1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011, 2012, 2013, 2014 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//#include <cmath>
//#include <cstdlib>
//#include <cstring>
#include "mt32emu.h"
#include "mmath.h"
namespace MT32Emu {
static const Bit8u PAN_NUMERATOR_MASTER[] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7};
static const Bit8u PAN_NUMERATOR_SLAVE[] = {0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7};
static const Bit32s PAN_FACTORS[] = {0, 18, 37, 55, 73, 91, 110, 128, 146, 165, 183, 201, 219, 238, 256};
Partial::Partial(Synth *useSynth, int useDebugPartialNum) :
synth(useSynth), debugPartialNum(useDebugPartialNum), sampleNum(0) {
// Initialisation of tva, tvp and tvf uses 'this' pointer
// and thus should not be in the initializer list to avoid a compiler warning
tva = new TVA(this, &Ramp);
tvp = new TVP(this);
tvf = new TVF(this, &cutoffModifierRamp);
ownerPart = -1;
poly = NULL;
pair = NULL;
}
Partial::~Partial() {
delete tva;
delete tvp;
delete tvf;
}
// Only used for debugging purposes
int Partial::debugGetPartialNum() const {
return debugPartialNum;
}
// Only used for debugging purposes
unsigned long Partial::debugGetSampleNum() const {
return sampleNum;
}
int Partial::getOwnerPart() const {
return ownerPart;
}
bool Partial::isActive() const {
return ownerPart > -1;
}
const Poly *Partial::getPoly() const {
return poly;
}
void Partial::activate(int part) {
// This just marks the partial as being assigned to a part
ownerPart = part;
}
void Partial::deactivate() {
if (!isActive()) {
return;
}
ownerPart = -1;
if (poly != NULL) {
poly->partialDeactivated(this);
}
#if MT32EMU_MONITOR_PARTIALS > 2
synth->printDebug("[+%lu] [Partial %d] Deactivated", sampleNum, debugPartialNum);
synth->printPartialUsage(sampleNum);
#endif
if (isRingModulatingSlave()) {
pair->la32Pair.deactivate(LA32PartialPair::SLAVE);
} else {
la32Pair.deactivate(LA32PartialPair::MASTER);
if (hasRingModulatingSlave()) {
pair->deactivate();
pair = NULL;
}
}
if (pair != NULL) {
pair->pair = NULL;
}
}
void Partial::startPartial(const Part *part, Poly *usePoly, const PatchCache *usePatchCache, const MemParams::RhythmTemp *rhythmTemp, Partial *pairPartial) {
if (usePoly == NULL || usePatchCache == NULL) {
synth->printDebug("[Partial %d] *** Error: Starting partial for owner %d, usePoly=%s, usePatchCache=%s", debugPartialNum, ownerPart, usePoly == NULL ? "*** NULL ***" : "OK", usePatchCache == NULL ? "*** NULL ***" : "OK");
return;
}
patchCache = usePatchCache;
poly = usePoly;
mixType = patchCache->structureMix;
structurePosition = patchCache->structurePosition;
Bit8u panSetting = rhythmTemp != NULL ? rhythmTemp->panpot : part->getPatchTemp()->panpot;
if (mixType == 3) {
if (structurePosition == 0) {
panSetting = PAN_NUMERATOR_MASTER[panSetting] << 1;
} else {
panSetting = PAN_NUMERATOR_SLAVE[panSetting] << 1;
}
// Do a normal mix independent of any pair partial.
mixType = 0;
pairPartial = NULL;
} else {
// Mok wanted an option for smoother panning, and we love Mok.
#ifndef INACCURATE_SMOOTH_PAN
// CONFIRMED by Mok: exactly bytes like this (right shifted?) are sent to the LA32.
panSetting &= 0x0E;
#endif
}
leftPanValue = synth->reversedStereoEnabled ? 14 - panSetting : panSetting;
rightPanValue = 14 - leftPanValue;
#if !MT32EMU_USE_FLOAT_SAMPLES
leftPanValue = PAN_FACTORS[leftPanValue];
rightPanValue = PAN_FACTORS[rightPanValue];
#endif
// SEMI-CONFIRMED: From sample analysis:
// Found that timbres with 3 or 4 partials (i.e. one using two partial pairs) are mixed in two different ways.
