aboutsummaryrefslogtreecommitdiff
path: root/audio/rate.cpp
blob: 6264465e19d291ed5353c41b804303bb1defd8e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 */

/*
 * The code in this file is based on code with Copyright 1998 Fabrice Bellard
 * Fabrice original code is part of SoX (http://sox.sourceforge.net).
 * Max Horn adapted that code to the needs of ScummVM and rewrote it partial,
 * in the process removing any use of floating point arithmetic. Various other
 * improvements over the original code were made.
 */

#include "audio/audiostream.h"
#include "audio/rate.h"
#include "audio/mixer.h"
#include "common/frac.h"
#include "common/textconsole.h"
#include "common/util.h"

namespace Audio {


/**
 * The size of the intermediate input cache. Bigger values may increase
 * performance, but only until some point (depends largely on cache size,
 * target processor and various other factors), at which it will decrease
 * again.
 */
#define INTERMEDIATE_BUFFER_SIZE 512

/**
 * The default fractional type in frac.h (with 16 fractional bits) limits
 * the rate conversion code to 65536Hz audio: we need to able to handle
 * 96kHz audio, so we use fewer fractional bits in this code.
 */
enum {
	FRAC_BITS_LOW = 15,
	FRAC_ONE_LOW = (1L << FRAC_BITS_LOW),
	FRAC_HALF_LOW = (1L << (FRAC_BITS_LOW-1))
};

/**
 * Audio rate converter based on simple resampling. Used when no
 * interpolation is required.
 *
 * Limited to sampling frequency <= 65535 Hz.
 */
template<bool stereo, bool reverseStereo>
class SimpleRateConverter : public RateConverter {
protected:
	st_sample_t inBuf[INTERMEDIATE_BUFFER_SIZE];
	const st_sample_t *inPtr;
	int inLen;

	/** position of how far output is ahead of input */
	/** Holds what would have been opos-ipos */
	long opos;

	/** fractional position increment in the output stream */
	long opos_inc;

public:
	SimpleRateConverter(st_rate_t inrate, st_rate_t outrate);
	int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r);
	int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
		return ST_SUCCESS;
	}
};


/*
 * Prepare processing.
 */
template<bool stereo, bool reverseStereo>
SimpleRateConverter<stereo, reverseStereo>::SimpleRateConverter(st_rate_t inrate, st_rate_t outrate) {
	if ((inrate % outrate) != 0) {
		error("Input rate must be a multiple of output rate to use rate effect");
	}

	if (inrate >= 65536 || outrate >= 65536) {
		error("rate effect can only handle rates < 65536");
	}

	opos = 1;

	/* increment */
	opos_inc = inrate / outrate;

	inLen = 0;
}

/*
 * Processed signed long samples from ibuf to obuf.
 * Return number of sample pairs processed.
 */
template<bool stereo, bool reverseStereo>
int SimpleRateConverter<stereo, reverseStereo>::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
	st_sample_t *ostart, *oend;

	ostart = obuf;
	oend = obuf + osamp * 2;

	while (obuf < oend) {

		// read enough input samples so that opos >= 0
		do {
			// Check if we have to refill the buffer
			if (inLen == 0) {
				inPtr = inBuf;
				inLen = input.readBuffer(inBuf, ARRAYSIZE(inBuf));
				if (inLen <= 0)
					return (obuf - ostart) / 2;
			}
			inLen -= (stereo ? 2 : 1);
			opos--;
			if (opos >= 0) {
				inPtr += (stereo ? 2 : 1);
			}
		} while (opos >= 0);

		st_sample_t out0, out1;
		out0 = *inPtr++;
		out1 = (stereo ? *inPtr++ : out0);

		// Increment output position
		opos += opos_inc;

		// output left channel
		clampedAdd(obuf[reverseStereo    ], (out0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume);

		// output right channel
		clampedAdd(obuf[reverseStereo ^ 1], (out1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume);

		obuf += 2;
	}
	return (obuf - ostart) / 2;
}

/**
 * Audio rate converter based on simple linear Interpolation.
 *
 * The use of fractional increment allows us to use no buffer. It
 * avoid the problems at the end of the buffer we had with the old
 * method which stored a possibly big buffer of size
 * lcm(in_rate,out_rate).
 *
 * Limited to sampling frequency <= 65535 Hz.
 */

template<bool stereo, bool reverseStereo>
class LinearRateConverter : public RateConverter {
protected:
	st_sample_t inBuf[INTERMEDIATE_BUFFER_SIZE];
	const st_sample_t *inPtr;
	int inLen;

	/** fractional position of the output stream in input stream unit */
	frac_t opos;

	/** fractional position increment in the output stream */
	frac_t opos_inc;

	/** last sample(s) in the input stream (left/right channel) */
	st_sample_t ilast0, ilast1;
	/** current sample(s) in the input stream (left/right channel) */
	st_sample_t icur0, icur1;

public:
	LinearRateConverter(st_rate_t inrate, st_rate_t outrate);
	int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r);
	int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
		return ST_SUCCESS;
	}
};


