aboutsummaryrefslogtreecommitdiff
path: root/sword2/memory.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'sword2/memory.cpp')
-rw-r--r--sword2/memory.cpp544
1 files changed, 544 insertions, 0 deletions
diff --git a/sword2/memory.cpp b/sword2/memory.cpp
new file mode 100644
index 0000000000..a8fba5b780
--- /dev/null
+++ b/sword2/memory.cpp
@@ -0,0 +1,544 @@
+/* Copyright (C) 1994-2003 Revolution Software Ltd
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * $Header$
+ */
+
+//memory manager - "remember, it's not good to leave memory locked for a moment longer than necessary" Tony
+// "actually, in a sequential system theoretically you never need to lock any memory!" Chris ;)
+//
+// This is a very simple implementation but I see little advantage to being any cleverer
+// with the coding - i could have put the mem blocks before the defined blocks instead
+// of in an array and then used pointers to child/parent blocks. But why bother? I've Kept it simple.
+// When it needs updating or customising it will be accessable to anyone who looks at it.
+// *doesn't have a purgeable/age consituant yet - if anyone wants this then I'll add it in.
+
+
+// MemMan v1.1
+
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "driver/driver96.h"
+#include "console.h"
+#include "debug.h"
+#include "memory.h"
+#include "resman.h"
+
+
+uint32 total_blocks;
+uint32 base_mem_block;
+uint32 total_free_memory;
+uint8 *free_memman; //address of init malloc to be freed later
+
+//#define MEMDEBUG 1
+
+mem mem_list[MAX_mem_blocks]; //list of defined memory handles - each representing a block of memory.
+
+int32 VirtualDefrag( uint32 size ); // Used to determine if the required size can be obtained if the defragger is allowed to run.
+int32 suggestedStart = 0; // Start position of the Defragger as indicated by its sister VirtualDefrag.
+
+//------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------------
+void Close_memory_manager(void) //Tony2Oct96
+{
+
+//unlock our supposedly locked in memory
+ VirtualUnlock(free_memman, total_free_memory);
+
+ free(free_memman);
+}
+//------------------------------------------------------------------------------------
+void Init_memory_manager(void) //Tony9April96
+{
+ uint32 j;
+ uint8 *memory_base;
+ //BOOL res;
+ MEMORYSTATUS memo;
+
+//find out how much actual physical RAM this computer has
+ GlobalMemoryStatus(&memo);
+
+//now decide how much to grab - 8MB computer are super critical
+ if (memo.dwTotalPhys<=(8000*1024)) //if 8MB or less :-O
+ total_free_memory=4500*1024; //4.5MB
+
+ else if (memo.dwTotalPhys<=(12000*1024)) //if 8MB or less :-O
+ total_free_memory=8000*1024; //8MB
+
+ else if (memo.dwTotalPhys<=(16000*1024)) //if 16MB or less :-)
+ total_free_memory=10000*1024; //10MB
+
+ else //:-)) loads of RAM
+ total_free_memory=12000*1024; //12MB
+
+
+
+ Zdebug("MEM = %d", memo.dwTotalPhys);
+ Zdebug("Sword 2 grabbed %dk", total_free_memory/1024);
+
+
+
+//malloc memory and adjust for long boundaries
+ memory_base = (uint8 *) malloc(total_free_memory);
+
+ if (!memory_base) //could not grab the memory
+ {
+ Zdebug("couldn't malloc %d in Init_memory_manager", total_free_memory);
+ ExitWithReport("Init_memory_manager() couldn't malloc %d bytes [line=%d file=%s]",total_free_memory,__LINE__,__FILE__);
+ }
+
+ free_memman = memory_base; //the original malloc address
+
+//force to long word boundary
+ memory_base+=3;
+ memory_base = (uint8 *)((uint32)memory_base & 0xfffffffc); // ** was (int)memory_base
+// total_free_memory-=3; //play safe
+
+
+
+//set all but first handle to unused
+ for (j=1;j<MAX_mem_blocks;j++)
+ mem_list[j].state=MEM_null;
+
+
+ total_blocks=1; //total used (free, locked or floating)