// Either partial pairs are added or subtracted, it depends on how the partial pairs are allocated.
// It seems that partials are grouped into quarters and if the partial pairs are allocated in different quarters the subtraction happens.
// Though, this matters little for the majority of timbres, it becomes crucial for timbres which contain several partials that sound very close.
// In this case that timbre can sound totally different depending of the way it is mixed up.
// Most easily this effect can be displayed with the help of a special timbre consisting of several identical square wave partials (3 or 4).
// Say, it is 3-partial timbre. Just play any two notes simultaneously and the polys very probably are mixed differently.
// Moreover, the partial allocator retains the last partial assignment it did and all the subsequent notes will sound the same as the last released one.
// The situation is better with 4-partial timbres since then a whole quarter is assigned for each poly. However, if a 3-partial timbre broke the normal
// whole-quarter assignment or after some partials got aborted, even 4-partial timbres can be found sounding differently.
// This behaviour is also confirmed with two more special timbres: one with identical sawtooth partials, and one with PCM wave 02.
// For my personal taste, this behaviour rather enriches the sounding and should be emulated.
// Also, the current partial allocator model probably needs to be refined.
if (debugPartialNum & 8) {
leftPanValue = -leftPanValue;
rightPanValue = -rightPanValue;
}
if (patchCache->PCMPartial) {
pcmNum = patchCache->pcm;
if (synth->controlROMMap->pcmCount > 128) {
// CM-32L, etc. support two "banks" of PCMs, selectable by waveform type parameter.
if (patchCache->waveform > 1) {
pcmNum += 128;
}
}
pcmWave = &synth->pcmWaves[pcmNum];
} else {
pcmWave = NULL;
}
// CONFIRMED: pulseWidthVal calculation is based on information from Mok
pulseWidthVal = (poly->getVelocity() - 64) * (patchCache->srcPartial.wg.pulseWidthVeloSensitivity - 7) + Tables::getInstance().pulseWidth100To255[patchCache->srcPartial.wg.pulseWidth];
if (pulseWidthVal < 0) {
pulseWidthVal = 0;
} else if (pulseWidthVal > 255) {
pulseWidthVal = 255;
}
pair = pairPartial;
alreadyOutputed = false;
tva->reset(part, patchCache->partialParam, rhythmTemp);
tvp->reset(part, patchCache->partialParam);
tvf->reset(patchCache->partialParam, tvp->getBasePitch());
LA32PartialPair::PairType pairType;
LA32PartialPair *useLA32Pair;
if (isRingModulatingSlave()) {
pairType = LA32PartialPair::SLAVE;
useLA32Pair = &pair->la32Pair;
} else {
pairType = LA32PartialPair::MASTER;
la32Pair.init(hasRingModulatingSlave(), mixType == 1);
useLA32Pair = &la32Pair;
}
if (isPCM()) {
useLA32Pair->initPCM(pairType, &synth->pcmROMData[pcmWave->addr], pcmWave->len, pcmWave->loop);
} else {
useLA32Pair->initSynth(pairType, (patchCache->waveform & 1) != 0, pulseWidthVal, patchCache->srcPartial.tvf.resonance + 1);
}
if (!hasRingModulatingSlave()) {
la32Pair.deactivate(LA32PartialPair::SLAVE);
}
}
Bit32u Partial::getAmpValue() {
// SEMI-CONFIRMED: From sample analysis:
// (1) Tested with a single partial playing PCM wave 77 with pitchCoarse 36 and no keyfollow, velocity follow, etc.
// This gives results within +/- 2 at the output (before any DAC bitshifting)
// when sustaining at levels 156 - 255 with no modifiers.
// (2) Tested with a special square wave partial (internal capture ID tva5) at TVA envelope levels 155-255.
// This gives deltas between -1 and 0 compared to the real output. Note that this special partial only produces
// positive amps, so negative still needs to be explored, as well as lower levels.
//
// Also still partially unconfirmed is the behaviour when ramping between levels, as well as the timing.
