1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011, 2012, 2013, 2014 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//#include <memory.h>
#include "mt32emu.h"
#include "BReverbModel.h"
// Analysing of state of reverb RAM address lines gives exact sizes of the buffers of filters used. This also indicates that
// the reverb model implemented in the real devices consists of three series allpass filters preceded by a non-feedback comb (or a delay with a LPF)
// and followed by three parallel comb filters
namespace MT32Emu {
// Because LA-32 chip makes it's output available to process by the Boss chip with a significant delay,
// the Boss chip puts to the buffer the LA32 dry output when it is ready and performs processing of the _previously_ latched data.
// Of course, the right way would be to use a dedicated variable for this, but our reverb model is way higher level,
// so we can simply increase the input buffer size.
static const Bit32u PROCESS_DELAY = 1;
static const Bit32u MODE_3_ADDITIONAL_DELAY = 1;
static const Bit32u MODE_3_FEEDBACK_DELAY = 1;
// Default reverb settings for "new" reverb model implemented in CM-32L / LAPC-I.
// Found by tracing reverb RAM data lines (thanks go to Lord_Nightmare & balrog).
const BReverbSettings &BReverbModel::getCM32L_LAPCSettings(const ReverbMode mode) {
static const Bit32u MODE_0_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_0_ALLPASSES[] = {994, 729, 78};
static const Bit32u MODE_0_NUMBER_OF_COMBS = 4; // Well, actually there are 3 comb filters, but the entrance LPF + delay can be processed via a hacked comb.
static const Bit32u MODE_0_COMBS[] = {705 + PROCESS_DELAY, 2349, 2839, 3632};
static const Bit32u MODE_0_OUTL[] = {2349, 141, 1960};
static const Bit32u MODE_0_OUTR[] = {1174, 1570, 145};
static const Bit32u MODE_0_COMB_FACTOR[] = {0xA0, 0x60, 0x60, 0x60};
static const Bit32u MODE_0_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_0_DRY_AMP[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xD0};
static const Bit32u MODE_0_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit32u MODE_0_LPF_AMP = 0x60;
static const Bit32u MODE_1_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_1_ALLPASSES[] = {1324, 809, 176};
static const Bit32u MODE_1_NUMBER_OF_COMBS = 4; // Same as for mode 0 above
static const Bit32u MODE_1_COMBS[] = {961 + PROCESS_DELAY, 2619, 3545, 4519};
static const Bit32u MODE_1_OUTL[] = {2618, 1760, 4518};
static const Bit32u MODE_1_OUTR[] = {1300, 3532, 2274};
static const Bit32u MODE_1_COMB_FACTOR[] = {0x80, 0x60, 0x60, 0x60};
static const Bit32u MODE_1_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_1_DRY_AMP[] = {0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xB0, 0xB0, 0xE0};
static const Bit32u MODE_1_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit32u MODE_1_LPF_AMP = 0x60;
static const Bit32u MODE_2_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_2_ALLPASSES[] = {969, 644, 157};
static const Bit32u MODE_2_NUMBER_OF_COMBS = 4; // Same as for mode 0 above
static const Bit32u MODE_2_COMBS[] = {116 + PROCESS_DELAY, 2259, 2839, 3539};
static const Bit32u MODE_2_OUTL[] = {2259, 718, 1769};
static const Bit32u MODE_2_OUTR[] = {1136, 2128, 1};
static const Bit32u MODE_2_COMB_FACTOR[] = {0, 0x20, 0x20, 0x20};
static const Bit32u MODE_2_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0};
