aboutsummaryrefslogtreecommitdiff
path: root/audio/softsynth/mt32/Synth.h
blob: 97d4644ee2bd73dadb56900258d0e1599053c11f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
 * Copyright (C) 2011, 2012, 2013, 2014 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 2.1 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef MT32EMU_SYNTH_H
#define MT32EMU_SYNTH_H

//#include <cstdarg>
//#include <cstring>

namespace MT32Emu {

class Analog;
class BReverbModel;
class MemoryRegion;
class MidiEventQueue;
class Part;
class Poly;
class Partial;
class PartialManager;

class PatchTempMemoryRegion;
class RhythmTempMemoryRegion;
class TimbreTempMemoryRegion;
class PatchesMemoryRegion;
class TimbresMemoryRegion;
class SystemMemoryRegion;
class DisplayMemoryRegion;
class ResetMemoryRegion;

struct ControlROMMap;
struct PCMWaveEntry;
struct MemParams;

/**
 * Methods for emulating the connection between the LA32 and the DAC, which involves
 * some hacks in the real devices for doubling the volume.
 * See also http://en.wikipedia.org/wiki/Roland_MT-32#Digital_overflow
 */
enum DACInputMode {
	// Produces samples at double the volume, without tricks.
	// * Nicer overdrive characteristics than the DAC hacks (it simply clips samples within range)
	// * Higher quality than the real devices
	DACInputMode_NICE,

	// Produces samples that exactly match the bits output from the emulated LA32.
	// * Nicer overdrive characteristics than the DAC hacks (it simply clips samples within range)
	// * Much less likely to overdrive than any other mode.
	// * Half the volume of any of the other modes.
	// * Output gain is ignored for both LA32 and reverb output.
	// * Perfect for developers while debugging :)
	DACInputMode_PURE,

	// Re-orders the LA32 output bits as in early generation MT-32s (according to Wikipedia).
	// Bit order at DAC (where each number represents the original LA32 output bit number, and XX means the bit is always low):
	// 15 13 12 11 10 09 08 07 06 05 04 03 02 01 00 XX
	DACInputMode_GENERATION1,

	// Re-orders the LA32 output bits as in later generations (personally confirmed on my CM-32L - KG).
	// Bit order at DAC (where each number represents the original LA32 output bit number):
	// 15 13 12 11 10 09 08 07 06 05 04 03 02 01 00 14
	DACInputMode_GENERATION2
};

// Methods for emulating the effective delay of incoming MIDI messages introduced by a MIDI interface.
enum MIDIDelayMode {
	// Process incoming MIDI events immediately.
	MIDIDelayMode_IMMEDIATE,

	// Delay incoming short MIDI messages as if they where transferred via a MIDI cable to a real hardware unit and immediate sysex processing.
	// This ensures more accurate timing of simultaneous NoteOn messages.
	MIDIDelayMode_DELAY_SHORT_MESSAGES_ONLY,

	// Delay all incoming MIDI events as if they where transferred via a MIDI cable to a real hardware unit.
	MIDIDelayMode_DELAY_ALL
};

// Methods for emulating the effects of analogue circuits of real hardware units on the output signal.
enum AnalogOutputMode {
	// Only digital path is emulated. The output samples correspond to the digital signal at the DAC entrance.
	AnalogOutputMode_DIGITAL_ONLY,
	// Coarse emulation of LPF circuit. High frequencies are boosted, sample rate remains unchanged.
	AnalogOutputMode_COARSE,
	// Finer emulation of LPF circuit. Output signal is upsampled to 48 kHz to allow emulation of audible mirror spectra above 16 kHz,
	// which is passed through the LPF circuit without significant attenuation.
	AnalogOutputMode_ACCURATE,
	// Same as AnalogOutputMode_ACCURATE mode but the output signal is 2x oversampled, i.e. the output sample rate is 96 kHz.
	// This makes subsequent resampling easier. Besides, due to nonlinear passband of the LPF emulated, it takes fewer number of MACs
	// compared to a regular LPF FIR implementations.
	AnalogOutputMode_OVERSAMPLED
};

