1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011-2016 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef MT32EMU_SYNTH_H
#define MT32EMU_SYNTH_H
#include <cstdarg>
#include <cstddef>
#include <cstring>
#include "globals.h"
#include "Types.h"
#include "Enumerations.h"
namespace MT32Emu {
class Analog;
class BReverbModel;
class MemoryRegion;
class MidiEventQueue;
class Part;
class Poly;
class Partial;
class PartialManager;
class Renderer;
class ROMImage;
class PatchTempMemoryRegion;
class RhythmTempMemoryRegion;
class TimbreTempMemoryRegion;
class PatchesMemoryRegion;
class TimbresMemoryRegion;
class SystemMemoryRegion;
class DisplayMemoryRegion;
class ResetMemoryRegion;
struct ControlROMFeatureSet;
struct ControlROMMap;
struct PCMWaveEntry;
struct MemParams;
const Bit8u SYSEX_MANUFACTURER_ROLAND = 0x41;
const Bit8u SYSEX_MDL_MT32 = 0x16;
const Bit8u SYSEX_MDL_D50 = 0x14;
const Bit8u SYSEX_CMD_RQ1 = 0x11; // Request data #1
const Bit8u SYSEX_CMD_DT1 = 0x12; // Data set 1
const Bit8u SYSEX_CMD_WSD = 0x40; // Want to send data
const Bit8u SYSEX_CMD_RQD = 0x41; // Request data
const Bit8u SYSEX_CMD_DAT = 0x42; // Data set
const Bit8u SYSEX_CMD_ACK = 0x43; // Acknowledge
const Bit8u SYSEX_CMD_EOD = 0x45; // End of data
const Bit8u SYSEX_CMD_ERR = 0x4E; // Communications error
const Bit8u SYSEX_CMD_RJC = 0x4F; // Rejection
const Bit32u CONTROL_ROM_SIZE = 64 * 1024;
// Set of multiplexed output streams appeared at the DAC entrance.
template <class T>
struct DACOutputStreams {
T *nonReverbLeft;
T *nonReverbRight;
T *reverbDryLeft;
T *reverbDryRight;
T *reverbWetLeft;
T *reverbWetRight;
};
// Class for the client to supply callbacks for reporting various errors and information
class MT32EMU_EXPORT ReportHandler {
public:
virtual ~ReportHandler() {}
// Callback for debug messages, in vprintf() format
virtual void printDebug(const char *fmt, va_list list);
// Callbacks for reporting errors
virtual void onErrorControlROM() {}
virtual void onErrorPCMROM() {}
// Callback for reporting about displaying a new custom message on LCD
virtual void showLCDMessage(const char *message);
// Callback for reporting actual processing of a MIDI message
virtual void onMIDIMessagePlayed() {}
// Callback for reporting an overflow of the input MIDI queue.
// Returns true if a recovery action was taken and yet another attempt to enqueue the MIDI event is desired.
virtual bool onMIDIQueueOverflow() { return false; }
// Callback invoked when a System Realtime MIDI message is detected at the input.