static const Bit32u MODE_2_DRY_AMP[] = {0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xB0, 0xC0, 0xE0};
static const Bit32u MODE_2_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit32u MODE_2_LPF_AMP = 0x80;
static const Bit32u MODE_3_NUMBER_OF_ALLPASSES = 0;
static const Bit32u MODE_3_NUMBER_OF_COMBS = 1;
static const Bit32u MODE_3_DELAY[] = {16000 + MODE_3_FEEDBACK_DELAY + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY};
static const Bit32u MODE_3_OUTL[] = {400, 624, 960, 1488, 2256, 3472, 5280, 8000};
static const Bit32u MODE_3_OUTR[] = {800, 1248, 1920, 2976, 4512, 6944, 10560, 16000};
static const Bit32u MODE_3_COMB_FACTOR[] = {0x68};
static const Bit32u MODE_3_COMB_FEEDBACK[] = {0x68, 0x60};
static const Bit32u MODE_3_DRY_AMP[] = {0x20, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50,
0x20, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50};
static const Bit32u MODE_3_WET_AMP[] = {0x18, 0x18, 0x28, 0x40, 0x60, 0x80, 0xA8, 0xF8};
static const BReverbSettings REVERB_MODE_0_SETTINGS = {MODE_0_NUMBER_OF_ALLPASSES, MODE_0_ALLPASSES, MODE_0_NUMBER_OF_COMBS, MODE_0_COMBS, MODE_0_OUTL, MODE_0_OUTR, MODE_0_COMB_FACTOR, MODE_0_COMB_FEEDBACK, MODE_0_DRY_AMP, MODE_0_WET_AMP, MODE_0_LPF_AMP};
static const BReverbSettings REVERB_MODE_1_SETTINGS = {MODE_1_NUMBER_OF_ALLPASSES, MODE_1_ALLPASSES, MODE_1_NUMBER_OF_COMBS, MODE_1_COMBS, MODE_1_OUTL, MODE_1_OUTR, MODE_1_COMB_FACTOR, MODE_1_COMB_FEEDBACK, MODE_1_DRY_AMP, MODE_1_WET_AMP, MODE_1_LPF_AMP};
static const BReverbSettings REVERB_MODE_2_SETTINGS = {MODE_2_NUMBER_OF_ALLPASSES, MODE_2_ALLPASSES, MODE_2_NUMBER_OF_COMBS, MODE_2_COMBS, MODE_2_OUTL, MODE_2_OUTR, MODE_2_COMB_FACTOR, MODE_2_COMB_FEEDBACK, MODE_2_DRY_AMP, MODE_2_WET_AMP, MODE_2_LPF_AMP};
static const BReverbSettings REVERB_MODE_3_SETTINGS = {MODE_3_NUMBER_OF_ALLPASSES, NULL, MODE_3_NUMBER_OF_COMBS, MODE_3_DELAY, MODE_3_OUTL, MODE_3_OUTR, MODE_3_COMB_FACTOR, MODE_3_COMB_FEEDBACK, MODE_3_DRY_AMP, MODE_3_WET_AMP, 0};
static const BReverbSettings * const REVERB_SETTINGS[] = {&REVERB_MODE_0_SETTINGS, &REVERB_MODE_1_SETTINGS, &REVERB_MODE_2_SETTINGS, &REVERB_MODE_3_SETTINGS};
return *REVERB_SETTINGS[mode];
}
// Default reverb settings for "old" reverb model implemented in MT-32.
// Found by tracing reverb RAM data lines (thanks go to Lord_Nightmare & balrog).
const BReverbSettings &BReverbModel::getMT32Settings(const ReverbMode mode) {
static const Bit32u MODE_0_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_0_ALLPASSES[] = {994, 729, 78};
static const Bit32u MODE_0_NUMBER_OF_COMBS = 4; // Same as above in the new model implementation
static const Bit32u MODE_0_COMBS[] = {575 + PROCESS_DELAY, 2040, 2752, 3629};
static const Bit32u MODE_0_OUTL[] = {2040, 687, 1814};
static const Bit32u MODE_0_OUTR[] = {1019, 2072, 1};
static const Bit32u MODE_0_COMB_FACTOR[] = {0xB0, 0x60, 0x60, 0x60};
static const Bit32u MODE_0_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_0_DRY_AMP[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80};
static const Bit32u MODE_0_WET_AMP[] = {0x10, 0x20, 0x30, 0x40, 0x50, 0x70, 0xA0, 0xE0};
static const Bit32u MODE_0_LPF_AMP = 0x80;
static const Bit32u MODE_1_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_1_ALLPASSES[] = {1324, 809, 176};
static const Bit32u MODE_1_NUMBER_OF_COMBS = 4; // Same as above in the new model implementation