enum ReverbMode {
	REVERB_MODE_ROOM,
	REVERB_MODE_HALL,
	REVERB_MODE_PLATE,
	REVERB_MODE_TAP_DELAY
};

enum PartialState {
	PartialState_INACTIVE,
	PartialState_ATTACK,
	PartialState_SUSTAIN,
	PartialState_RELEASE
};

const Bit8u SYSEX_MANUFACTURER_ROLAND = 0x41;

const Bit8u SYSEX_MDL_MT32 = 0x16;
const Bit8u SYSEX_MDL_D50 = 0x14;

const Bit8u SYSEX_CMD_RQ1 = 0x11; // Request data #1
const Bit8u SYSEX_CMD_DT1 = 0x12; // Data set 1
const Bit8u SYSEX_CMD_WSD = 0x40; // Want to send data
const Bit8u SYSEX_CMD_RQD = 0x41; // Request data
const Bit8u SYSEX_CMD_DAT = 0x42; // Data set
const Bit8u SYSEX_CMD_ACK = 0x43; // Acknowledge
const Bit8u SYSEX_CMD_EOD = 0x45; // End of data
const Bit8u SYSEX_CMD_ERR = 0x4E; // Communications error
const Bit8u SYSEX_CMD_RJC = 0x4F; // Rejection

const int MAX_SYSEX_SIZE = 512; // FIXME: Does this correspond to a real MIDI buffer used in h/w devices?

const unsigned int CONTROL_ROM_SIZE = 64 * 1024;

class ReportHandler {
friend class Synth;

public:
	virtual ~ReportHandler() {}

protected:

	// Callback for debug messages, in vprintf() format
	virtual void printDebug(const char *fmt, va_list list);

	// Callbacks for reporting various errors and information
	virtual void onErrorControlROM() {}
	virtual void onErrorPCMROM() {}
	virtual void showLCDMessage(const char *message);
	virtual void onMIDIMessagePlayed() {}
	virtual void onDeviceReset() {}
	virtual void onDeviceReconfig() {}
	virtual void onNewReverbMode(Bit8u /* mode */) {}
	virtual void onNewReverbTime(Bit8u /* time */) {}
	virtual void onNewReverbLevel(Bit8u /* level */) {}
	virtual void onPolyStateChanged(int /* partNum */) {}
	virtual void onProgramChanged(int /* partNum */, int /* bankNum */, const char * /* patchName */) {}
};

class Synth {
friend class Part;
friend class RhythmPart;
friend class Poly;
friend class Partial;
friend class PartialManager;
friend class Tables;
friend class MemoryRegion;
friend class TVA;
friend class TVF;
friend class TVP;
private:
	PatchTempMemoryRegion *patchTempMemoryRegion;
	RhythmTempMemoryRegion *rhythmTempMemoryRegion;
	TimbreTempMemoryRegion *timbreTempMemoryRegion;
	PatchesMemoryRegion *patchesMemoryRegion;
	TimbresMemoryRegion *timbresMemoryRegion;
	SystemMemoryRegion *systemMemoryRegion;
	DisplayMemoryRegion *displayMemoryRegion;
	ResetMemoryRegion *resetMemoryRegion;

	Bit8u *paddedTimbreMaxTable;

	bool isEnabled;

	PCMWaveEntry *pcmWaves; // Array

	const ControlROMFeatureSet *controlROMFeatures;
	const ControlROMMap *controlROMMap;
	Bit8u controlROMData[CONTROL_ROM_SIZE];
	Bit16s *pcmROMData;
	size_t pcmROMSize; // This is in 16-bit samples, therefore half the number of bytes in the ROM

	unsigned int partialCount;
	Bit8s chantable[32]; // FIXME: Need explanation why 32 is set, obviously it should be 16

	MidiEventQueue *midiQueue;
	volatile Bit32u lastReceivedMIDIEventTimestamp;
	volatile Bit32u renderedSampleCount;

	MemParams &mt32ram, &mt32default;

	BReverbModel *reverbModels[4];
	BReverbModel *reverbModel;
	bool reverbOverridden;

