = -1; // we are the end as well
+ _memList[0].uid = UID_memman; // init id
- base_mem_block = 0; // for now
+ _baseMemBlock = 0; // for now
}
-// This is the low-level memory allocator
-
-mem *Talloc(uint32 size, uint32 type, uint32 unique_id) {
+mem *MemoryManager::lowLevelAlloc(uint32 size, uint32 type, uint32 unique_id) {
// allocate a block of memory - locked or float
// returns 0 if fails to allocate the memory
@@ -140,23 +111,23 @@ mem *Talloc(uint32 size, uint32 type, uint32 unique_id) {
// a good time to defrag as we're probably not doing anything super
// time-critical at the moment
- if ((nu_block = Defrag_mem(size)) == -1) {
+ if ((nu_block = defragMemory(size)) == -1) {
// error - couldn't find a big enough space
return 0;
}
// an exact fit?
- if (mem_list[nu_block].size == size) {
+ if (_memList[nu_block].size == size) {
// no new block is required as the fit is perfect
- mem_list[nu_block].state = type; // locked or float
- mem_list[nu_block].size = size; // set to the required size
- mem_list[nu_block].uid = unique_id; // an identifier
+ _memList[nu_block].state = type; // locked or float
+ _memList[nu_block].size = size; // set to the required size
+ _memList[nu_block].uid = unique_id; // an identifier
#ifdef MEMDEBUG
- Mem_debug();
+ debugMemory();
#endif
- return &mem_list[nu_block];
+ return &_memList[nu_block];
}
// nu_block is the free block to split, forming our locked/float block
@@ -171,23 +142,23 @@ mem *Talloc(uint32 size, uint32 type, uint32 unique_id) {
// mini blocks. This way avoids that as the free child keeps growing
// downwards.
- if (mem_list[nu_block].child != -1 && mem_list[mem_list[nu_block].child].state == MEM_free) {
+ if (_memList[nu_block].child != -1 && _memList[_memList[nu_block].child].state == MEM_free) {
// our child is free
// the spare memory is the blocks current size minus the
// amount we're taking
- slack = mem_list[nu_block].size - size;
+ slack = _memList[nu_block].size - size;
- mem_list[nu_block].state = type; // locked or float
- mem_list[nu_block].size = size; // set to the required size
- mem_list[nu_block].uid = unique_id; // an identifier
+ _memList[nu_block].state = type; // locked or float
+ _memList[nu_block].size = size; // set to the required size
+ _memList[nu_block].uid = unique_id; // an identifier
// child starts after us
- mem_list[mem_list[nu_block].child].ad = mem_list[nu_block].ad + size;
+ _memList[_memList[nu_block].child].ad = _memList[nu_block].ad + size;
// child's size increases
- mem_list[mem_list[nu_block].child].size += slack;
+ _memList[_memList[nu_block].child].size += slack;
- return &mem_list[nu_block];
+ return &_memList[nu_block];
}
// otherwise we spawn a new block after us and before our child - our
@@ -198,61 +169,61 @@ mem *Talloc(uint32 size, uint32 type, uint32 unique_id) {
// find a NULL slot for a new block
- while (mem_list[spawn].state != MEM_null && spawn!=MAX_mem_blocks)
+ while (_memList[spawn].state != MEM_null && spawn!=MAX_mem_blocks)
spawn++;
if (spawn == MAX_mem_blocks) {
// run out of blocks - stop the program. this is a major blow
// up and we need to alert the developer
// Lets get a printout of this
- Mem_debug();
+ debugMemory();
error("Out of mem blocks in Talloc()");
}
- mem_list[spawn].state = MEM_free; // new block is free
- mem_list[spawn].uid = UID_memman; // a memman created bloc
+ _memList[spawn].state = MEM_free; // new block is free
+ _memList[spawn].uid = UID_memman; // a memman created bloc
// size of the existing parent free block minus the size of the new
// space Talloc'ed.
- mem_list[spawn].size = mem_list[nu_block].size - size;
+ _memList[spawn].size = _memList[nu_block].size - size;
// IOW the remaining memory is given to the new free block
// we start 1 byte after the newly allocated block
- mem_list[spawn].ad = mem_list[nu_block].ad + size;
+ _memList[spawn].ad = _memList[nu_block].ad + size;
// the spawned child gets it parent - the newly allocated block
- mem_list[spawn].parent = nu_block;
+ _memList[spawn].parent = nu_block;
// the new child inherits the parents old child (we are its new
// child "Waaaa")
- mem_list[spawn].child = mem_list[nu_block].child;
+ _memList[spawn].child = _memList[nu_block].child;
// is the spawn the end block?
