1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/stream.h"
#include "common/textconsole.h"
#include "common/util.h"
#include "audio/decoders/adpcm.h"
#include "audio/decoders/adpcm_intern.h"
namespace Audio {
// Routines to convert 12 bit linear samples to the
// Dialogic or Oki ADPCM coding format aka VOX.
// See also <http://www.comptek.ru/telephony/tnotes/tt1-13.html>
//
// IMA ADPCM support is based on
// <http://wiki.multimedia.cx/index.php?title=IMA_ADPCM>
//
// In addition, also MS IMA ADPCM is supported. See
// <http://wiki.multimedia.cx/index.php?title=Microsoft_IMA_ADPCM>.
ADPCMStream::ADPCMStream(Common::SeekableReadStream *stream, DisposeAfterUse::Flag disposeAfterUse, uint32 size, int rate, int channels, uint32 blockAlign)
: _stream(stream),
_disposeAfterUse(disposeAfterUse),
_startpos(stream->pos()),
_endpos(_startpos + size),
_channels(channels),
_blockAlign(blockAlign),
_rate(rate) {
reset();
}
ADPCMStream::~ADPCMStream() {
if (_disposeAfterUse == DisposeAfterUse::YES)
delete _stream;
}
void ADPCMStream::reset() {
memset(&_status, 0, sizeof(_status));
_blockPos[0] = _blockPos[1] = _blockAlign; // To make sure first header is read
}
bool ADPCMStream::rewind() {
// TODO: Error checking.
reset();
_stream->seek(_startpos);
return true;
}
#pragma mark -
int Oki_ADPCMStream::readBuffer(int16 *buffer, const int numSamples) {
int samples;
byte data;
assert(numSamples % 2 == 0);
for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos; samples += 2) {
data = _stream->readByte();
buffer[samples] = decodeOKI((data >> 4) & 0x0f);
buffer[samples + 1] = decodeOKI(data & 0x0f);
}
return samples;
}
static const int16 okiStepSize[49] = {
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552
};
// Decode Linear to ADPCM
int16 Oki_ADPCMStream::decodeOKI(byte code) {
int16 diff, E, samp;
E = (2 * (code & 0x7) + 1) * okiStepSize[_status.ima_ch[0].stepIndex] / 8;
diff = (code & 0x08) ? -E : E;
samp = _status.ima_ch[0].last + diff;
// Clip the values to +/- 2^11 (supposed to be 12 bits)
samp = CLIP<int16>(samp, -2048, 2047);
_status.ima_ch[0].last = samp;
_status.ima_ch[0].stepIndex += _stepAdjustTable[code];
_status.ima_ch[0].stepIndex = CLIP<int32>(_status.ima_ch[0].stepIndex, 0, ARRAYSIZE(okiStepSize) - 1);
// * 16 effectively converts 12-bit input to 16-bit output
return samp * 16;
}
#pragma mark -
int DVI_ADPCMStream::readBuffer(int16 *buffer, const int numSamples) {
int samples;
byte data;
assert(numSamples % 2 == 0);
for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos; samples += 2) {
data = _stream->readByte();
buffer[samples] = decodeIMA((data >> 4) & 0x0f);
buffer[samples + 1] = decodeIMA(data & 0x0f, _channels == 2 ? 1 : 0);
}
return samples;
}
#pragma mark -
int Apple_ADPCMStream::readBuffer(int16 *buffer, const int numSamples) {
// Need to write at least one samples per channel
assert((numSamples % _channels) == 0);
// Current sample positions
int samples[2] = { 0, 0};
// Number of samples per channel
int chanSamples = numSamples / _channels;
for (int i = 0; i < _channels; i++) {
_stream->seek(_streamPos[i]);
while ((samples[i] < chanSamples) &&
// Last byte read and a new one needed
!((_stream->eos() || (_stream->pos() >= _endpos)) && (_chunkPos[i] == 0))) {
if (_blockPos[i] == _blockAlign) {
// 2 byte header per block
uint16 temp = _stream->readUint16BE();
// First 9 bits are the upper bits of the predictor
_status.ima_ch[i].last = (int16) (temp & 0xFF80);
// Lower 7 bits are the step index
_status.ima_ch[i].stepIndex = temp & 0x007F;
// Clip the step index
_status.ima_ch[i].stepIndex = CLIP<int32>(_status.ima_ch[i].stepIndex, 0, 88);
_blockPos[i] = 2;
}
if (_chunkPos[i] == 0) {
// Decode data
byte data = _stream->readByte();
_buffer[i][0] = decodeIMA(data & 0x0F, i);
_buffer[i][1] = decodeIMA(data >> 4, i);
}
// The original is interleaved block-wise, we want it sample-wise
buffer[_channels * samples[i] + i] = _buffer[i][_chunkPos[i]];
if (++_chunkPos[i] > 1) {
// We're about to decode the next byte, so advance the block position
_chunkPos[i] = 0;
_blockPos[i]++;
}
samples[i]++;
if (_channels == 2)
if (_blockPos[i] == _blockAlign)
// We're at the end of the block.