	MIDIDelayMode midiDelayMode;
	DACInputMode dacInputMode;

	float outputGain;
	float reverbOutputGain;

	bool reversedStereoEnabled;

	bool isOpen;

	bool isDefaultReportHandler;
	ReportHandler *reportHandler;

	PartialManager *partialManager;
	Part *parts[9];

	// When a partial needs to be aborted to free it up for use by a new Poly,
	// the controller will busy-loop waiting for the sound to finish.
	// We emulate this by delaying new MIDI events processing until abortion finishes.
	Poly *abortingPoly;

	Analog *analog;

	Bit32u addMIDIInterfaceDelay(Bit32u len, Bit32u timestamp);

	void produceLA32Output(Sample *buffer, Bit32u len);
	void convertSamplesToOutput(Sample *buffer, Bit32u len);
	bool isAbortingPoly() const;
	void doRenderStreams(Sample *nonReverbLeft, Sample *nonReverbRight, Sample *reverbDryLeft, Sample *reverbDryRight, Sample *reverbWetLeft, Sample *reverbWetRight, Bit32u len);

	void readSysex(unsigned char channel, const Bit8u *sysex, Bit32u len) const;
	void initMemoryRegions();
	void deleteMemoryRegions();
	MemoryRegion *findMemoryRegion(Bit32u addr);
	void writeMemoryRegion(const MemoryRegion *region, Bit32u addr, Bit32u len, const Bit8u *data);
	void readMemoryRegion(const MemoryRegion *region, Bit32u addr, Bit32u len, Bit8u *data);

	bool loadControlROM(const ROMImage &controlROMImage);
	bool loadPCMROM(const ROMImage &pcmROMImage);

	bool initPCMList(Bit16u mapAddress, Bit16u count);
	bool initTimbres(Bit16u mapAddress, Bit16u offset, int timbreCount, int startTimbre, bool compressed);
	bool initCompressedTimbre(int drumNum, const Bit8u *mem, unsigned int memLen);

	void refreshSystemMasterTune();
	void refreshSystemReverbParameters();
	void refreshSystemReserveSettings();
	void refreshSystemChanAssign(unsigned int firstPart, unsigned int lastPart);
	void refreshSystemMasterVol();
	void refreshSystem();
	void reset();

	void printPartialUsage(unsigned long sampleOffset = 0);

	void polyStateChanged(int partNum);
	void newTimbreSet(int partNum, Bit8u timbreGroup, const char patchName[]);
	void printDebug(const char *fmt, ...);

	// partNum should be 0..7 for Part 1..8, or 8 for Rhythm
	const Part *getPart(unsigned int partNum) const;

public:
	static inline Sample clipSampleEx(SampleEx sampleEx) {
#if MT32EMU_USE_FLOAT_SAMPLES
		return sampleEx;
#else
		// Clamp values above 32767 to 32767, and values below -32768 to -32768
		// FIXME: Do we really need this stuff? I think these branches are very well predicted. Instead, this introduces a chain.
		// The version below is actually a bit faster on my system...
		//return ((sampleEx + 0x8000) & ~0xFFFF) ? (sampleEx >> 31) ^ 0x7FFF : (Sample)sampleEx;
		return ((-0x8000 <= sampleEx) && (sampleEx <= 0x7FFF)) ? (Sample)sampleEx : (sampleEx >> 31) ^ 0x7FFF;
#endif
	}

	static inline void muteSampleBuffer(Sample *buffer, Bit32u len) {
		if (buffer == NULL) return;

#if MT32EMU_USE_FLOAT_SAMPLES
		// FIXME: Use memset() where compatibility is guaranteed (if this turns out to be a win)
		while (len--) {
			*(buffer++) = 0.0f;
		}
#else
		memset(buffer, 0, len * sizeof(Sample));
#endif
	}

	static Bit32u getShortMessageLength(Bit32u msg);
	static Bit8u calcSysexChecksum(const Bit8u *data, const Bit32u len, const Bit8u initChecksum = 0);

	// Optionally sets callbacks for reporting various errors, information and debug messages
	Synth(ReportHandler *useReportHandler = NULL);
	~Synth();