static const Bit32u MODE_1_COMBS[] = {961 + PROCESS_DELAY, 2619, 3545, 4519};
static const Bit32u MODE_1_OUTL[] = {2618, 1760, 4518};
static const Bit32u MODE_1_OUTR[] = {1300, 3532, 2274};
static const Bit32u MODE_1_COMB_FACTOR[] = {0x90, 0x60, 0x60, 0x60};
static const Bit32u MODE_1_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_1_DRY_AMP[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80};
static const Bit32u MODE_1_WET_AMP[] = {0x10, 0x20, 0x30, 0x40, 0x50, 0x70, 0xA0, 0xE0};
static const Bit32u MODE_1_LPF_AMP = 0x80;
static const Bit32u MODE_2_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_2_ALLPASSES[] = {969, 644, 157};
static const Bit32u MODE_2_NUMBER_OF_COMBS = 4; // Same as above in the new model implementation
static const Bit32u MODE_2_COMBS[] = {116 + PROCESS_DELAY, 2259, 2839, 3539};
static const Bit32u MODE_2_OUTL[] = {2259, 718, 1769};
static const Bit32u MODE_2_OUTR[] = {1136, 2128, 1};
static const Bit32u MODE_2_COMB_FACTOR[] = {0, 0x60, 0x60, 0x60};
static const Bit32u MODE_2_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_2_DRY_AMP[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80};
static const Bit32u MODE_2_WET_AMP[] = {0x10, 0x20, 0x30, 0x40, 0x50, 0x70, 0xA0, 0xE0};
static const Bit32u MODE_2_LPF_AMP = 0x80;
static const Bit32u MODE_3_NUMBER_OF_ALLPASSES = 0;
static const Bit32u MODE_3_NUMBER_OF_COMBS = 1;
static const Bit32u MODE_3_DELAY[] = {16000 + MODE_3_FEEDBACK_DELAY + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY};
static const Bit32u MODE_3_OUTL[] = {400, 624, 960, 1488, 2256, 3472, 5280, 8000};
static const Bit32u MODE_3_OUTR[] = {800, 1248, 1920, 2976, 4512, 6944, 10560, 16000};
static const Bit32u MODE_3_COMB_FACTOR[] = {0x68};
static const Bit32u MODE_3_COMB_FEEDBACK[] = {0x68, 0x60};
static const Bit32u MODE_3_DRY_AMP[] = {0x10, 0x10, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x10, 0x20, 0x20, 0x10, 0x20, 0x10, 0x20, 0x10};
static const Bit32u MODE_3_WET_AMP[] = {0x08, 0x18, 0x28, 0x40, 0x60, 0x80, 0xA8, 0xF8};
static const BReverbSettings REVERB_MODE_0_SETTINGS = {MODE_0_NUMBER_OF_ALLPASSES, MODE_0_ALLPASSES, MODE_0_NUMBER_OF_COMBS, MODE_0_COMBS, MODE_0_OUTL, MODE_0_OUTR, MODE_0_COMB_FACTOR, MODE_0_COMB_FEEDBACK, MODE_0_DRY_AMP, MODE_0_WET_AMP, MODE_0_LPF_AMP};
static const BReverbSettings REVERB_MODE_1_SETTINGS = {MODE_1_NUMBER_OF_ALLPASSES, MODE_1_ALLPASSES, MODE_1_NUMBER_OF_COMBS, MODE_1_COMBS, MODE_1_OUTL, MODE_1_OUTR, MODE_1_COMB_FACTOR, MODE_1_COMB_FEEDBACK, MODE_1_DRY_AMP, MODE_1_WET_AMP, MODE_1_LPF_AMP};
static const BReverbSettings REVERB_MODE_2_SETTINGS = {MODE_2_NUMBER_OF_ALLPASSES, MODE_2_ALLPASSES, MODE_2_NUMBER_OF_COMBS, MODE_2_COMBS, MODE_2_OUTL, MODE_2_OUTR, MODE_2_COMB_FACTOR, MODE_2_COMB_FEEDBACK, MODE_2_DRY_AMP, MODE_2_WET_AMP, MODE_2_LPF_AMP};
static const BReverbSettings REVERB_MODE_3_SETTINGS = {MODE_3_NUMBER_OF_ALLPASSES, NULL, MODE_3_NUMBER_OF_COMBS, MODE_3_DELAY, MODE_3_OUTL, MODE_3_OUTR, MODE_3_COMB_FACTOR, MODE_3_COMB_FEEDBACK, MODE_3_DRY_AMP, MODE_3_WET_AMP, 0};
static const BReverbSettings * const REVERB_SETTINGS[] = {&REVERB_MODE_0_SETTINGS, &REVERB_MODE_1_SETTINGS, &REVERB_MODE_2_SETTINGS, &REVERB_MODE_3_SETTINGS};
return *REVERB_SETTINGS[mode];
}
// This algorithm tries to emulate exactly Boss multiplication operation (at least this is what we see on reverb RAM data lines).