virtual void onMIDISystemRealtime(Bit8u /* systemRealtime */) {}
// Callbacks for reporting system events
virtual void onDeviceReset() {}
virtual void onDeviceReconfig() {}
// Callbacks for reporting changes of reverb settings
virtual void onNewReverbMode(Bit8u /* mode */) {}
virtual void onNewReverbTime(Bit8u /* time */) {}
virtual void onNewReverbLevel(Bit8u /* level */) {}
// Callbacks for reporting various information
virtual void onPolyStateChanged(Bit8u /* partNum */) {}
virtual void onProgramChanged(Bit8u /* partNum */, const char * /* soundGroupName */, const char * /* patchName */) {}
};
class Synth {
friend class DefaultMidiStreamParser;
friend class Part;
friend class Partial;
friend class PartialManager;
friend class Poly;
friend class Renderer;
friend class RhythmPart;
friend class SamplerateAdapter;
friend class SoxrAdapter;
friend class TVA;
friend class TVP;
private:
// **************************** Implementation fields **************************
PatchTempMemoryRegion *patchTempMemoryRegion;
RhythmTempMemoryRegion *rhythmTempMemoryRegion;
TimbreTempMemoryRegion *timbreTempMemoryRegion;
PatchesMemoryRegion *patchesMemoryRegion;
TimbresMemoryRegion *timbresMemoryRegion;
SystemMemoryRegion *systemMemoryRegion;
DisplayMemoryRegion *displayMemoryRegion;
ResetMemoryRegion *resetMemoryRegion;
Bit8u *paddedTimbreMaxTable;
PCMWaveEntry *pcmWaves; // Array
const ControlROMFeatureSet *controlROMFeatures;
const ControlROMMap *controlROMMap;
Bit8u controlROMData[CONTROL_ROM_SIZE];
Bit16s *pcmROMData;
size_t pcmROMSize; // This is in 16-bit samples, therefore half the number of bytes in the ROM
Bit8u soundGroupIx[128]; // For each standard timbre
const char (*soundGroupNames)[9]; // Array
Bit32u partialCount;
Bit8u chantable[16]; // NOTE: value above 8 means that the channel is not assigned
MidiEventQueue *midiQueue;
volatile Bit32u lastReceivedMIDIEventTimestamp;
volatile Bit32u renderedSampleCount;
MemParams &mt32ram, &mt32default;
BReverbModel *reverbModels[4];
BReverbModel *reverbModel;
bool reverbOverridden;
MIDIDelayMode midiDelayMode;
DACInputMode dacInputMode;
float outputGain;
float reverbOutputGain;
bool reversedStereoEnabled;
bool opened;
bool activated;
bool isDefaultReportHandler;
ReportHandler *reportHandler;
PartialManager *partialManager;
Part *parts[9];
// When a partial needs to be aborted to free it up for use by a new Poly,
// the controller will busy-loop waiting for the sound to finish.
// We emulate this by delaying new MIDI events processing until abortion finishes.
Poly *abortingPoly;
Analog *analog;
Renderer &renderer;
// Binary compatibility helper.
void *reserved;
// **************************** Implementation methods **************************
Bit32u addMIDIInterfaceDelay(Bit32u len, Bit32u timestamp);
bool isAbortingPoly() const { return abortingPoly != NULL; }
void readSysex(Bit8u channel, const Bit8u *sysex, Bit32u len) const;
void initMemoryRegions();
void deleteMemoryRegions();
MemoryRegion *findMemoryRegion(Bit32u addr);
void writeMemoryRegion(const MemoryRegion *region, Bit32u addr, Bit32u len, const Bit8u *data);
void readMemoryRegion(const MemoryRegion *region, Bit32u addr, Bit32u len, Bit8u *data);
bool loadControlROM(const ROMImage &controlROMImage);
bool loadPCMROM(const ROMImage &pcmROMImage);
bool initPCMList(Bit16u mapAddress, Bit16u count);
bool initTimbres(Bit16u mapAddress, Bit16u offset, Bit16u timbreCount, Bit16u startTimbre, bool compressed);
bool initCompressedTimbre(Bit16u drumNum, const Bit8u *mem, Bit32u memLen);
void initReverbModels(bool mt32CompatibleMode);
void initSoundGroups(char newSoundGroupNames[][9]);
void refreshSystemMasterTune();
void refreshSystemReverbParameters();
void refreshSystemReserveSettings();
void refreshSystemChanAssign(Bit8u firstPart, Bit8u lastPart);
void refreshSystemMasterVol();
void refreshSystem();
void reset();
void dispose();
void printPartialUsage(Bit32u sampleOffset = 0);
void newTimbreSet(Bit8u partNum, Bit8u timbreGroup, Bit8u timbreNumber, const char patchName[]);
void printDebug(const char *fmt, ...);
// partNum should be 0..7 for Part 1..8, or 8 for Rhythm
const Part *getPart(Bit8u partNum) const;
public:
static inline Bit16s clipSampleEx(Bit32s sampleEx) {
// Clamp values above 32767 to 32767, and values below -32768 to -32768
// FIXME: Do we really need this stuff? I think these branches are very well predicted. Instead, this introduces a chain.