- if (mem_list[spawn].child != -1) {
+ if (_memList[spawn].child != -1) {
// the child of the new free-spawn needs to know its new parent
- mem_list[mem_list[spawn].child].parent = spawn;
+ _memList[_memList[spawn].child].parent = spawn;
}
- mem_list[nu_block].state = type; // locked or float
- mem_list[nu_block].size = size; // set to the required size
- mem_list[nu_block].uid = unique_id; // an identifier
+ _memList[nu_block].state = type; // locked or float
+ _memList[nu_block].size = size; // set to the required size
+ _memList[nu_block].uid = unique_id; // an identifier
// the new blocks new child is the newly formed free block
- mem_list[nu_block].child = spawn;
+ _memList[nu_block].child = spawn;
//we've brought a new block into the world. Ahhh!
- total_blocks++;
+ _totalBlocks++;
#ifdef MEMDEBUG
- Mem_debug();
+ debugMemory();
#endif
- return &mem_list[nu_block];
+ return &_memList[nu_block];
}
-void Free_mem(mem *block) {
+void MemoryManager::freeMemory(mem *block) {
// kill a block of memory - which was presumably floating or locked
// once you've done this the memory may be recycled
@@ -260,22 +231,22 @@ void Free_mem(mem *block) {
block->uid = UID_memman; // belongs to the memory manager again
#ifdef MEMDEBUG
- Mem_debug();
+ debugMemory();
#endif
}
-void Float_mem(mem *block) {
+void MemoryManager::floatMemory(mem *block) {
// set a block to float
// wont be trashed but will move around in memory
block->state = MEM_float;
#ifdef MEMDEBUG
- Mem_debug();
+ debugMemory();
#endif
}
-void Lock_mem(mem *block) {
+void MemoryManager::lockMemory(mem *block) {
// set a block to lock
// wont be moved - don't lock memory for any longer than necessary
// unless you know the locked memory is at the bottom of the heap
@@ -286,11 +257,11 @@ void Lock_mem(mem *block) {
block->state = MEM_locked;
#ifdef MEMDEBUG
- Mem_debug();
+ debugMemory();
#endif
}
-int32 Defrag_mem(uint32 req_size) {
+int32 MemoryManager::defragMemory(uint32 req_size) {
// moves floating blocks down and/or merges free blocks until a large
// enough space is found or there is nothing left to do and a big
// enough block cannot be found we stop when we find/create a large
@@ -302,20 +273,20 @@ int32 Defrag_mem(uint32 req_size) {
uint32 *a;
uint32 *b;
- // cur_block = base_mem_block; //the mother of all parents
- cur_block = suggestedStart;
+ // cur_block = _baseMemBlock; //the mother of all parents
+ cur_block = _suggestedStart;
do {
// is current block a free block?
- if (mem_list[cur_block].state == MEM_free) {
- if (mem_list[cur_block].size >= req_size) {
+ if (_memList[cur_block].state == MEM_free) {
+ if (_memList[cur_block].size >= req_size) {
// this block is big enough - return its id
return cur_block;
}
// the child is the end block - stop if the next block
// along is the end block
- if (mem_list[cur_block].child == -1) {
+ if (_memList[cur_block].child == -1) {
// no luck, couldn't find a big enough block
return -1;
}
@@ -323,31 +294,31 @@ int32 Defrag_mem(uint32 req_size) {
// current free block is too small, but if its child
// is *also* free then merge the two together
- if (mem_list[mem_list[cur_block].child].state == MEM_free) {
+ if (_memList[_memList[cur_block].child].state == MEM_free) {
// ok, we nuke the child and inherit its child
- child = mem_list[cur_block].child;
+ child = _memList[cur_block].child;
// our size grows by the size of our child
- mem_list[cur_block].size += mem_list[child].size;
+ _memList[cur_block].size += _memList[child].size;
// our new child is our old childs, child
- mem_list[cur_block].child = mem_list[child].child;
+ _memList[cur_block].child = _memList[child].child;
// not if the chld we're nuking is the end
// child (it has no child)
- if (mem_list[child].child != -1) {
+ if (_memList[child].child != -1) {
// the (nuked) old childs childs
// parent is now us
- mem_list[mem_list[child].child].parent = cur_block;
+ _memList[_memList[child].child].parent = cur_block;
}
// clean up the nuked child, so it can be used
// again
- mem_list[child].state = MEM_null;
+ _memList[child].state = MEM_null;
- total_blocks--;
- } else if (mem_list[mem_list[cur_block].child].state == MEM_float) {
+ _totalBlocks--;
+ } else if (_memList[_memList[cur_block].child].state == MEM_float) {
// current free block is too small, but if its
// child is a float then we move the floating
// memory block down and the free up but,
@@ -358,7 +329,7 @@ int32 Defrag_mem(uint32 req_size) {
// positions in the memory list may become
// truly random, but, any particular block of
// locked or floating memory must retain its
- // position within the mem_list - the float
+ // position within the _memList - the float
// stays a float because the handle/pointer
// has been passed back
//
@@ -371,16 +342,16 @@ int32 Defrag_mem(uint32 req_size) {
// takes place - phew.