// Since the channels are interleaved, skip the next block
_stream->skip(MIN<uint32>(_blockAlign, _endpos - _stream->pos()));
_streamPos[i] = _stream->pos();
}
}
return samples[0] + samples[1];
}
#pragma mark -
int MSIma_ADPCMStream::readBuffer(int16 *buffer, const int numSamples) {
// Need to write at least one sample per channel
assert((numSamples % _channels) == 0);
int samples = 0;
while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) {
if (_blockPos[0] == _blockAlign) {
for (int i = 0; i < _channels; i++) {
// read block header
_status.ima_ch[i].last = _stream->readSint16LE();
_status.ima_ch[i].stepIndex = _stream->readSint16LE();
}
_blockPos[0] = _channels * 4;
}
// Decode a set of samples
for (int i = 0; i < _channels; i++) {
// The stream encodes four bytes per channel at a time
for (int j = 0; j < 4; j++) {
byte data = _stream->readByte();
_blockPos[0]++;
_buffer[i][j * 2] = decodeIMA(data & 0x0f, i);
_buffer[i][j * 2 + 1] = decodeIMA((data >> 4) & 0x0f, i);
_samplesLeft[i] += 2;
}
}
while (samples < numSamples && _samplesLeft[0] != 0) {
for (int i = 0; i < _channels; i++) {
buffer[samples] = _buffer[i][8 - _samplesLeft[i]];
_samplesLeft[i]--;
}
samples += _channels;
}
}
return samples;
}
#pragma mark -
static const int MSADPCMAdaptCoeff1[] = {
256, 512, 0, 192, 240, 460, 392
};
static const int MSADPCMAdaptCoeff2[] = {
0, -256, 0, 64, 0, -208, -232
};
static const int MSADPCMAdaptationTable[] = {
230, 230, 230, 230, 307, 409, 512, 614,
768, 614, 512, 409, 307, 230, 230, 230
};
int16 MS_ADPCMStream::decodeMS(ADPCMChannelStatus *c, byte code) {
int32 predictor;
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
predictor += (signed)((code & 0x08) ? (code - 0x10) : (code)) * c->delta;
predictor = CLIP<int32>(predictor, -32768, 32767);
c->sample2 = c->sample1;
c->sample1 = predictor;
c->delta = (MSADPCMAdaptationTable[(int)code] * c->delta) >> 8;
if (c->delta < 16)
c->delta = 16;
return (int16)predictor;
}
int MS_ADPCMStream::readBuffer(int16 *buffer, const int numSamples) {
int samples;
byte data;
int i = 0;
samples = 0;
while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) {
if (_blockPos[0] == _blockAlign) {
// read block header
for (i = 0; i < _channels; i++) {
_status.ch[i].predictor = CLIP(_stream->readByte(), (byte)0, (byte)6);
_status.ch[i].coeff1 = MSADPCMAdaptCoeff1[_status.ch[i].predictor];
_status.ch[i].coeff2 = MSADPCMAdaptCoeff2[_status.ch[i].predictor];
}
for (i = 0; i < _channels; i++)
_status.ch[i].delta = _stream->readSint16LE();
for (i = 0; i < _channels; i++)
_status.ch[i].sample1 = _stream->readSint16LE();
for (i = 0; i < _channels; i++)
buffer[samples++] = _status.ch[i].sample2 = _stream->readSint16LE();
for (i = 0; i < _channels; i++)
buffer[samples++] = _status.ch[i].sample1;
_blockPos[0] = _channels * 7;
}
for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples += 2) {
data = _stream->readByte();
_blockPos[0]++;
buffer[samples] = decodeMS(&_status.ch[0], (data >> 4) & 0x0f);
buffer[samples + 1] = decodeMS(&_status.ch[_channels - 1], data & 0x0f);
}
}
return samples;
}
#pragma mark -
#define DK3_READ_NIBBLE() \
do { \
if (_topNibble) { \
_nibble = _lastByte >> 4; \
_topNibble = false; \
} else { \
if (_stream->pos() >= _endpos) \
break; \
