aboutsummaryrefslogtreecommitdiff
path: root/audio/softsynth/mt32/Partial.cpp
blob: a6d164f2184a4ec7c8a1bd289f8e10831d6fb9fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
 * Copyright (C) 2011 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 2.1 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

//#include <cmath>
//#include <cstdlib>
//#include <cstring>

#include "mt32emu.h"
#include "mmath.h"

namespace MT32Emu {

#ifdef INACCURATE_SMOOTH_PAN
// Mok wanted an option for smoother panning, and we love Mok.
static const float PAN_NUMERATOR_NORMAL[] = {0.0f, 0.5f, 1.0f, 1.5f, 2.0f, 2.5f, 3.0f, 3.5f, 4.0f, 4.5f, 5.0f, 5.5f, 6.0f, 6.5f, 7.0f};
#else
// CONFIRMED by Mok: These NUMERATOR values (as bytes, not floats, obviously) are sent exactly like this to the LA32.
static const float PAN_NUMERATOR_NORMAL[] = {0.0f, 0.0f, 1.0f, 1.0f, 2.0f, 2.0f, 3.0f, 3.0f, 4.0f, 4.0f, 5.0f, 5.0f, 6.0f, 6.0f, 7.0f};
#endif
static const float PAN_NUMERATOR_MASTER[] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
static const float PAN_NUMERATOR_SLAVE[]  = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 7.0f, 7.0f, 7.0f, 7.0f, 7.0f, 7.0f, 7.0f};

Partial::Partial(Synth *useSynth, int useDebugPartialNum) :
	synth(useSynth), debugPartialNum(useDebugPartialNum), sampleNum(0), tva(new TVA(this, &ampRamp)), tvp(new TVP(this)), tvf(new TVF(this, &cutoffModifierRamp)) {
	ownerPart = -1;
	poly = NULL;
	pair = NULL;
}

Partial::~Partial() {
	delete tva;
	delete tvp;
	delete tvf;
}

// Only used for debugging purposes
int Partial::debugGetPartialNum() const {
	return debugPartialNum;
}

// Only used for debugging purposes
unsigned long Partial::debugGetSampleNum() const {
	return sampleNum;
}

int Partial::getOwnerPart() const {
	return ownerPart;
}

bool Partial::isActive() const {
	return ownerPart > -1;
}

const Poly *Partial::getPoly() const {
	return poly;
}

void Partial::activate(int part) {
	// This just marks the partial as being assigned to a part
	ownerPart = part;
}

void Partial::deactivate() {
	if (!isActive()) {
		return;
	}
	ownerPart = -1;
	if (poly != NULL) {
		poly->partialDeactivated(this);
		if (pair != NULL) {
			pair->pair = NULL;
		}
	}
#if MT32EMU_MONITOR_PARTIALS > 2
	synth->printDebug("[+%lu] [Partial %d] Deactivated", sampleNum, debugPartialNum);
	synth->printPartialUsage(sampleNum);
#endif
}

// DEPRECATED: This should probably go away eventually, it's currently only used as a kludge to protect our old assumptions that
// rhythm part notes were always played as key MIDDLEC.
int Partial::getKey() const {
	if (poly == NULL) {
		return -1;
	} else if (ownerPart == 8) {
		// FIXME: Hack, should go away after new pitch stuff is committed (and possibly some TVF changes)
		return MIDDLEC;
	} else {
		return poly->getKey();
	}
}

void Partial::startPartial(const Part *part, Poly *usePoly, const PatchCache *usePatchCache, const MemParams::RhythmTemp *rhythmTemp, Partial *pairPartial) {
	if (usePoly == NULL || usePatchCache == NULL) {
		synth->printDebug("[Partial %d] *** Error: Starting partial for owner %d, usePoly=%s, usePatchCache=%s", debugPartialNum, ownerPart, usePoly == NULL ? "*** NULL ***" : "OK", usePatchCache == NULL ? "*** NULL ***" : "OK");
		return;
	}
	patchCache = usePatchCache;
	poly = usePoly;
	mixType = patchCache->structureMix;
	structurePosition = patchCache->structurePosition;

	Bit8u panSetting = rhythmTemp != NULL ? rhythmTemp->panpot : part->getPatchTemp()->panpot;
	float panVal;
	if (mixType == 3) {
		if (structurePosition == 0) {
			panVal = PAN_NUMERATOR_MASTER[panSetting];
		} else {
			panVal = PAN_NUMERATOR_SLAVE[panSetting];
		}
		// Do a normal mix independent of any pair partial.
		mixType = 0;
		pairPartial = NULL;
	} else {
		panVal = PAN_NUMERATOR_NORMAL[panSetting];
	}