// our child is currently floating
- child = mem_list[cur_block].child;
+ child = _memList[cur_block].child;
// move the higher float down over the free
// block
- // memcpy(mem_list[cur_block].ad, mem_list[child].ad, mem_list[child].size);
+ // memcpy(_memList[cur_block].ad, _memList[child].ad, _memList[child].size);
- a = (uint32*) mem_list[cur_block].ad;
- b = (uint32*) mem_list[child].ad;
+ a = (uint32*) _memList[cur_block].ad;
+ b = (uint32*) _memList[child].ad;
- for (j = 0; j < mem_list[child].size / 4; j++)
+ for (j = 0; j < _memList[child].size / 4; j++)
*(a++) = *(b++);
// both *ad's change
@@ -388,34 +359,34 @@ int32 Defrag_mem(uint32 req_size) {
// free goes up by the size of the float
// (which has come down)
- mem_list[child].ad = mem_list[cur_block].ad;
- mem_list[cur_block].ad += mem_list[child].size;
+ _memList[child].ad = _memList[cur_block].ad;
+ _memList[cur_block].ad += _memList[child].size;
- // the status of the mem_list blocks must
+ // the status of the _memList blocks must
// remain the same, so...
// our child gets this when we become its
// child and it our parent
- original_parent = mem_list[cur_block].parent;
+ original_parent = _memList[cur_block].parent;
// the free's child becomes its parent
- mem_list[cur_block].parent = child;
+ _memList[cur_block].parent = child;
// the new child inherits its previous childs
// child
- mem_list[cur_block].child = mem_list[child].child;
+ _memList[cur_block].child = _memList[child].child;
// save this - see next line
- end_child = mem_list[child].child;
+ end_child = _memList[child].child;
// the floats parent becomes its child
- mem_list[child].child = cur_block;
- mem_list[child].parent = original_parent;
+ _memList[child].child = cur_block;
+ _memList[child].parent = original_parent;
// if the child had a child
if (end_child != -1) {
// then its parent is now the new child
- mem_list[end_child].parent = cur_block;
+ _memList[end_child].parent = cur_block;
}
// if the base block was the true base parent
@@ -424,33 +395,33 @@ int32 Defrag_mem(uint32 req_size) {
// becomes the base block as it sits
// at the lowest possible memory
// location
- base_mem_block = child;
+ _baseMemBlock = child;
} else {
// otherwise the parent of the current
// free block - that is now the child
// - gets a new child, that child
// being previously the child of the
// child of the original parent
- mem_list[original_parent].child = child;
+ _memList[original_parent].child = child;
}
- } else { // if (mem_list[mem_list[cur_block].child].state == MEM_lock)
+ } else { // if (_memList[_memList[cur_block].child].state == MEM_lock)
// the child of current is locked - move to it
// move to next one along - either locked or
// END
- cur_block=mem_list[cur_block].child;
+ cur_block=_memList[cur_block].child;
}
} else {
// move to next one along, the current must be
// floating, locked, or a NULL slot
- cur_block = mem_list[cur_block].child;
+ cur_block = _memList[cur_block].child;
}
} while (cur_block != -1); // while the block we've just done is not the final block
return -1; //no luck, couldn't find a big enough block
}
-void Mem_debug(void) {
- // gets called with Talloc, Mem_free, Mem_lock & Mem_float if
+void MemoryManager::debugMemory(void) {
+ // gets called with lowLevelAlloc, Mem_free, Mem_lock & Mem_float if
// MEMDEBUG has been #defined otherwise can be called at any time
// anywhere else
@@ -462,33 +433,34 @@ void Mem_debug(void) {
{ "MEM_float" }
};
- debug(5, "base %d total %d", base_mem_block, total_blocks);
+ debug(5, "base %d total %d", _baseMemBlock, _totalBlocks);
// first in mem list order
for (j = 0; j < MAX_mem_blocks; j++) {
- if (mem_list[j].state == MEM_null)
+ if (_memList[j].state == MEM_null)
debug(5, "%d- NULL", j);
else
debug(5, "%d- state %s, ad %d, size %d, p %d, c %d, id %d",
- j, inf[mem_list[j].state], mem_list[j].ad,
- mem_list[j].size, mem_list[j].parent,
- mem_list[j].child, mem_list[j].uid);
+ j, inf[_memList[j].state], _memList[j].ad,
