1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011, 2012, 2013 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mt32emu.h"
#if MT32EMU_USE_REVERBMODEL == 1
#include "AReverbModel.h"
// Analysing of state of reverb RAM address lines gives exact sizes of the buffers of filters used. This also indicates that
// the reverb model implemented in the real devices consists of three series allpass filters preceded by a non-feedback comb (or a delay with a LPF)
// and followed by three parallel comb filters
namespace MT32Emu {
// Because LA-32 chip makes it's output available to process by the Boss chip with a significant delay,
// the Boss chip puts to the buffer the LA32 dry output when it is ready and performs processing of the _previously_ latched data.
// Of course, the right way would be to use a dedicated variable for this, but our reverb model is way higher level,
// so we can simply increase the input buffer size.
static const Bit32u PROCESS_DELAY = 1;
// Default reverb settings for modes 0-2. These correspond to CM-32L / LAPC-I "new" reverb settings. MT-32 reverb is a bit different.
// Found by tracing reverb RAM data lines (thanks go to Lord_Nightmare & balrog).
static const Bit32u NUM_ALLPASSES = 3;
static const Bit32u NUM_COMBS = 4; // Well, actually there are 3 comb filters, but the entrance LPF + delay can be perfectly processed via a comb here.
static const Bit32u MODE_0_ALLPASSES[] = {994, 729, 78};
static const Bit32u MODE_0_COMBS[] = {705 + PROCESS_DELAY, 2349, 2839, 3632};
static const Bit32u MODE_0_OUTL[] = {2349, 141, 1960};
static const Bit32u MODE_0_OUTR[] = {1174, 1570, 145};
static const Bit32u MODE_0_COMB_FACTOR[] = {0x3C, 0x60, 0x60, 0x60};
static const Bit32u MODE_0_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_0_LEVELS[] = {10*1, 10*3, 10*5, 10*7, 11*9, 11*12, 11*15, 13*15};
static const Bit32u MODE_0_LPF_AMP = 6;
static const Bit32u MODE_1_ALLPASSES[] = {1324, 809, 176};
static const Bit32u MODE_1_COMBS[] = {961 + PROCESS_DELAY, 2619, 3545, 4519};
static const Bit32u MODE_1_OUTL[] = {2618, 1760, 4518};
static const Bit32u MODE_1_OUTR[] = {1300, 3532, 2274};
static const Bit32u MODE_1_COMB_FACTOR[] = {0x30, 0x60, 0x60, 0x60};
static const Bit32u MODE_1_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_1_LEVELS[] = {10*1, 10*3, 11*5, 11*7, 11*9, 11*12, 11*15, 14*15};
static const Bit32u MODE_1_LPF_AMP = 6;
static const Bit32u MODE_2_ALLPASSES[] = {969, 644, 157};
static const Bit32u MODE_2_COMBS[] = {116 + PROCESS_DELAY, 2259, 2839, 3539};
static const Bit32u MODE_2_OUTL[] = {2259, 718, 1769};
static const Bit32u MODE_2_OUTR[] = {1136, 2128, 1};
static const Bit32u MODE_2_COMB_FACTOR[] = {0, 0x20, 0x20, 0x20};
static const Bit32u MODE_2_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0};
static const Bit32u MODE_2_LEVELS[] = {10*1, 10*3, 11*5, 11*7, 11*9, 11*12, 12*15, 14*15};
static const Bit32u MODE_2_LPF_AMP = 8;
static const AReverbSettings REVERB_MODE_0_SETTINGS = {MODE_0_ALLPASSES, MODE_0_COMBS, MODE_0_OUTL, MODE_0_OUTR, MODE_0_COMB_FACTOR, MODE_0_COMB_FEEDBACK, MODE_0_LEVELS, MODE_0_LPF_AMP};
static const AReverbSettings REVERB_MODE_1_SETTINGS = {MODE_1_ALLPASSES, MODE_1_COMBS, MODE_1_OUTL, MODE_1_OUTR, MODE_1_COMB_FACTOR, MODE_1_COMB_FEEDBACK, MODE_1_LEVELS, MODE_1_LPF_AMP};
static const AReverbSettings REVERB_MODE_2_SETTINGS = {MODE_2_ALLPASSES, MODE_2_COMBS, MODE_2_OUTL, MODE_2_OUTR, MODE_2_COMB_FACTOR, MODE_2_COMB_FEEDBACK, MODE_2_LEVELS, MODE_2_LPF_AMP};
static const AReverbSettings * const REVERB_SETTINGS[] = {&REVERB_MODE_0_SETTINGS, &REVERB_MODE_1_SETTINGS, &REVERB_MODE_2_SETTINGS, &REVERB_MODE_0_SETTINGS};
RingBuffer::RingBuffer(const Bit32u newsize) : size(newsize), index(0) {
buffer = new float[size];
}
RingBuffer::~RingBuffer() {
delete[] buffer;
buffer = NULL;
}
float RingBuffer::next() {
if (++index >= size) {
index = 0;
}
return buffer[index];
}
bool RingBuffer::isEmpty() const {
if (buffer == NULL) return true;
float *buf = buffer;
float max = 0.001f;
for (Bit32u i = 0; i < size; i++) {
if ((*buf < -max) || (*buf > max)) return false;
buf++;
}
return true;
}
void RingBuffer::mute() {
float *buf = buffer;
for (Bit32u i = 0; i < size; i++) {
*buf++ = 0;
}
}
AllpassFilter::AllpassFilter(const Bit32u useSize) : RingBuffer(useSize) {}