// The version below is actually a bit faster on my system...
//return ((sampleEx + 0x8000) & ~0xFFFF) ? Bit16s((sampleEx >> 31) ^ 0x7FFF) : (Bit16s)sampleEx;
return ((-0x8000 <= sampleEx) && (sampleEx <= 0x7FFF)) ? Bit16s(sampleEx) : Bit16s((sampleEx >> 31) ^ 0x7FFF);
}
static inline float clipSampleEx(float sampleEx) {
return sampleEx;
}
template <class S>
static inline void muteSampleBuffer(S *buffer, Bit32u len) {
if (buffer == NULL) return;
memset(buffer, 0, len * sizeof(S));
}
static inline void muteSampleBuffer(float *buffer, Bit32u len) {
if (buffer == NULL) return;
// FIXME: Use memset() where compatibility is guaranteed (if this turns out to be a win)
while (len--) {
*(buffer++) = 0.0f;
}
}
static inline Bit16s convertSample(float sample) {
return Synth::clipSampleEx(Bit32s(sample * 16384.0f)); // This multiplier takes into account the DAC bit shift
}
static inline float convertSample(Bit16s sample) {
return float(sample) / 16384.0f; // This multiplier takes into account the DAC bit shift
}
// Returns library version as an integer in format: 0x00MMmmpp, where:
// MM - major version number
// mm - minor version number
// pp - patch number
MT32EMU_EXPORT static Bit32u getLibraryVersionInt();
// Returns library version as a C-string in format: "MAJOR.MINOR.PATCH"
MT32EMU_EXPORT static const char *getLibraryVersionString();
MT32EMU_EXPORT static Bit32u getShortMessageLength(Bit32u msg);
MT32EMU_EXPORT static Bit8u calcSysexChecksum(const Bit8u *data, const Bit32u len, const Bit8u initChecksum = 0);
// Returns output sample rate used in emulation of stereo analog circuitry of hardware units.
// See comment for AnalogOutputMode.
MT32EMU_EXPORT static Bit32u getStereoOutputSampleRate(AnalogOutputMode analogOutputMode);
// Optionally sets callbacks for reporting various errors, information and debug messages
MT32EMU_EXPORT explicit Synth(ReportHandler *useReportHandler = NULL);
MT32EMU_EXPORT ~Synth();
// Used to initialise the MT-32. Must be called before any other function.
// Returns true if initialization was sucessful, otherwise returns false.
// controlROMImage and pcmROMImage represent Control and PCM ROM images for use by synth.
// usePartialCount sets the maximum number of partials playing simultaneously for this session (optional).
// analogOutputMode sets the mode for emulation of analogue circuitry of the hardware units (optional).
MT32EMU_EXPORT bool open(const ROMImage &controlROMImage, const ROMImage &pcmROMImage, Bit32u usePartialCount = DEFAULT_MAX_PARTIALS, AnalogOutputMode analogOutputMode = AnalogOutputMode_COARSE);
// Overloaded method which opens the synth with default partial count.
MT32EMU_EXPORT bool open(const ROMImage &controlROMImage, const ROMImage &pcmROMImage, AnalogOutputMode analogOutputMode);
// Closes the MT-32 and deallocates any memory used by the synthesizer
MT32EMU_EXPORT void close();
// Returns true if the synth is in completely initialized state, otherwise returns false.
MT32EMU_EXPORT bool isOpen() const;
// All the enqueued events are processed by the synth immediately.