+
+ mem_list[0].ad = memory_base;
+ mem_list[0].state= MEM_free;
+ mem_list[0].age=0;
+ mem_list[0].size=total_free_memory;
+ mem_list[0].parent=-1; //we are base - for now
+ mem_list[0].child=-1; //we are the end as well
+ mem_list[0].uid=UID_memman; //init id
+
+ base_mem_block=0; //for now
+
+
+//supposedly this will stop the memory swapping out?? Well, as much as we're allowed
+// res=VirtualLock(free_memman, total_free_memory);
+
+// if (res!=TRUE)
+// Zdebug(" *VirtualLock failed");
+}
+//------------------------------------------------------------------------------------
+mem *Talloc(uint32 size, uint32 type, uint32 unique_id) //Tony10Apr96
+{
+//allocate a block of memory - locked or float
+
+// returns 0 if fails to allocate the memory
+// or a pointer to a mem structure
+
+ int32 nu_block;
+ uint32 spawn=0;
+ uint32 slack;
+
+
+
+
+
+//we must first round the size UP to a dword, so subsequent blocks will start dword alligned
+ size+=3; //move up
+ size &= 0xfffffffc; //and back down to boundary
+
+
+
+
+//find a free block large enough
+ if ( (nu_block = Defrag_mem(size))==-1) //the defragger returns when its made a big enough block. This is a good time to defrag as we're probably not
+ { //doing anything super time-critical at the moment
+ return(0); //error - couldn't find a big enough space
+ }
+
+
+
+//an exact fit?
+ if (mem_list[nu_block].size==size) //no new block is required as the fit is perfect
+ {
+ mem_list[nu_block].state=type; //locked or float
+ mem_list[nu_block].size=size; //set to the required size
+ mem_list[nu_block].uid=unique_id; //an identifier
+
+#ifdef MEMDEBUG
+ Mem_debug();
+#endif //MEMDEBUG
+ return(&mem_list[nu_block]);
+ }
+
+
+// nu_block is the free block to split, forming our locked/float block with a new free block in any remaining space
+
+
+//if our child is free then is can expand downwards to eat up our chopped space
+//this is good because it doesn't create an extra bloc so keeping the block count down
+//why?
+//imagine you Talloc 1000k, then free it. Now keep allocating 10 bytes less and freeing again
+//you end up with thousands of new free mini blocks. this way avoids that as the free child keeps growing downwards
+ if ((mem_list[nu_block].child != -1) && (mem_list[mem_list[nu_block].child].state==MEM_free)) //our child is free
+ {
+ slack=mem_list[nu_block].size-size; //the spare memory is the blocks current size minus the amount we're taking
+
+ mem_list[nu_block].state=type; //locked or float
+ mem_list[nu_block].size=size; //set to the required size
+ mem_list[nu_block].uid=unique_id; //an identifier
+
+ mem_list[mem_list[nu_block].child].ad = mem_list[nu_block].ad+size; //child starts after us
+ mem_list[mem_list[nu_block].child].size += slack; //childs size increases
+
+ return(&mem_list[nu_block]);
+ }
+
+
+// otherwise we spawn a new block after us and before our child - our child being a proper block that we cannot change
+
+// we remain a child of our parent
+// we spawn a new child and it inherits our current child
+
+//find a NULL slot for a new block
+ while((mem_list[spawn].state!=MEM_null)&&(spawn!=MAX_mem_blocks))
+ spawn++;
+
+
+ if (spawn==MAX_mem_blocks) //run out of blocks - stop the program. this is a major blow up and we need to alert the developer
+ {
+ Mem_debug(); //Lets get a printout of this
+ ExitWithReport("ERROR: ran out of mem blocks in Talloc() [file=%s line=%u]",__FILE__,__LINE__);
+ }
+
+
+
+ mem_list[spawn].state=MEM_free; //new block is free
+ mem_list[spawn].uid=UID_memman; //a memman created bloc
+ mem_list[spawn].size= mem_list[nu_block].size-size; //size of the existing parent free block minus the size of the new space Talloc'ed.