/*
 * Prepare processing.
 */
template<bool stereo, bool reverseStereo>
LinearRateConverter<stereo, reverseStereo>::LinearRateConverter(st_rate_t inrate, st_rate_t outrate) {
	if (inrate >= 131072 || outrate >= 131072) {
		error("rate effect can only handle rates < 131072");
	}

	opos = FRAC_ONE_LOW;

	// Compute the linear interpolation increment.
	// This will overflow if inrate >= 2^17, and underflow if outrate >= 2^17.
	// Also, if the quotient of the two rate becomes too small / too big, that
	// would cause problems, but since we rarely scale from 1 to 65536 Hz or vice
	// versa, I think we can live with that limitation ;-).
	opos_inc = (inrate << FRAC_BITS_LOW) / outrate;

	ilast0 = ilast1 = 0;
	icur0 = icur1 = 0;

	inLen = 0;
}

/*
 * Processed signed long samples from ibuf to obuf.
 * Return number of sample pairs processed.
 */
template<bool stereo, bool reverseStereo>
int LinearRateConverter<stereo, reverseStereo>::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
	st_sample_t *ostart, *oend;

	ostart = obuf;
	oend = obuf + osamp * 2;

	while (obuf < oend) {

		// read enough input samples so that opos < 0
		while ((frac_t)FRAC_ONE_LOW <= opos) {
			// Check if we have to refill the buffer
			if (inLen == 0) {
				inPtr = inBuf;
				inLen = input.readBuffer(inBuf, ARRAYSIZE(inBuf));
				if (inLen <= 0)
					return (obuf - ostart) / 2;
			}
			inLen -= (stereo ? 2 : 1);
			ilast0 = icur0;
			icur0 = *inPtr++;
			if (stereo) {
				ilast1 = icur1;
				icur1 = *inPtr++;
			}
			opos -= FRAC_ONE_LOW;
		}

		// Loop as long as the outpos trails behind, and as long as there is
		// still space in the output buffer.
		while (opos < (frac_t)FRAC_ONE_LOW && obuf < oend) {
			// interpolate
			st_sample_t out0, out1;
			out0 = (st_sample_t)(ilast0 + (((icur0 - ilast0) * opos + FRAC_HALF_LOW) >> FRAC_BITS_LOW));
			out1 = (stereo ?
						  (st_sample_t)(ilast1 + (((icur1 - ilast1) * opos + FRAC_HALF_LOW) >> FRAC_BITS_LOW)) :
						  out0);

			// output left channel
			clampedAdd(obuf[reverseStereo    ], (out0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume);

			// output right channel
			clampedAdd(obuf[reverseStereo ^ 1], (out1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume);

			obuf += 2;

			// Increment output position
			opos += opos_inc;
		}
	}
	return (obuf - ostart) / 2;
}


#pragma mark -


/**
 * Simple audio rate converter for the case that the inrate equals the outrate.
 */
template<bool stereo, bool reverseStereo>
class CopyRateConverter : public RateConverter {
	st_sample_t *_buffer;
	st_size_t _bufferSize;
public:
	CopyRateConverter() : _buffer(0), _bufferSize(0) {}
	~CopyRateConverter() {
		free(_buffer);
	}

	virtual int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
		assert(input.isStereo() == stereo);

		st_sample_t *ptr;
		st_size_t len;

		st_sample_t *ostart = obuf;

		if (stereo)
			osamp *= 2;

		// Reallocate temp buffer, if necessary
		if (osamp > _bufferSize) {
			free(_buffer);
			_buffer = (st_sample_t *)malloc(osamp * 2);
			_bufferSize = osamp;
		}

		if (!_buffer)
			error("[CopyRateConverter::flow] Cannot allocate memory for temp buffer");

		// Read up to 'osamp' samples into our temporary buffer
		len = input.readBuffer(_buffer, osamp);

		// Mix the data into the output buffer
		ptr = _buffer;
		for (; len > 0; len -= (stereo ? 2 : 1)) {
			st_sample_t out0, out1;
			out0 = *ptr++;
			out1 = (stereo ? *ptr++ : out0);

			// output left channel
			clampedAdd(obuf[reverseStereo    ], (out0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume);

			// output right channel
			clampedAdd(obuf[reverseStereo ^ 1], (out1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume);

			obuf += 2;
		}
		return (obuf - ostart) / 2;
	}

	virtual int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
		return ST_SUCCESS;
	}
};


#pragma mark -

template<bool stereo, bool reverseStereo>
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate) {
	if (inrate != outrate) {
		if ((inrate % outrate) == 0 && (inrate < 65536)) {
			return new SimpleRateConverter<stereo, reverseStereo>(inrate, outrate);
		} else {
			return new LinearRateConverter<stereo, reverseStereo>(inrate, outrate);
		}
	} else {
		return new CopyRateConverter<stereo, reverseStereo>();
	}
}

/**
 * Create and return a RateConverter object for the specified input and output rates.
 */
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate, bool stereo, bool reverseStereo) {
	if (stereo) {
		if (reverseStereo)
			return makeRateConverter<true, true>(inrate, outrate);
		else
			return makeRateConverter<true, false>(inrate, outrate);
	} else
		return makeRateConverter<false, false>(inrate, outrate);
}

} // End of namespace Audio