MT32EMU_EXPORT void flushMIDIQueue();
// Sets size of the internal MIDI event queue. The queue size is set to the minimum power of 2 that is greater or equal to the size specified.
// The queue is flushed before reallocation.
// Returns the actual queue size being used.
MT32EMU_EXPORT Bit32u setMIDIEventQueueSize(Bit32u);
// Enqueues a MIDI event for subsequent playback.
// The MIDI event will be processed not before the specified timestamp.
// The timestamp is measured as the global rendered sample count since the synth was created (at the native sample rate 32000 Hz).
// The minimum delay involves emulation of the delay introduced while the event is transferred via MIDI interface
// and emulation of the MCU busy-loop while it frees partials for use by a new Poly.
// Calls from multiple threads must be synchronised, although, no synchronisation is required with the rendering thread.
// The methods return false if the MIDI event queue is full and the message cannot be enqueued.
// Enqueues a single short MIDI message to play at specified time. The message must contain a status byte.
MT32EMU_EXPORT bool playMsg(Bit32u msg, Bit32u timestamp);
// Enqueues a single well formed System Exclusive MIDI message to play at specified time.
MT32EMU_EXPORT bool playSysex(const Bit8u *sysex, Bit32u len, Bit32u timestamp);
// Enqueues a single short MIDI message to be processed ASAP. The message must contain a status byte.
MT32EMU_EXPORT bool playMsg(Bit32u msg);
// Enqueues a single well formed System Exclusive MIDI message to be processed ASAP.
MT32EMU_EXPORT bool playSysex(const Bit8u *sysex, Bit32u len);
// WARNING:
// The methods below don't ensure minimum 1-sample delay between sequential MIDI events,
// and a sequence of NoteOn and immediately succeeding NoteOff messages is always silent.
// A thread that invokes these methods must be explicitly synchronised with the thread performing sample rendering.
// Sends a short MIDI message to the synth for immediate playback. The message must contain a status byte.
// See the WARNING above.
MT32EMU_EXPORT void playMsgNow(Bit32u msg);
// Sends unpacked short MIDI message to the synth for immediate playback. The message must contain a status byte.
// See the WARNING above.
MT32EMU_EXPORT void playMsgOnPart(Bit8u part, Bit8u code, Bit8u note, Bit8u velocity);
// Sends a single well formed System Exclusive MIDI message for immediate processing. The length is in bytes.
// See the WARNING above.
MT32EMU_EXPORT void playSysexNow(const Bit8u *sysex, Bit32u len);
// Sends inner body of a System Exclusive MIDI message for direct processing. The length is in bytes.
// See the WARNING above.
MT32EMU_EXPORT void playSysexWithoutFraming(const Bit8u *sysex, Bit32u len);
// Sends inner body of a System Exclusive MIDI message for direct processing. The length is in bytes.
// See the WARNING above.
MT32EMU_EXPORT void playSysexWithoutHeader(Bit8u device, Bit8u command, const Bit8u *sysex, Bit32u len);
// Sends inner body of a System Exclusive MIDI message for direct processing. The length is in bytes.
// See the WARNING above.
MT32EMU_EXPORT void writeSysex(Bit8u channel, const Bit8u *sysex, Bit32u len);
// Allows to disable wet reverb output altogether.
MT32EMU_EXPORT void setReverbEnabled(bool reverbEnabled);
// Returns whether wet reverb output is enabled.
MT32EMU_EXPORT bool isReverbEnabled() const;
// Sets override reverb mode. In this mode, emulation ignores sysexes (or the related part of them) which control the reverb parameters.
// This mode is in effect until it is turned off. When the synth is re-opened, the override mode is unchanged but the state
// of the reverb model is reset to default.
MT32EMU_EXPORT void setReverbOverridden(bool reverbOverridden);
// Returns whether reverb settings are overridden.
MT32EMU_EXPORT bool isReverbOverridden() const;
// Forces reverb model compatibility mode. By default, the compatibility mode corresponds to the used control ROM version.