// TODO: The tests above were performed using the float model, to be refined
Bit32u ampRampVal = 67117056 - ampRamp.nextValue();
if (ampRamp.checkInterrupt()) {
tva->handleInterrupt();
}
return ampRampVal;
}
Bit32u Partial::getCutoffValue() {
if (isPCM()) {
return 0;
}
Bit32u cutoffModifierRampVal = cutoffModifierRamp.nextValue();
if (cutoffModifierRamp.checkInterrupt()) {
tvf->handleInterrupt();
}
return (tvf->getBaseCutoff() << 18) + cutoffModifierRampVal;
}
bool Partial::hasRingModulatingSlave() const {
return pair != NULL && structurePosition == 0 && (mixType == 1 || mixType == 2);
}
bool Partial::isRingModulatingSlave() const {
return pair != NULL && structurePosition == 1 && (mixType == 1 || mixType == 2);
}
bool Partial::isPCM() const {
return pcmWave != NULL;
}
const ControlROMPCMStruct *Partial::getControlROMPCMStruct() const {
if (pcmWave != NULL) {
return pcmWave->controlROMPCMStruct;
}
return NULL;
}
Synth *Partial::getSynth() const {
return synth;
}
TVA *Partial::getTVA() const {
return tva;
}
void Partial::backupCache(const PatchCache &cache) {
if (patchCache == &cache) {
cachebackup = cache;
patchCache = &cachebackup;
}
}
bool Partial::produceOutput(Sample *leftBuf, Sample *rightBuf, unsigned long length) {
if (!isActive() || alreadyOutputed || isRingModulatingSlave()) {
return false;
}
if (poly == NULL) {
synth->printDebug("[Partial %d] *** ERROR: poly is NULL at Partial::produceOutput()!", debugPartialNum);
return false;
}
alreadyOutputed = true;
for (sampleNum = 0; sampleNum < length; sampleNum++) {
if (!tva->isPlaying() || !la32Pair.isActive(LA32PartialPair::MASTER)) {
deactivate();
break;
}
la32Pair.generateNextSample(LA32PartialPair::MASTER, getAmpValue(), tvp->nextPitch(), getCutoffValue());
if (hasRingModulatingSlave()) {
la32Pair.generateNextSample(LA32PartialPair::SLAVE, pair->getAmpValue(), pair->tvp->nextPitch(), pair->getCutoffValue());
if (!pair->tva->isPlaying() || !la32Pair.isActive(LA32PartialPair::SLAVE)) {
pair->deactivate();
if (mixType == 2) {
deactivate();
break;
}
}
}
// Although, LA32 applies panning itself, we assume here it is applied in the mixer, not within a pair.
// Applying the pan value in the log-space looks like a waste of unlog resources. Though, it needs clarification.
Sample sample = la32Pair.nextOutSample();
// FIXME: Sample analysis suggests that the use of panVal is linear, but there are some quirks that still need to be resolved.
#if MT32EMU_USE_FLOAT_SAMPLES
Sample leftOut = (sample * (float)leftPanValue) / 14.0f;
Sample rightOut = (sample * (float)rightPanValue) / 14.0f;
*(leftBuf++) += leftOut;
*(rightBuf++) += rightOut;
#else
// FIXME: Dividing by 7 (or by 14 in a Mok-friendly way) looks of course pointless. Need clarification.
// FIXME2: LA32 may produce distorted sound in case if the absolute value of maximal amplitude of the input exceeds 8191
// when the panning value is non-zero. Most probably the distortion occurs in the same way it does with ring modulation,
// and it seems to be caused by limited precision of the common multiplication circuit.
// From analysis of this overflow, it is obvious that the right channel output is actually found
// by subtraction of the left channel output from the input.
// Though, it is unknown whether this overflow is exploited somewhere.
Sample leftOut = Sample((sample * leftPanValue) >> 8);
Sample rightOut = Sample((sample * rightPanValue) >> 8);
*leftBuf = Synth::clipBit16s((Bit32s)*leftBuf + (Bit32s)leftOut);
*rightBuf = Synth::clipBit16s((Bit32s)*rightBuf + (Bit32s)rightOut);
leftBuf++;
rightBuf++;
#endif
}
sampleNum = 0;
return true;
}
bool Partial::shouldReverb() {
if (!isActive()) {
return false;
}
return patchCache->reverb;
}
void Partial::startAbort() {
// This is called when the partial manager needs to terminate partials for re-use by a new Poly.
tva->startAbort();
}
void Partial::startDecayAll() {
tva->startDecay();
tvp->startDecay();
tvf->startDecay();
}
}
|