	// Used to initialise the MT-32. Must be called before any other function.
	// Returns true if initialization was sucessful, otherwise returns false.
	// controlROMImage and pcmROMImage represent Control and PCM ROM images for use by synth.
	// usePartialCount sets the maximum number of partials playing simultaneously for this session (optional).
	// analogOutputMode sets the mode for emulation of analogue circuitry of the hardware units (optional).
	bool open(const ROMImage &controlROMImage, const ROMImage &pcmROMImage, unsigned int usePartialCount = DEFAULT_MAX_PARTIALS, AnalogOutputMode analogOutputMode = AnalogOutputMode_COARSE);

	// Overloaded method which opens the synth with default partial count.
	bool open(const ROMImage &controlROMImage, const ROMImage &pcmROMImage, AnalogOutputMode analogOutputMode);

	// Closes the MT-32 and deallocates any memory used by the synthesizer
	void close(bool forced = false);

	// All the enqueued events are processed by the synth immediately.
	void flushMIDIQueue();

	// Sets size of the internal MIDI event queue. The queue size is set to the minimum power of 2 that is greater or equal to the size specified.
	// The queue is flushed before reallocation.
	// Returns the actual queue size being used.
	Bit32u setMIDIEventQueueSize(Bit32u);

	// Enqueues a MIDI event for subsequent playback.
	// The MIDI event will be processed not before the specified timestamp.
	// The timestamp is measured as the global rendered sample count since the synth was created (at the native sample rate 32000 Hz).
	// The minimum delay involves emulation of the delay introduced while the event is transferred via MIDI interface
	// and emulation of the MCU busy-loop while it frees partials for use by a new Poly.
	// Calls from multiple threads must be synchronised, although, no synchronisation is required with the rendering thread.
	// The methods return false if the MIDI event queue is full and the message cannot be enqueued.

	// Enqueues a single short MIDI message. The message must contain a status byte.
	bool playMsg(Bit32u msg, Bit32u timestamp);
	// Enqueues a single well formed System Exclusive MIDI message.
	bool playSysex(const Bit8u *sysex, Bit32u len, Bit32u timestamp);

	// Overloaded methods for the MIDI events to be processed ASAP.
	bool playMsg(Bit32u msg);
	bool playSysex(const Bit8u *sysex, Bit32u len);

	// WARNING:
	// The methods below don't ensure minimum 1-sample delay between sequential MIDI events,
	// and a sequence of NoteOn and immediately succeeding NoteOff messages is always silent.
	// A thread that invokes these methods must be explicitly synchronised with the thread performing sample rendering.

	// Sends a short MIDI message to the synth for immediate playback. The message must contain a status byte.
	void playMsgNow(Bit32u msg);
	void playMsgOnPart(unsigned char part, unsigned char code, unsigned char note, unsigned char velocity);

	// Sends a string of Sysex commands to the MT-32 for immediate interpretation
	// The length is in bytes
	void playSysexNow(const Bit8u *sysex, Bit32u len);
	void playSysexWithoutFraming(const Bit8u *sysex, Bit32u len);
	void playSysexWithoutHeader(unsigned char device, unsigned char command, const Bit8u *sysex, Bit32u len);
	void writeSysex(unsigned char channel, const Bit8u *sysex, Bit32u len);

	void setReverbEnabled(bool reverbEnabled);
	bool isReverbEnabled() const;
	// Sets override reverb mode. In this mode, emulation ignores sysexes (or the related part of them) which control the reverb parameters.
	// This mode is in effect until it is turned off. When the synth is re-opened, the override mode is unchanged but the state
	// of the reverb model is reset to default.
	void setReverbOverridden(bool reverbOverridden);
	bool isReverbOverridden() const;
	// Forces reverb model compatibility mode. By default, the compatibility mode corresponds to the used control ROM version.
	// Invoking this method with the argument set to true forces emulation of old MT-32 reverb circuit.
	// When the argument is false, emulation of the reverb circuit used in new generation of MT-32 compatible modules is enforced
	// (these include CM-32L and LAPC-I).
	void setReverbCompatibilityMode(bool mt32CompatibleMode);
	bool isMT32ReverbCompatibilityMode() const;
	void setDACInputMode(DACInputMode mode);
	DACInputMode getDACInputMode() const;
	void setMIDIDelayMode(MIDIDelayMode mode);
	MIDIDelayMode getMIDIDelayMode() const;