// Also LA32 is suspected to use the similar one to perform PCM interpolation and ring modulation.
static Sample weirdMul(Sample a, Bit8u addMask, Bit8u carryMask) {
(void)carryMask;
#if MT32EMU_USE_FLOAT_SAMPLES
return a * addMask / 256.0f;
#elif MT32EMU_BOSS_REVERB_PRECISE_MODE
Bit8u mask = 0x80;
Bit32s res = 0;
for (int i = 0; i < 8; i++) {
Bit32s carry = (a < 0) && (mask & carryMask) > 0 ? a & 1 : 0;
a >>= 1;
res += (mask & addMask) > 0 ? a + carry : 0;
mask >>= 1;
}
return res;
#else
return Sample(((Bit32s)a * addMask) >> 8);
#endif
}
RingBuffer::RingBuffer(Bit32u newsize) : size(newsize), index(0) {
buffer = new Sample[size];
}
RingBuffer::~RingBuffer() {
delete[] buffer;
buffer = NULL;
}
Sample RingBuffer::next() {
if (++index >= size) {
index = 0;
}
return buffer[index];
}
bool RingBuffer::isEmpty() const {
if (buffer == NULL) return true;
#if MT32EMU_USE_FLOAT_SAMPLES
Sample max = 0.001f;
#else
Sample max = 8;
#endif
Sample *buf = buffer;
for (Bit32u i = 0; i < size; i++) {
if (*buf < -max || *buf > max) return false;
buf++;
}
return true;
}
void RingBuffer::mute() {
Synth::muteSampleBuffer(buffer, size);
}
AllpassFilter::AllpassFilter(const Bit32u useSize) : RingBuffer(useSize) {}
Sample AllpassFilter::process(const Sample in) {
// This model corresponds to the allpass filter implementation of the real CM-32L device
// found from sample analysis
const Sample bufferOut = next();
#if MT32EMU_USE_FLOAT_SAMPLES
// store input - feedback / 2
buffer[index] = in - 0.5f * bufferOut;
// return buffer output + feedforward / 2
return bufferOut + 0.5f * buffer[index];
#else
// store input - feedback / 2
buffer[index] = in - (bufferOut >> 1);
// return buffer output + feedforward / 2
return bufferOut + (buffer[index] >> 1);
#endif
}
CombFilter::CombFilter(const Bit32u useSize, const Bit32u useFilterFactor) : RingBuffer(useSize), filterFactor(useFilterFactor) {}
void CombFilter::process(const Sample in) {
// This model corresponds to the comb filter implementation of the real CM-32L device
// the previously stored value
const Sample last = buffer[index];
// prepare input + feedback
const Sample filterIn = in + weirdMul(next(), feedbackFactor, 0xF0);
// store input + feedback processed by a low-pass filter
buffer[index] = weirdMul(last, filterFactor, 0xC0) - filterIn;
}
Sample CombFilter::getOutputAt(const Bit32u outIndex) const {
return buffer[(size + index - outIndex) % size];
}
void CombFilter::setFeedbackFactor(const Bit32u useFeedbackFactor) {
feedbackFactor = useFeedbackFactor;
}
DelayWithLowPassFilter::DelayWithLowPassFilter(const Bit32u useSize, const Bit32u useFilterFactor, const Bit32u useAmp)
: CombFilter(useSize, useFilterFactor), amp(useAmp) {}
void DelayWithLowPassFilter::process(const Sample in) {
// the previously stored value
const Sample last = buffer[index];
// move to the next index
next();
// low-pass filter process
Sample lpfOut = weirdMul(last, filterFactor, 0xFF) + in;
// store lpfOut multiplied by LPF amp factor
buffer[index] = weirdMul(lpfOut, amp, 0xFF);
}
TapDelayCombFilter::TapDelayCombFilter(const Bit32u useSize, const Bit32u useFilterFactor) : CombFilter(useSize, useFilterFactor) {}
void TapDelayCombFilter::process(const Sample in) {
// the previously stored value
const Sample last = buffer[index];