	// FIXME: Sample analysis suggests that the use of panVal is linear, but there are some some quirks that still need to be resolved.
	stereoVolume.leftVol = panVal / 7.0f;
	stereoVolume.rightVol = 1.0f - stereoVolume.leftVol;

	// SEMI-CONFIRMED: From sample analysis:
	// Found that timbres with 3 or 4 partials (i.e. one using two partial pairs) are mixed in two different ways.
	// Either partial pairs are added or subtracted, it depends on how the partial pairs are allocated.
	// It seems that partials are grouped into quarters and if the partial pairs are allocated in different quarters the subtraction happens.
	// Though, this matters little for the majority of timbres, it becomes crucial for timbres which contain several partials that sound very close.
	// In this case that timbre can sound totally different depending of the way it is mixed up.
	// Most easily this effect can be displayed with the help of a special timbre consisting of several identical square wave partials (3 or 4).
	// Say, it is 3-partial timbre. Just play any two notes simultaneously and the polys very probably are mixed differently.
	// Moreover, the partial allocator retains the last partial assignment it did and all the subsequent notes will sound the same as the last released one.
	// The situation is better with 4-partial timbres since then a whole quarter is assigned for each poly. However, if a 3-partial timbre broke the normal
	// whole-quarter assignment or after some partials got aborted, even 4-partial timbres can be found sounding differently.
	// This behaviour is also confirmed with two more special timbres: one with identical sawtooth partials, and one with PCM wave 02.
	// For my personal taste, this behaviour rather enriches the sounding and should be emulated.
	// Also, the current partial allocator model probably needs to be refined.
	if (debugPartialNum & 8) {
		stereoVolume.leftVol = -stereoVolume.leftVol;
		stereoVolume.rightVol = -stereoVolume.rightVol;
	}

	if (patchCache->PCMPartial) {
		pcmNum = patchCache->pcm;
		if (synth->controlROMMap->pcmCount > 128) {
			// CM-32L, etc. support two "banks" of PCMs, selectable by waveform type parameter.
			if (patchCache->waveform > 1) {
				pcmNum += 128;
			}
		}
		pcmWave = &synth->pcmWaves[pcmNum];
	} else {
		pcmWave = NULL;
		wavePos = 0.0f;
		lastFreq = 0.0;
	}

	// CONFIRMED: pulseWidthVal calculation is based on information from Mok
	pulseWidthVal = (poly->getVelocity() - 64) * (patchCache->srcPartial.wg.pulseWidthVeloSensitivity - 7) + Tables::getInstance().pulseWidth100To255[patchCache->srcPartial.wg.pulseWidth];
	if (pulseWidthVal < 0) {
		pulseWidthVal = 0;
	} else if (pulseWidthVal > 255) {
		pulseWidthVal = 255;
	}

	pcmPosition = 0.0f;
	pair = pairPartial;
	alreadyOutputed = false;
	tva->reset(part, patchCache->partialParam, rhythmTemp);
	tvp->reset(part, patchCache->partialParam);
	tvf->reset(patchCache->partialParam, tvp->getBasePitch());
}

float Partial::getPCMSample(unsigned int position) {
	if (position >= pcmWave->len) {
		if (!pcmWave->loop) {
			return 0;
		}
		position = position % pcmWave->len;
	}
	return synth->pcmROMData[pcmWave->addr + position];
}

unsigned long Partial::generateSamples(float *partialBuf, unsigned long length) {
	const Tables &tables = Tables::getInstance();
	if (!isActive() || alreadyOutputed) {
		return 0;
	}
	if (poly == NULL) {
		synth->printDebug("[Partial %d] *** ERROR: poly is NULL at Partial::generateSamples()!", debugPartialNum);
		return 0;
	}

	alreadyOutputed = true;

	// Generate samples

	for (sampleNum = 0; sampleNum < length; sampleNum++) {
		float sample = 0;
		Bit32u ampRampVal = ampRamp.nextValue();
		if (ampRamp.checkInterrupt()) {
			tva->handleInterrupt();
		}
		if (!tva->isPlaying()) {
			deactivate();
			break;
		}

		Bit16u pitch = tvp->nextPitch();

		// SEMI-CONFIRMED: From sample analysis:
		// (1) Tested with a single partial playing PCM wave 77 with pitchCoarse 36 and no keyfollow, velocity follow, etc.
		// This gives results within +/- 2 at the output (before any DAC bitshifting)
		// when sustaining at levels 156 - 255 with no modifiers.
		// (2) Tested with a special square wave partial (internal capture ID tva5) at TVA envelope levels 155-255.
		// This gives deltas between -1 and 0 compared to the real output. Note that this special partial only produces
		// positive amps, so negative still needs to be explored, as well as lower levels.
		//
		// Also still partially unconfirmed is the behaviour when ramping between levels, as well as the timing.