+ //IOW the remaining memory is given to the new free block
+ mem_list[spawn].ad = mem_list[nu_block].ad+size; //we start 1 byte after the newly allocated block
+ mem_list[spawn].parent=nu_block; //the spawned child gets it parent - the newly allocated block
+
+ mem_list[spawn].child=mem_list[nu_block].child; //the new child inherits the parents old child (we are its new child "Waaaa")
+
+
+
+ if (mem_list[spawn].child!=-1) //is the spawn the end block?
+ mem_list[mem_list[spawn].child].parent= spawn; //the child of the new free-spawn needs to know its new parent
+
+
+ mem_list[nu_block].state=type; //locked or float
+ mem_list[nu_block].size=size; //set to the required size
+ mem_list[nu_block].uid=unique_id; //an identifier
+ mem_list[nu_block].child=spawn; //the new blocks new child is the newly formed free block
+
+
+ total_blocks++; //we've brought a new block into the world. Ahhh!
+
+
+#ifdef MEMDEBUG
+ Mem_debug();
+#endif //MEMDEBUG
+
+ return(&mem_list[nu_block]);
+}
+//------------------------------------------------------------------------------------
+void Free_mem(mem *block) //Tony10Apr96
+{
+//kill a block of memory - which was presumably floating or locked
+//once you've done this the memory may be recycled
+
+ block->state=MEM_free;
+ block->uid=UID_memman; //belongs to the memory manager again
+
+#ifdef MEMDEBUG
+ Mem_debug();
+#endif //MEMDEBUG
+}
+//------------------------------------------------------------------------------------
+void Float_mem(mem *block) //Tony10Apr96
+{
+//set a block to float
+//wont be trashed but will move around in memory
+
+ block->state=MEM_float;
+
+#ifdef MEMDEBUG
+ Mem_debug();
+#endif //MEMDEBUG
+}
+//------------------------------------------------------------------------------------
+void Lock_mem(mem *block) //Tony11Apr96
+{
+//set a block to lock
+//wont be moved - don't lock memory for any longer than necessary unless you know the locked memory is at the bottom of the heap
+
+ block->state=MEM_locked; //can't move now - this block is now crying out to be floated or free'd again
+
+#ifdef MEMDEBUG
+ Mem_debug();
+#endif //MEMDEBUG
+}
+//------------------------------------------------------------------------------------
+int32 Defrag_mem(uint32 req_size) //Tony10Apr96
+{
+//moves floating blocks down and/or merges free blocks until a large enough space is found
+//or there is nothing left to do and a big enough block cannot be found
+//we stop when we find/create a large enough block - this is enough defragging.
+
+ int32 cur_block; //block 0 remains the parent block
+ int32 original_parent,child, end_child;
+ uint32 j;
+ uint32 *a;
+ uint32 *b;
+
+
+// cur_block=base_mem_block; //the mother of all parents
+ cur_block = suggestedStart;
+
+
+ do
+ {
+ if (mem_list[cur_block].state==MEM_free) //is current block a free block?