// move to the next index
next();
// prepare input + feedback
// Actually, the size of the filter varies with the TIME parameter, the feedback sample is taken from the position just below the right output
const Sample filterIn = in + weirdMul(getOutputAt(outR + MODE_3_FEEDBACK_DELAY), feedbackFactor, 0xF0);
// store input + feedback processed by a low-pass filter
buffer[index] = weirdMul(last, filterFactor, 0xF0) - filterIn;
}
Sample TapDelayCombFilter::getLeftOutput() const {
return getOutputAt(outL + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY);
}
Sample TapDelayCombFilter::getRightOutput() const {
return getOutputAt(outR + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY);
}
void TapDelayCombFilter::setOutputPositions(const Bit32u useOutL, const Bit32u useOutR) {
outL = useOutL;
outR = useOutR;
}
BReverbModel::BReverbModel(const ReverbMode mode, const bool mt32CompatibleModel) :
allpasses(NULL), combs(NULL),
currentSettings(mt32CompatibleModel ? getMT32Settings(mode) : getCM32L_LAPCSettings(mode)),
tapDelayMode(mode == REVERB_MODE_TAP_DELAY) {}
BReverbModel::~BReverbModel() {
close();
}
void BReverbModel::open() {
if (currentSettings.numberOfAllpasses > 0) {
allpasses = new AllpassFilter*[currentSettings.numberOfAllpasses];
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
allpasses[i] = new AllpassFilter(currentSettings.allpassSizes[i]);
}
}
combs = new CombFilter*[currentSettings.numberOfCombs];
if (tapDelayMode) {
*combs = new TapDelayCombFilter(*currentSettings.combSizes, *currentSettings.filterFactors);
} else {
combs[0] = new DelayWithLowPassFilter(currentSettings.combSizes[0], currentSettings.filterFactors[0], currentSettings.lpfAmp);
for (Bit32u i = 1; i < currentSettings.numberOfCombs; i++) {
combs[i] = new CombFilter(currentSettings.combSizes[i], currentSettings.filterFactors[i]);
}
}
mute();
}
void BReverbModel::close() {
if (allpasses != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
if (allpasses[i] != NULL) {
delete allpasses[i];
allpasses[i] = NULL;
}
}
delete[] allpasses;
allpasses = NULL;
}
if (combs != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
if (combs[i] != NULL) {
delete combs[i];
combs[i] = NULL;
}
}
delete[] combs;
combs = NULL;
}
}
void BReverbModel::mute() {
if (allpasses != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
allpasses[i]->mute();
}
}
if (combs != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
combs[i]->mute();
}
}
}
void BReverbModel::setParameters(Bit8u time, Bit8u level) {
if (combs == NULL) return;
level &= 7;
time &= 7;
if (tapDelayMode) {
TapDelayCombFilter *comb = static_cast<TapDelayCombFilter *> (*combs);
comb->setOutputPositions(currentSettings.outLPositions[time], currentSettings.outRPositions[time & 7]);
comb->setFeedbackFactor(currentSettings.feedbackFactors[((level < 3) || (time < 6)) ? 0 : 1]);
} else {
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
combs[i]->setFeedbackFactor(currentSettings.feedbackFactors[(i << 3) + time]);
}
}
if (time == 0 && level == 0) {
dryAmp = wetLevel = 0;
} else {
if (tapDelayMode && ((time == 0) || (time == 1 && level == 1))) {
// Looks like MT-32 implementation has some minor quirks in this mode:
// for odd level values, the output level changes sometimes depending on the time value which doesn't seem right.