#if MT32EMU_ACCURATE_WG == 1
		float amp = EXP2F((32772 - ampRampVal / 2048) / -2048.0f);
		float freq = EXP2F(pitch / 4096.0f - 16.0f) * 32000.0f;
#else
		static const float ampFactor = EXP2F(32772 / -2048.0f);
		float amp = EXP2I(ampRampVal >> 10) * ampFactor;

		static const float freqFactor = EXP2F(-16.0f) * 32000.0f;
		float freq = EXP2I(pitch) * freqFactor;
#endif

		if (patchCache->PCMPartial) {
			// Render PCM waveform
			int len = pcmWave->len;
			int intPCMPosition = (int)pcmPosition;
			if (intPCMPosition >= len && !pcmWave->loop) {
				// We're now past the end of a non-looping PCM waveform so it's time to die.
				deactivate();
				break;
			}
			Bit32u pcmAddr = pcmWave->addr;
			float positionDelta = freq * 2048.0f / synth->myProp.sampleRate;

			// Linear interpolation
			float firstSample = synth->pcmROMData[pcmAddr + intPCMPosition];
			// We observe that for partial structures with ring modulation the interpolation is not applied to the slave PCM partial.
			// It's assumed that the multiplication circuitry intended to perform the interpolation on the slave PCM partial
			// is borrowed by the ring modulation circuit (or the LA32 chip has a similar lack of resources assigned to each partial pair).
			if (pair == NULL || mixType == 0 || structurePosition == 0) {
				sample = firstSample + (getPCMSample(intPCMPosition + 1) - firstSample) * (pcmPosition - intPCMPosition);
			} else {
				sample = firstSample;
			}

			float newPCMPosition = pcmPosition + positionDelta;
			if (pcmWave->loop) {
				newPCMPosition = fmod(newPCMPosition, (float)pcmWave->len);
			}
			pcmPosition = newPCMPosition;
		} else {
			// Render synthesised waveform
			wavePos *= lastFreq / freq;
			lastFreq = freq;

			Bit32u cutoffModifierRampVal = cutoffModifierRamp.nextValue();
			if (cutoffModifierRamp.checkInterrupt()) {
				tvf->handleInterrupt();
			}
			float cutoffModifier = cutoffModifierRampVal / 262144.0f;

			// res corresponds to a value set in an LA32 register
			Bit8u res = patchCache->srcPartial.tvf.resonance + 1;

			// Using tiny exact table for computation of EXP2F(1.0f - (32 - res) / 4.0f)
			float resAmp = tables.resAmpMax[res];

			// The cutoffModifier may not be supposed to be directly added to the cutoff -
			// it may for example need to be multiplied in some way.
			// The 240 cutoffVal limit was determined via sample analysis (internal Munt capture IDs: glop3, glop4).
			// More research is needed to be sure that this is correct, however.
			float cutoffVal = tvf->getBaseCutoff() + cutoffModifier;
			if (cutoffVal > 240.0f) {
				cutoffVal = 240.0f;
			}

			// Wave length in samples
			float waveLen = synth->myProp.sampleRate / freq;

			// Init cosineLen
			float cosineLen = 0.5f * waveLen;
			if (cutoffVal > 128.0f) {
#if MT32EMU_ACCURATE_WG == 1
				cosineLen *= EXP2F((cutoffVal - 128.0f) / -16.0f); // found from sample analysis
#else
				static const float cosineLenFactor = EXP2F(128.0f / -16.0f);
				cosineLen *= EXP2I(Bit32u((256.0f - cutoffVal) * 256.0f)) * cosineLenFactor;
#endif
			}

			// Start playing in center of first cosine segment
			// relWavePos is shifted by a half of cosineLen
			float relWavePos = wavePos + 0.5f * cosineLen;
			if (relWavePos > waveLen) {
				relWavePos -= waveLen;
			}

			float pulseLen = 0.5f;
			if (pulseWidthVal > 128) {
				pulseLen += tables.pulseLenFactor[pulseWidthVal - 128];
			}
			pulseLen *= waveLen;

			float lLen = pulseLen - cosineLen;