// Invoking this method with the argument set to true forces emulation of old MT-32 reverb circuit.
// When the argument is false, emulation of the reverb circuit used in new generation of MT-32 compatible modules is enforced
// (these include CM-32L and LAPC-I).
MT32EMU_EXPORT void setReverbCompatibilityMode(bool mt32CompatibleMode);
// Returns whether reverb is in old MT-32 compatibility mode.
MT32EMU_EXPORT bool isMT32ReverbCompatibilityMode() const;
// Returns whether default reverb compatibility mode is the old MT-32 compatibility mode.
MT32EMU_EXPORT bool isDefaultReverbMT32Compatible() const;
// Sets new DAC input mode. See DACInputMode for details.
MT32EMU_EXPORT void setDACInputMode(DACInputMode mode);
// Returns current DAC input mode. See DACInputMode for details.
MT32EMU_EXPORT DACInputMode getDACInputMode() const;
// Sets new MIDI delay mode. See MIDIDelayMode for details.
MT32EMU_EXPORT void setMIDIDelayMode(MIDIDelayMode mode);
// Returns current MIDI delay mode. See MIDIDelayMode for details.
MT32EMU_EXPORT MIDIDelayMode getMIDIDelayMode() const;
// Sets output gain factor for synth output channels. Applied to all output samples and unrelated with the synth's Master volume,
// it rather corresponds to the gain of the output analog circuitry of the hardware units. However, together with setReverbOutputGain()
// it offers to the user a capability to control the gain of reverb and non-reverb output channels independently.
// Ignored in DACInputMode_PURE
MT32EMU_EXPORT void setOutputGain(float gain);
// Returns current output gain factor for synth output channels.
MT32EMU_EXPORT float getOutputGain() const;
// Sets output gain factor for the reverb wet output channels. It rather corresponds to the gain of the output
// analog circuitry of the hardware units. However, together with setOutputGain() it offers to the user a capability
// to control the gain of reverb and non-reverb output channels independently.
//
// Note: We're currently emulate CM-32L/CM-64 reverb quite accurately and the reverb output level closely
// corresponds to the level of digital capture. Although, according to the CM-64 PCB schematic,
// there is a difference in the reverb analogue circuit, and the resulting output gain is 0.68
// of that for LA32 analogue output. This factor is applied to the reverb output gain.
// Ignored in DACInputMode_PURE
MT32EMU_EXPORT void setReverbOutputGain(float gain);
// Returns current output gain factor for reverb wet output channels.
MT32EMU_EXPORT float getReverbOutputGain() const;
// Swaps left and right output channels.
MT32EMU_EXPORT void setReversedStereoEnabled(bool enabled);
// Returns whether left and right output channels are swapped.
MT32EMU_EXPORT bool isReversedStereoEnabled() const;
// Returns actual sample rate used in emulation of stereo analog circuitry of hardware units.
// See comment for render() below.
MT32EMU_EXPORT Bit32u getStereoOutputSampleRate() const;
// Renders samples to the specified output stream as if they were sampled at the analog stereo output.
// When AnalogOutputMode is set to ACCURATE (OVERSAMPLED), the output signal is upsampled to 48 (96) kHz in order
// to retain emulation accuracy in whole audible frequency spectra. Otherwise, native digital signal sample rate is retained.
// getStereoOutputSampleRate() can be used to query actual sample rate of the output signal.
// The length is in frames, not bytes (in 16-bit stereo, one frame is 4 bytes). Uses NATIVE byte ordering.
MT32EMU_EXPORT void render(Bit16s *stream, Bit32u len);
// Same as above but outputs to a float stereo stream.
MT32EMU_EXPORT void render(float *stream, Bit32u len);
// Renders samples to the specified output streams as if they appeared at the DAC entrance.
// No further processing performed in analog circuitry emulation is applied to the signal.
// NULL may be specified in place of any or all of the stream buffers to skip it.