dryAmp = currentSettings.dryAmps[level + 8];
} else {
dryAmp = currentSettings.dryAmps[level];
}
wetLevel = currentSettings.wetLevels[level];
}
}
bool BReverbModel::isActive() const {
if (combs == NULL) {
return false;
}
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
if (!allpasses[i]->isEmpty()) return true;
}
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
if (!combs[i]->isEmpty()) return true;
}
return false;
}
bool BReverbModel::isMT32Compatible(const ReverbMode mode) const {
return ¤tSettings == &getMT32Settings(mode);
}
void BReverbModel::process(const Sample *inLeft, const Sample *inRight, Sample *outLeft, Sample *outRight, unsigned long numSamples) {
if (combs == NULL) {
Synth::muteSampleBuffer(outLeft, numSamples);
Synth::muteSampleBuffer(outRight, numSamples);
return;
}
Sample dry;
while ((numSamples--) > 0) {
if (tapDelayMode) {
#if MT32EMU_USE_FLOAT_SAMPLES
dry = (*(inLeft++) * 0.5f) + (*(inRight++) * 0.5f);
#else
dry = (*(inLeft++) >> 1) + (*(inRight++) >> 1);
#endif
} else {
#if MT32EMU_USE_FLOAT_SAMPLES
dry = (*(inLeft++) * 0.25f) + (*(inRight++) * 0.25f);
#elif MT32EMU_BOSS_REVERB_PRECISE_MODE
dry = (*(inLeft++) >> 1) / 2 + (*(inRight++) >> 1) / 2;
#else
dry = (*(inLeft++) >> 2) + (*(inRight++) >> 2);
#endif
}
// Looks like dryAmp doesn't change in MT-32 but it does in CM-32L / LAPC-I
dry = weirdMul(dry, dryAmp, 0xFF);
if (tapDelayMode) {
TapDelayCombFilter *comb = static_cast<TapDelayCombFilter *> (*combs);
comb->process(dry);
if (outLeft != NULL) {
*(outLeft++) = weirdMul(comb->getLeftOutput(), wetLevel, 0xFF);
}
if (outRight != NULL) {
*(outRight++) = weirdMul(comb->getRightOutput(), wetLevel, 0xFF);
}
} else {
// If the output position is equal to the comb size, get it now in order not to loose it
Sample link = combs[0]->getOutputAt(currentSettings.combSizes[0] - 1);
// Entrance LPF. Note, comb.process() differs a bit here.
combs[0]->process(dry);
#if !MT32EMU_USE_FLOAT_SAMPLES
// This introduces reverb noise which actually makes output from the real Boss chip nondeterministic
link = link - 1;
#endif
link = allpasses[0]->process(link);
link = allpasses[1]->process(link);
link = allpasses[2]->process(link);
// If the output position is equal to the comb size, get it now in order not to loose it
Sample outL1 = combs[1]->getOutputAt(currentSettings.outLPositions[0] - 1);
combs[1]->process(link);
combs[2]->process(link);
combs[3]->process(link);
if (outLeft != NULL) {
Sample outL2 = combs[2]->getOutputAt(currentSettings.outLPositions[1]);
Sample outL3 = combs[3]->getOutputAt(currentSettings.outLPositions[2]);
#if MT32EMU_USE_FLOAT_SAMPLES
Sample outSample = 1.5f * (outL1 + outL2) + outL3;
#elif MT32EMU_BOSS_REVERB_PRECISE_MODE
/* NOTE:
* Thanks to Mok for discovering, the adder in BOSS reverb chip is found to perform addition with saturation to avoid integer overflow.
* Analysing of the algorithm suggests that the overflow is most probable when the combs output is added below.
* So, despite this isn't actually accurate, we only add the check here for performance reasons.
*/
Sample outSample = Synth::clipBit16s(Synth::clipBit16s(Synth::clipBit16s(Synth::clipBit16s((Bit32s)outL1 + Bit32s(outL1 >> 1)) + (Bit32s)outL2) + Bit32s(outL2 >> 1)) + (Bit32s)outL3);
#else
Sample outSample = Synth::clipBit16s((Bit32s)outL1 + Bit32s(outL1 >> 1) + (Bit32s)outL2 + Bit32s(outL2 >> 1) + (Bit32s)outL3);
#endif
*(outLeft++) = weirdMul(outSample, wetLevel, 0xFF);
}
if (outRight != NULL) {
Sample outR1 = combs[1]->getOutputAt(currentSettings.outRPositions[0]);
Sample outR2 = combs[2]->getOutputAt(currentSettings.outRPositions[1]);
Sample outR3 = combs[3]->getOutputAt(currentSettings.outRPositions[2]);
#if MT32EMU_USE_FLOAT_SAMPLES
Sample outSample = 1.5f * (outR1 + outR2) + outR3;
#elif MT32EMU_BOSS_REVERB_PRECISE_MODE
// See the note above for the left channel output.
Sample outSample = Synth::clipBit16s(Synth::clipBit16s(Synth::clipBit16s(Synth::clipBit16s((Bit32s)outR1 + Bit32s(outR1 >> 1)) + (Bit32s)outR2) + Bit32s(outR2 >> 1)) + (Bit32s)outR3);
#else
Sample outSample = Synth::clipBit16s((Bit32s)outR1 + Bit32s(outR1 >> 1) + (Bit32s)outR2 + Bit32s(outR2 >> 1) + (Bit32s)outR3);
#endif
*(outRight++) = weirdMul(outSample, wetLevel, 0xFF);
}
}
}
}
}
|