+ {
+
+ if (mem_list[cur_block].size>=req_size)
+ {
+ return(cur_block); //this block is big enough - return its id
+ }
+
+
+ if (mem_list[cur_block].child==-1) //the child is the end block - stop if the next block along is the end block
+ return(-1); //no luck, couldn't find a big enough block
+
+
+// current free block is too small, but if its child is *also* free then merge the two together
+ if (mem_list[mem_list[cur_block].child].state==MEM_free)
+ {
+// ok, we nuke the child and inherit its child
+
+ child=mem_list[cur_block].child;
+
+ mem_list[cur_block].size+= mem_list[child].size; //our size grows by the size of our child
+ mem_list[cur_block].child = mem_list[child].child; //our new child is our old childs, child
+
+ if (mem_list[child].child!=-1) //not if the chld we're nuking is the end child (it has no child)
+ mem_list[mem_list[child].child].parent=cur_block; //the (nuked) old childs childs parent is now us
+
+ mem_list[child].state=MEM_null; //clean up the nuked child, so it can be used again
+
+ total_blocks--;
+ }
+
+
+// current free block is too small, but if its child is a float then we move the floating memory block down and the free up
+// but, parent/child relationships must be such that the memory is all continuous between blocks. ie. a childs memory always
+// begins 1 byte after its parent finishes. However, the positions in the memory list may become truly random, but, any particular
+// block of locked or floating memory must retain its position within the mem_list - the float stays a float because the handle/pointer has been passed back
+// what this means is that when the physical memory of the foat moves down (and the free up) the child becomes the parent and the parent the child
+// but, remember, the parent had a parent and the child another child - these swap over too as the parent/child swap takes place - phew.
+ else if (mem_list[mem_list[cur_block].child].state==MEM_float)
+ {
+ child=mem_list[cur_block].child; //our child is currently floating
+
+ // memcpy(mem_list[cur_block].ad, mem_list[child].ad, mem_list[child].size); //move the higher float down over the free block
+
+
+ a=(uint32*) mem_list[cur_block].ad;
+ b=(uint32*) mem_list[child].ad;
+
+ for (j=0;j<mem_list[child].size/4;j++)
+ *(a++)=*(b++);
+
+
+// both *ad's change
+ mem_list[child].ad = mem_list[cur_block].ad; //the float is now where the free was
+ mem_list[cur_block].ad += mem_list[child].size; //and the free goes up by the size of the float (which has come down)
+
+// the status of the mem_list blocks must remain the same, so...
+ original_parent= mem_list[cur_block].parent; //our child gets this when we become its child and it our parent
+ mem_list[cur_block].parent=child; //the free's child becomes its parent
+ mem_list[cur_block].child= mem_list[child].child; //the new child inherits its previous childs child
+
+ end_child=mem_list[child].child; //save this - see next line
+
+ mem_list[child].child=cur_block; //the floats parent becomes its child
+ mem_list[child].parent= original_parent;
+
+ if (end_child!=-1) //if the child had a child
+ mem_list[end_child].parent=cur_block; //then its parent is now the new child
+
+ if (original_parent==-1) //the base block was the true base parent
+ base_mem_block=child; //then the child that has moved down becomes the base block as it sits at the lowest possible memory location
+ else
+ mem_list[original_parent].child=child; //otherwise the parent of the current free block - that is now the child - gets a new child,
+ //that child being previously the child of the child of the original parent
+ }
+ else //if (mem_list[mem_list[cur_block].child].state==MEM_lock) //the child of current is locked - move to it
+ cur_block=mem_list[cur_block].child; //move to next one along - either locked or END
+
+ }
+ else
+ {
+ cur_block=mem_list[cur_block].child; //move to next one along, the current must be floating, locked, or a NULL slot
+ }
+
+ }
+ while(cur_block!=-1); //while the block we've just done is not the final block