// The length is in samples, not bytes. Uses NATIVE byte ordering.
MT32EMU_EXPORT void renderStreams(Bit16s *nonReverbLeft, Bit16s *nonReverbRight, Bit16s *reverbDryLeft, Bit16s *reverbDryRight, Bit16s *reverbWetLeft, Bit16s *reverbWetRight, Bit32u len);
void renderStreams(const DACOutputStreams<Bit16s> &streams, Bit32u len) {
renderStreams(streams.nonReverbLeft, streams.nonReverbRight, streams.reverbDryLeft, streams.reverbDryRight, streams.reverbWetLeft, streams.reverbWetRight, len);
}
// Same as above but outputs to float streams.
MT32EMU_EXPORT void renderStreams(float *nonReverbLeft, float *nonReverbRight, float *reverbDryLeft, float *reverbDryRight, float *reverbWetLeft, float *reverbWetRight, Bit32u len);
void renderStreams(const DACOutputStreams<float> &streams, Bit32u len) {
renderStreams(streams.nonReverbLeft, streams.nonReverbRight, streams.reverbDryLeft, streams.reverbDryRight, streams.reverbWetLeft, streams.reverbWetRight, len);
}
// Returns true when there is at least one active partial, otherwise false.
MT32EMU_EXPORT bool hasActivePartials() const;
// Returns true if the synth is active and subsequent calls to render() may result in non-trivial output (i.e. silence).
// The synth is considered active when either there are pending MIDI events in the queue, there is at least one active partial,
// or the reverb is (somewhat unreliably) detected as being active.
MT32EMU_EXPORT bool isActive();
// Returns the maximum number of partials playing simultaneously.
MT32EMU_EXPORT Bit32u getPartialCount() const;
// Fills in current states of all the parts into the array provided. The array must have at least 9 entries to fit values for all the parts.
// If the value returned for a part is true, there is at least one active non-releasing partial playing on this part.
// This info is useful in emulating behaviour of LCD display of the hardware units.
MT32EMU_EXPORT void getPartStates(bool *partStates) const;
// Returns current states of all the parts as a bit set. The least significant bit corresponds to the state of part 1,
// total of 9 bits hold the states of all the parts. If the returned bit for a part is set, there is at least one active
// non-releasing partial playing on this part. This info is useful in emulating behaviour of LCD display of the hardware units.
MT32EMU_EXPORT Bit32u getPartStates() const;
// Fills in current states of all the partials into the array provided. The array must be large enough to accommodate states of all the partials.
MT32EMU_EXPORT void getPartialStates(PartialState *partialStates) const;
// Fills in current states of all the partials into the array provided. Each byte in the array holds states of 4 partials
// starting from the least significant bits. The state of each partial is packed in a pair of bits.
// The array must be large enough to accommodate states of all the partials (see getPartialCount()).
MT32EMU_EXPORT void getPartialStates(Bit8u *partialStates) const;
// Fills in information about currently playing notes on the specified part into the arrays provided. The arrays must be large enough
// to accommodate data for all the playing notes. The maximum number of simultaneously playing notes cannot exceed the number of partials.
// Argument partNumber should be 0..7 for Part 1..8, or 8 for Rhythm.
// Returns the number of currently playing notes on the specified part.
MT32EMU_EXPORT Bit32u getPlayingNotes(Bit8u partNumber, Bit8u *keys, Bit8u *velocities) const;
// Returns name of the patch set on the specified part.
// Argument partNumber should be 0..7 for Part 1..8, or 8 for Rhythm.
MT32EMU_EXPORT const char *getPatchName(Bit8u partNumber) const;
// Stores internal state of emulated synth into an array provided (as it would be acquired from hardware).
MT32EMU_EXPORT void readMemory(Bit32u addr, Bit32u len, Bit8u *data);
}; // class Synth
} // namespace MT32Emu
#endif // #ifndef MT32EMU_SYNTH_H
|