			// Ignore pulsewidths too high for given freq
			if (lLen < 0.0f) {
				lLen = 0.0f;
			}

			// Ignore pulsewidths too high for given freq and cutoff
			float hLen = waveLen - lLen - 2 * cosineLen;
			if (hLen < 0.0f) {
				hLen = 0.0f;
			}

			// Correct resAmp for cutoff in range 50..66
			if ((cutoffVal >= 128.0f) && (cutoffVal < 144.0f)) {
#if MT32EMU_ACCURATE_WG == 1
				resAmp *= sinf(FLOAT_PI * (cutoffVal - 128.0f) / 32.0f);
#else
				resAmp *= tables.sinf10[Bit32u(64 * (cutoffVal - 128.0f))];
#endif
			}

			// Produce filtered square wave with 2 cosine waves on slopes

			// 1st cosine segment
			if (relWavePos < cosineLen) {
#if MT32EMU_ACCURATE_WG == 1
				sample = -cosf(FLOAT_PI * relWavePos / cosineLen);
#else
				sample = -tables.sinf10[Bit32u(2048.0f * relWavePos / cosineLen) + 1024];
#endif
			} else

			// high linear segment
			if (relWavePos < (cosineLen + hLen)) {
				sample = 1.f;
			} else

			// 2nd cosine segment
			if (relWavePos < (2 * cosineLen + hLen)) {
#if MT32EMU_ACCURATE_WG == 1
				sample = cosf(FLOAT_PI * (relWavePos - (cosineLen + hLen)) / cosineLen);
#else
				sample = tables.sinf10[Bit32u(2048.0f * (relWavePos - (cosineLen + hLen)) / cosineLen) + 1024];
#endif
			} else {

			// low linear segment
				sample = -1.f;
			}

			if (cutoffVal < 128.0f) {

				// Attenuate samples below cutoff 50
				// Found by sample analysis
#if MT32EMU_ACCURATE_WG == 1
				sample *= EXP2F(-0.125f * (128.0f - cutoffVal));
#else
				static const float cutoffAttenuationFactor = EXP2F(-0.125f * 128.0f);
				sample *= EXP2I(Bit32u(512.0f * cutoffVal)) * cutoffAttenuationFactor;
#endif
			} else {

				// Add resonance sine. Effective for cutoff > 50 only
				float resSample = 1.0f;

				// Now relWavePos counts from the middle of first cosine
				relWavePos = wavePos;

				// negative segments
				if (!(relWavePos < (cosineLen + hLen))) {
					resSample = -resSample;
					relWavePos -= cosineLen + hLen;
				}

				// Resonance sine WG
#if MT32EMU_ACCURATE_WG == 1
				resSample *= sinf(FLOAT_PI * relWavePos / cosineLen);
#else
				resSample *= tables.sinf10[Bit32u(2048.0f * relWavePos / cosineLen) & 4095];
#endif

				// Resonance sine amp
				float resAmpFadeLog2 = -tables.resAmpFadeFactor[res >> 2] * (relWavePos / cosineLen); // seems to be exact
#if MT32EMU_ACCURATE_WG == 1
				float resAmpFade = EXP2F(resAmpFadeLog2);
#else
				static const float resAmpFadeFactor = EXP2F(-30.0f);
				float resAmpFade = (resAmpFadeLog2 < -30.0f) ? 0.0f : EXP2I(Bit32u((30.0f + resAmpFadeLog2) * 4096.0f)) * resAmpFadeFactor;
#endif

				// Now relWavePos set negative to the left from center of any cosine
				relWavePos = wavePos;

				// negative segment
				if (!(wavePos < (waveLen - 0.5f * cosineLen))) {
					relWavePos -= waveLen;
				} else

				// positive segment
				if (!(wavePos < (hLen + 0.5f * cosineLen))) {
					relWavePos -= cosineLen + hLen;
				}

				// Fading to zero while within cosine segments to avoid jumps in the wave
				// Sample analysis suggests that this window is very close to cosine
				if (relWavePos < 0.5f * cosineLen) {
#if MT32EMU_ACCURATE_WG == 1
					resAmpFade *= 0.5f * (1.0f - cosf(FLOAT_PI * relWavePos / (0.5f * cosineLen)));
#else
					resAmpFade *= 0.5f * (1.0f + tables.sinf10[Bit32s(2048.0f * relWavePos / (0.5f * cosineLen)) + 3072]);
#endif
				}

				sample += resSample * resAmp * resAmpFade;
			}

			// sawtooth waves
			if ((patchCache->waveform & 1) != 0) {
#if MT32EMU_ACCURATE_WG == 1
				sample *= cosf(FLOAT_2PI * wavePos / waveLen);
#else
				sample *= tables.sinf10[(Bit32u(4096.0f * wavePos / waveLen) & 4095) + 1024];
#endif
			}

			wavePos++;