+
+ return(-1); //no luck, couldn't find a big enough block
+}
+//------------------------------------------------------------------------------------
+void Mem_debug(void) //Tony11Apr96
+{
+//gets called with Talloc, Mem_free, Mem_lock & Mem_float if MEMDEBUG has been #defined
+//otherwise can be called at any time anywhere else
+
+ int j;
+ char inf[][20]=
+ {
+ {"MEM_null"},
+ {"MEM_free"},
+ {"MEM_locked"},
+ {"MEM_float"}
+ };
+
+ Zdebug("\nbase %d total %d", base_mem_block, total_blocks);
+
+
+//first in mem list order
+ for (j=0;j<MAX_mem_blocks;j++)
+ {
+ if (mem_list[j].state==MEM_null)
+ Zdebug("%d- NULL", j);
+ else
+ Zdebug("%d- state %s, ad %d, size %d, p %d, c %d, id %d", j,
+ inf[mem_list[j].state],
+ mem_list[j].ad, mem_list[j].size, mem_list[j].parent, mem_list[j].child, mem_list[j].uid);
+ }
+
+
+//now in child/parent order
+ j=base_mem_block;
+ do
+ {
+ Zdebug(" %d- state %s, ad %d, size %d, p %d, c %d", j,
+ inf[mem_list[j].state],
+ mem_list[j].ad, mem_list[j].size, mem_list[j].parent, mem_list[j].child, mem_list[j].uid);
+
+ j=mem_list[j].child;
+ }
+ while (j!=-1);
+}
+//------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------------
+mem *Twalloc(uint32 size, uint32 type, uint32 unique_id) //tony12Feb97
+{
+//the high level Talloc
+//can ask the resman to remove old resources to make space - will either do it or halt the system
+
+ mem *membloc;
+ int j;
+ uint32 free=0;
+
+ while( VirtualDefrag(size) )
+ {
+ if (!res_man.Help_the_aged_out()) //trash the oldest closed resource
+ {
+ Zdebug("Twalloc ran out of memory! %d %d %d\n", size, type, unique_id);
+ ExitWithReport("Twalloc ran out of memory!");
+ }
+ }
+
+ membloc = Talloc(size, type, unique_id);
+
+ if (membloc == 0)
+ {
+ Zdebug("Talloc failed to get memory VirtualDefrag said was there");
+ ExitWithReport("Talloc failed to get memory VirtualDefrag said was there");
+ }
+
+ j=base_mem_block;
+ do
+ {
+
+ if (mem_list[j].state==MEM_free)
+ free+=mem_list[j].size;
+
+ j=mem_list[j].child;
+ }
+ while (j!=-1);
+
+ return(membloc); //return the pointer to the memory
+}
+
+
+#define MAX_WASTAGE 51200 // Maximum allowed wasted memory.
+
+int32 VirtualDefrag( uint32 size ) // Chris - 07 April '97
+{
+ //
+ // Virutually defrags memory...
+ //
+ // Used to determine if there is potentially are large enough free block available is the
+ // real defragger was allowed to run.
+ //
+ // The idea being that Twalloc will call this and help_the_aged_out until we indicate that
+ // it is possible to obtain a large enough free block. This way the defragger need only
+ // run once to yield the required block size.
+ //
+ // The reason for its current slowness is that the defragger is potentially called several
+ // times, each time shifting upto 20Megs around, to obtain the required free block.
+ //
+ int32 cur_block;
+ uint32 currentBubbleSize = 0;
+
+ cur_block=base_mem_block;
+ suggestedStart = base_mem_block;
+
+ do
+ {
+ if (mem_list[cur_block].state == MEM_free)
+ {
+ // Add a little intelligence. At the start the oldest resources are at the bottom of the
+ // tube. However there will be some air at the top. Thus bubbles will be
+ // created at the bottom and float to the top. If we ignore the top gap
+ // then a large enough bubble will form lower down the tube. Thus less memory
+ // will need to be shifted.
+
+ if (mem_list[cur_block].child != -1)
+ currentBubbleSize += mem_list[cur_block].size;
+ else if (mem_list[cur_block].size > MAX_WASTAGE)
+ currentBubbleSize += mem_list[cur_block].size;
+
+ if (currentBubbleSize >= size)
+ return 0;
+ }
+ else if (mem_list[cur_block].state == MEM_locked)
+ {
+ currentBubbleSize = 0;
+ suggestedStart = mem_list[cur_block].child; // Any free block of the correct size will be above this locked block.
+ }
+
+ cur_block = mem_list[cur_block].child;
+ }
+ while(cur_block != -1);
+
+ return(1);
+}
+
+//------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------------