if ((_stream->pos() % _blockAlign) == 0) \
continue; \
_lastByte = _stream->readByte(); \
_nibble = _lastByte & 0xf; \
_topNibble = true; \
} \
} while (0)
int DK3_ADPCMStream::readBuffer(int16 *buffer, const int numSamples) {
int samples = 0;
assert((numSamples % 4) == 0);
while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) {
if ((_stream->pos() % _blockAlign) == 0) {
_stream->readUint16LE(); // Unknown
uint16 rate = _stream->readUint16LE(); // Copy of rate
_stream->skip(6); // Unknown
// Get predictor for both sum/diff channels
_status.ima_ch[0].last = _stream->readSint16LE();
_status.ima_ch[1].last = _stream->readSint16LE();
// Get index for both sum/diff channels
_status.ima_ch[0].stepIndex = _stream->readByte();
_status.ima_ch[1].stepIndex = _stream->readByte();
if (_stream->eos())
break;
// Sanity check
assert(rate == getRate());
}
DK3_READ_NIBBLE();
decodeIMA(_nibble, 0);
DK3_READ_NIBBLE();
decodeIMA(_nibble, 1);
buffer[samples++] = _status.ima_ch[0].last + _status.ima_ch[1].last;
buffer[samples++] = _status.ima_ch[0].last - _status.ima_ch[1].last;
DK3_READ_NIBBLE();
decodeIMA(_nibble, 0);
buffer[samples++] = _status.ima_ch[0].last + _status.ima_ch[1].last;
buffer[samples++] = _status.ima_ch[0].last - _status.ima_ch[1].last;
}
return samples;
}
#pragma mark -
// This table is used to adjust the step for use on the next sample.
// We could half the table, but since the lookup index used is always
// a 4-bit nibble, it's more efficient to just keep it as it is.
const int16 ADPCMStream::_stepAdjustTable[16] = {
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8
};
const int16 Ima_ADPCMStream::_imaTable[89] = {
7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493,10442,11487,12635,13899,
15289,16818,18500,20350,22385,24623,27086,29794,
32767
};
int16 Ima_ADPCMStream::decodeIMA(byte code, int channel) {
int32 E = (2 * (code & 0x7) + 1) * _imaTable[_status.ima_ch[channel].stepIndex] / 8;
int32 diff = (code & 0x08) ? -E : E;
int32 samp = CLIP<int32>(_status.ima_ch[channel].last + diff, -32768, 32767);
_status.ima_ch[channel].last = samp;
_status.ima_ch[channel].stepIndex += _stepAdjustTable[code];
_status.ima_ch[channel].stepIndex = CLIP<int32>(_status.ima_ch[channel].stepIndex, 0, ARRAYSIZE(_imaTable) - 1);
return samp;
}
RewindableAudioStream *makeADPCMStream(Common::SeekableReadStream *stream, DisposeAfterUse::Flag disposeAfterUse, uint32 size, typesADPCM type, int rate, int channels, uint32 blockAlign) {
// If size is 0, report the entire size of the stream
if (!size)
size = stream->size();
switch (type) {
case kADPCMOki:
return new Oki_ADPCMStream(stream, disposeAfterUse, size, rate, channels, blockAlign);
case kADPCMMSIma:
return new MSIma_ADPCMStream(stream, disposeAfterUse, size, rate, channels, blockAlign);
case kADPCMMS:
return new MS_ADPCMStream(stream, disposeAfterUse, size, rate, channels, blockAlign);
case kADPCMDVI:
return new DVI_ADPCMStream(stream, disposeAfterUse, size, rate, channels, blockAlign);
case kADPCMApple:
return new Apple_ADPCMStream(stream, disposeAfterUse, size, rate, channels, blockAlign);
case kADPCMDK3:
return new DK3_ADPCMStream(stream, disposeAfterUse, size, rate, channels, blockAlign);
default:
error("Unsupported ADPCM encoding");
break;
}
}
} // End of namespace Audio
|