			// wavePos isn't supposed to be > waveLen
			if (wavePos > waveLen) {
				wavePos -= waveLen;
			}
		}

		// Multiply sample with current TVA value
		sample *= amp;
		*partialBuf++ = sample;
	}
	unsigned long renderedSamples = sampleNum;
	sampleNum = 0;
	return renderedSamples;
}

float *Partial::mixBuffersRingMix(float *buf1, float *buf2, unsigned long len) {
	if (buf1 == NULL) {
		return NULL;
	}
	if (buf2 == NULL) {
		return buf1;
	}

	while (len--) {
		// FIXME: At this point we have no idea whether this is remotely correct...
		*buf1 = *buf1 * *buf2 + *buf1;
		buf1++;
		buf2++;
	}
	return buf1;
}

float *Partial::mixBuffersRing(float *buf1, float *buf2, unsigned long len) {
	if (buf1 == NULL) {
		return NULL;
	}
	if (buf2 == NULL) {
		return NULL;
	}

	while (len--) {
		// FIXME: At this point we have no idea whether this is remotely correct...
		*buf1 = *buf1 * *buf2;
		buf1++;
		buf2++;
	}
	return buf1;
}

bool Partial::hasRingModulatingSlave() const {
	return pair != NULL && structurePosition == 0 && (mixType == 1 || mixType == 2);
}

bool Partial::isRingModulatingSlave() const {
	return pair != NULL && structurePosition == 1 && (mixType == 1 || mixType == 2);
}

bool Partial::isPCM() const {
	return pcmWave != NULL;
}

const ControlROMPCMStruct *Partial::getControlROMPCMStruct() const {
	if (pcmWave != NULL) {
		return pcmWave->controlROMPCMStruct;
	}
	return NULL;
}

Synth *Partial::getSynth() const {
	return synth;
}

bool Partial::produceOutput(float *leftBuf, float *rightBuf, unsigned long length) {
	if (!isActive() || alreadyOutputed || isRingModulatingSlave()) {
		return false;
	}
	if (poly == NULL) {
		synth->printDebug("[Partial %d] *** ERROR: poly is NULL at Partial::produceOutput()!", debugPartialNum);
		return false;
	}

	float *partialBuf = &myBuffer[0];
	unsigned long numGenerated = generateSamples(partialBuf, length);
	if (mixType == 1 || mixType == 2) {
		float *pairBuf;
		unsigned long pairNumGenerated;
		if (pair == NULL) {
			pairBuf = NULL;
			pairNumGenerated = 0;
		} else {
			pairBuf = &pair->myBuffer[0];
			pairNumGenerated = pair->generateSamples(pairBuf, numGenerated);
			// pair will have been set to NULL if it deactivated within generateSamples()
			if (pair != NULL) {
				if (!isActive()) {
					pair->deactivate();
					pair = NULL;
				} else if (!pair->isActive()) {
					pair = NULL;
				}
			}
		}
		if (pairNumGenerated > 0) {
			if (mixType == 1) {
				mixBuffersRingMix(partialBuf, pairBuf, pairNumGenerated);
			} else {
				mixBuffersRing(partialBuf, pairBuf, pairNumGenerated);
			}
		}
		if (numGenerated > pairNumGenerated) {
			if (mixType == 2) {
				numGenerated = pairNumGenerated;
				deactivate();
			}
		}
	}

	for (unsigned int i = 0; i < numGenerated; i++) {
		*leftBuf++ = partialBuf[i] * stereoVolume.leftVol;
	}
	for (unsigned int i = 0; i < numGenerated; i++) {
		*rightBuf++ = partialBuf[i] * stereoVolume.rightVol;
	}
	while (numGenerated < length) {
		*leftBuf++ = 0.0f;
		*rightBuf++ = 0.0f;
		numGenerated++;
	}
	return true;
}

bool Partial::shouldReverb() {
	if (!isActive()) {
		return false;
	}
	return patchCache->reverb;
}

void Partial::startAbort() {
	// This is called when the partial manager needs to terminate partials for re-use by a new Poly.
	tva->startAbort();
}

void Partial::startDecayAll() {
	tva->startDecay();
	tvp->startDecay();
	tvf->startDecay();
}

}