float AllpassFilter::process(const float in) {
// This model corresponds to the allpass filter implementation of the real CM-32L device
// found from sample analysis
const float bufferOut = next();
// store input - feedback / 2
buffer[index] = in - 0.5f * bufferOut;
// return buffer output + feedforward / 2
return bufferOut + 0.5f * buffer[index];
}
CombFilter::CombFilter(const Bit32u useSize) : RingBuffer(useSize) {}
void CombFilter::process(const float in) {
// This model corresponds to the comb filter implementation of the real CM-32L device
// found from sample analysis
// the previously stored value
float last = buffer[index];
// prepare input + feedback
float filterIn = in + next() * feedbackFactor;
// store input + feedback processed by a low-pass filter
buffer[index] = filterFactor * last - filterIn;
}
float CombFilter::getOutputAt(const Bit32u outIndex) const {
return buffer[(size + index - outIndex) % size];
}
void CombFilter::setFeedbackFactor(const float useFeedbackFactor) {
feedbackFactor = useFeedbackFactor;
}
void CombFilter::setFilterFactor(const float useFilterFactor) {
filterFactor = useFilterFactor;
}
AReverbModel::AReverbModel(const ReverbMode mode) : allpasses(NULL), combs(NULL), currentSettings(*REVERB_SETTINGS[mode]) {}
AReverbModel::~AReverbModel() {
close();
}
void AReverbModel::open() {
allpasses = new AllpassFilter*[NUM_ALLPASSES];
for (Bit32u i = 0; i < NUM_ALLPASSES; i++) {
allpasses[i] = new AllpassFilter(currentSettings.allpassSizes[i]);
}
combs = new CombFilter*[NUM_COMBS];
for (Bit32u i = 0; i < NUM_COMBS; i++) {
combs[i] = new CombFilter(currentSettings.combSizes[i]);
combs[i]->setFilterFactor(currentSettings.filterFactor[i] / 256.0f);
}
lpfAmp = currentSettings.lpfAmp / 16.0f;
mute();
}
void AReverbModel::close() {
if (allpasses != NULL) {
for (Bit32u i = 0; i < NUM_ALLPASSES; i++) {
if (allpasses[i] != NULL) {
delete allpasses[i];
allpasses[i] = NULL;
}
}
delete[] allpasses;
allpasses = NULL;
}
if (combs != NULL) {
for (Bit32u i = 0; i < NUM_COMBS; i++) {
if (combs[i] != NULL) {
delete combs[i];
combs[i] = NULL;
}
}
delete[] combs;
combs = NULL;
}
}
void AReverbModel::mute() {
if (allpasses == NULL || combs == NULL) return;
for (Bit32u i = 0; i < NUM_ALLPASSES; i++) {
allpasses[i]->mute();
}
for (Bit32u i = 0; i < NUM_COMBS; i++) {
combs[i]->mute();
}
}
void AReverbModel::setParameters(Bit8u time, Bit8u level) {
// FIXME: wetLevel definitely needs ramping when changed
// Although, most games don't set reverb level during MIDI playback
if (combs == NULL) return;
level &= 7;
time &= 7;
for (Bit32u i = 0; i < NUM_COMBS; i++) {
combs[i]->setFeedbackFactor(currentSettings.decayTimes[(i << 3) + time] / 256.0f);
}
wetLevel = (level == 0 && time == 0) ? 0.0f : 0.5f * lpfAmp * currentSettings.wetLevels[level] / 256.0f;
}
bool AReverbModel::isActive() const {
for (Bit32u i = 0; i < NUM_ALLPASSES; i++) {
if (!allpasses[i]->isEmpty()) return true;
}
for (Bit32u i = 0; i < NUM_COMBS; i++) {
if (!combs[i]->isEmpty()) return true;
}
return false;
}
void AReverbModel::process(const float *inLeft, const float *inRight, float *outLeft, float *outRight, unsigned long numSamples) {
float dry, link, outL1;
for (unsigned long i = 0; i < numSamples; i++) {
dry = wetLevel * (*inLeft + *inRight);
// Get the last stored sample before processing in order not to loose it
link = combs[0]->getOutputAt(currentSettings.combSizes[0] - 1);
combs[0]->process(-dry);
link = allpasses[0]->process(link);
link = allpasses[1]->process(link);
link = allpasses[2]->process(link);
// If the output position is equal to the comb size, get it now in order not to loose it
outL1 = 1.5f * combs[1]->getOutputAt(currentSettings.outLPositions[0] - 1);
combs[1]->process(link);
combs[2]->process(link);
combs[3]->process(link);
link = outL1 + 1.5f * combs[2]->getOutputAt(currentSettings.outLPositions[1]);
link += combs[3]->getOutputAt(currentSettings.outLPositions[2]);
*outLeft = link;
link = 1.5f * combs[1]->getOutputAt(currentSettings.outRPositions[0]);
link += 1.5f * combs[2]->getOutputAt(currentSettings.outRPositions[1]);
link += combs[3]->getOutputAt(currentSettings.outRPositions[2]);
*outRight = link;
inLeft++;
inRight++;
outLeft++;
outRight++;
}
}
}
#endif
|