+ _memList[j].size, _memList[j].parent,
+ _memList[j].child, _memList[j].uid);
}
// now in child/parent order
- j = base_mem_block;
+ j = _baseMemBlock;
do {
debug(5, " %d- state %s, ad %d, size %d, p %d, c %d", j,
- inf[mem_list[j].state], mem_list[j].ad,
- mem_list[j].size, mem_list[j].parent,
- mem_list[j].child, mem_list[j].uid);
+ inf[_memList[j].state], _memList[j].ad,
+ _memList[j].size, _memList[j].parent,
+ _memList[j].child, _memList[j].uid);
- j = mem_list[j].child;
+ j = _memList[j].child;
} while (j != -1);
}
-mem *Twalloc(uint32 size, uint32 type, uint32 unique_id) {
- // the high level Talloc
+mem *MemoryManager::allocMemory(uint32 size, uint32 type, uint32 unique_id) {
+ // the high level allocator
+
// can ask the resman to remove old resources to make space - will
// either do it or halt the system
@@ -496,26 +468,26 @@ mem *Twalloc(uint32 size, uint32 type, uint32 unique_id) {
int j;
uint32 free = 0;
- while (VirtualDefrag(size)) {
+ while (virtualDefrag(size)) {
// trash the oldest closed resource
if (!res_man.helpTheAgedOut()) {
- error("Twalloc ran out of memory: size=%d type=%d unique_id=%d", size, type, unique_id);
+ error("alloc ran out of memory: size=%d type=%d unique_id=%d", size, type, unique_id);
}
}
- membloc = Talloc(size, type, unique_id);
+ membloc = lowLevelAlloc(size, type, unique_id);
if (membloc == 0) {
- error("Talloc failed to get memory VirtualDefrag said was there");
+ error("lowLevelAlloc failed to get memory virtualDefrag said was there");
}
- j = base_mem_block;
+ j = _baseMemBlock;
do {
- if (mem_list[j].state == MEM_free)
- free += mem_list[j].size;
+ if (_memList[j].state == MEM_free)
+ free += _memList[j].size;
- j = mem_list[j].child;
+ j = _memList[j].child;
} while (j != -1);
// return the pointer to the memory
@@ -525,13 +497,13 @@ mem *Twalloc(uint32 size, uint32 type, uint32 unique_id) {
// Maximum allowed wasted memory.
#define MAX_WASTAGE 51200
-int32 VirtualDefrag(uint32 size) {
+int32 MemoryManager::virtualDefrag(uint32 size) {
// Virutually defrags memory...
//
// Used to determine if there is potentially are large enough free
// block available is the real defragger was allowed to run.
//
- // The idea being that Twalloc will call this and help_the_aged_out
+ // The idea being that alloc will call this and help_the_aged_out
// until we indicate that it is possible to obtain a large enough
// free block. This way the defragger need only run once to yield the
// required block size.
@@ -543,11 +515,11 @@ int32 VirtualDefrag(uint32 size) {
int32 cur_block;
uint32 currentBubbleSize = 0;
- cur_block = base_mem_block;
- suggestedStart = base_mem_block;
+ cur_block = _baseMemBlock;
+ _suggestedStart = _baseMemBlock;
do {
- if (mem_list[cur_block].state == MEM_free) {
+ if (_memList[cur_block].state == MEM_free) {
// Add a little intelligence. At the start the oldest
// resources are at the bottom of the tube. However
// there will be some air at the top. Thus bubbles
@@ -556,21 +528,21 @@ int32 VirtualDefrag(uint32 size) {
// bubble will form lower down the tube. Thus less
// memory will need to be shifted.
- if (mem_list[cur_block].child != -1)
- currentBubbleSize += mem_list[cur_block].size;
- else if (mem_list[cur_block].size > MAX_WASTAGE)
- currentBubbleSize += mem_list[cur_block].size;
+ if (_memList[cur_block].child != -1)
+ currentBubbleSize += _memList[cur_block].size;
+ else if (_memList[cur_block].size > MAX_WASTAGE)
+ currentBubbleSize += _memList[cur_block].size;
if (currentBubbleSize >= size)
return 0;
- } else if (mem_list[cur_block].state == MEM_locked) {
+ } else if (_memList[cur_block].state == MEM_locked) {
currentBubbleSize = 0;
// Any free block of the correct size will be above
// this locked block.
- suggestedStart = mem_list[cur_block].child;
+ _suggestedStart = _memList[cur_block].child;
}
- cur_block = mem_list[cur_block].child;
+ cur_block = _memList[cur_block].child;
} while (cur_block != -1);
return 1;