	// Sets output gain factor for synth output channels. Applied to all output samples and unrelated with the synth's Master volume,
	// it rather corresponds to the gain of the output analog circuitry of the hardware units. However, together with setReverbOutputGain()
	// it offers to the user a capability to control the gain of reverb and non-reverb output channels independently.
	// Ignored in DACInputMode_PURE
	void setOutputGain(float);
	float getOutputGain() const;

	// Sets output gain factor for the reverb wet output channels. It rather corresponds to the gain of the output
	// analog circuitry of the hardware units. However, together with setOutputGain() it offers to the user a capability
	// to control the gain of reverb and non-reverb output channels independently.
	//
	// Note: We're currently emulate CM-32L/CM-64 reverb quite accurately and the reverb output level closely
	// corresponds to the level of digital capture. Although, according to the CM-64 PCB schematic,
	// there is a difference in the reverb analogue circuit, and the resulting output gain is 0.68
	// of that for LA32 analogue output. This factor is applied to the reverb output gain.
	// Ignored in DACInputMode_PURE
	void setReverbOutputGain(float);
	float getReverbOutputGain() const;

	void setReversedStereoEnabled(bool enabled);
	bool isReversedStereoEnabled();

	// Returns actual sample rate used in emulation of stereo analog circuitry of hardware units.
	// See comment for render() below.
	unsigned int getStereoOutputSampleRate() const;

	// Renders samples to the specified output stream as if they were sampled at the analog stereo output.
	// When AnalogOutputMode is set to ACCURATE, the output signal is upsampled to 48 kHz in order
	// to retain emulation accuracy in whole audible frequency spectra. Otherwise, native digital signal sample rate is retained.
	// getStereoOutputSampleRate() can be used to query actual sample rate of the output signal.
	// The length is in frames, not bytes (in 16-bit stereo, one frame is 4 bytes).
	void render(Sample *stream, Bit32u len);

	// Renders samples to the specified output streams as if they appeared at the DAC entrance.
	// No further processing performed in analog circuitry emulation is applied to the signal.
	// NULL may be specified in place of any or all of the stream buffers.
	// The length is in samples, not bytes.
	void renderStreams(Sample *nonReverbLeft, Sample *nonReverbRight, Sample *reverbDryLeft, Sample *reverbDryRight, Sample *reverbWetLeft, Sample *reverbWetRight, Bit32u len);

	// Returns true when there is at least one active partial, otherwise false.
	bool hasActivePartials() const;

	// Returns true if hasActivePartials() returns true, or reverb is (somewhat unreliably) detected as being active.
	bool isActive() const;

	// Returns the maximum number of partials playing simultaneously.
	unsigned int getPartialCount() const;

	// Fills in current states of all the parts into the array provided. The array must have at least 9 entries to fit values for all the parts.
	// If the value returned for a part is true, there is at least one active non-releasing partial playing on this part.
	// This info is useful in emulating behaviour of LCD display of the hardware units.
	void getPartStates(bool *partStates) const;

	// Fills in current states of all the partials into the array provided. The array must be large enough to accommodate states of all the partials.
	void getPartialStates(PartialState *partialStates) const;

	// Fills in information about currently playing notes on the specified part into the arrays provided. The arrays must be large enough
	// to accommodate data for all the playing notes. The maximum number of simultaneously playing notes cannot exceed the number of partials.
	// Argument partNumber should be 0..7 for Part 1..8, or 8 for Rhythm.
	// Returns the number of currently playing notes on the specified part.
	unsigned int getPlayingNotes(unsigned int partNumber, Bit8u *keys, Bit8u *velocities) const;

	// Returns name of the patch set on the specified part.
	// Argument partNumber should be 0..7 for Part 1..8, or 8 for Rhythm.
	const char *getPatchName(unsigned int partNumber) const;

	void readMemory(Bit32u addr, Bit32u len, Bit8u *data);
};

}

#endif