aboutsummaryrefslogtreecommitdiff
path: root/audio/softsynth/mt32/TVF.cpp
blob: 7ba9c7f2e0787feb4952c576fae011bcb6141c4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
 * Copyright (C) 2011-2017 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 2.1 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "internals.h"

#include "TVF.h"
#include "LA32Ramp.h"
#include "Partial.h"
#include "Poly.h"
#include "Synth.h"
#include "Tables.h"

namespace MT32Emu {

// Note that when entering nextPhase(), newPhase is set to phase + 1, and the descriptions/names below refer to
// newPhase's value.
enum {
	// When this is the target phase, level[0] is targeted within time[0]
	// Note that this phase is always set up in reset(), not nextPhase()
	PHASE_ATTACK = 1,

	// When this is the target phase, level[1] is targeted within time[1]
	PHASE_2 = 2,

	// When this is the target phase, level[2] is targeted within time[2]
	PHASE_3 = 3,

	// When this is the target phase, level[3] is targeted within time[3]
	PHASE_4 = 4,

	// When this is the target phase, immediately goes to PHASE_RELEASE unless the poly is set to sustain.
	// Otherwise level[3] is continued with increment 0 - no phase change will occur until some external influence (like pedal release)
	PHASE_SUSTAIN = 5,

	// 0 is targeted within time[4] (the time calculation is quite different from the other phases)
	PHASE_RELEASE = 6,

	// 0 is targeted with increment 0 (thus theoretically staying that way forever)
	PHASE_DONE = 7
};

static int calcBaseCutoff(const TimbreParam::PartialParam *partialParam, Bit32u basePitch, unsigned int key, bool quirkTVFBaseCutoffLimit) {
	// This table matches the values used by a real LAPC-I.
	static const Bit8s biasLevelToBiasMult[] = {85, 42, 21, 16, 10, 5, 2, 0, -2, -5, -10, -16, -21, -74, -85};
	// These values represent unique options with no consistent pattern, so we have to use something like a table in any case.
	// The table entries, when divided by 21, match approximately what the manual claims:
	// -1, -1/2, -1/4, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 5/4, 3/2, 2, s1, s2
	// Note that the entry for 1/8 is rounded to 2 (from 1/8 * 21 = 2.625), which seems strangely inaccurate compared to the others.
	static const Bit8s keyfollowMult21[] = {-21, -10, -5, 0, 2, 5, 8, 10, 13, 16, 18, 21, 26, 32, 42, 21, 21};
	int baseCutoff = keyfollowMult21[partialParam->tvf.keyfollow] - keyfollowMult21[partialParam->wg.pitchKeyfollow];
	// baseCutoff range now: -63 to 63
	baseCutoff *= int(key) - 60;
	// baseCutoff range now: -3024 to 3024
	int biasPoint = partialParam->tvf.biasPoint;
	if ((biasPoint & 0x40) == 0) {
		// biasPoint range here: 0 to 63
		int bias = biasPoint + 33 - key; // bias range here: -75 to 84
		if (bias > 0) {
			bias = -bias; // bias range here: -1 to -84
			baseCutoff += bias * biasLevelToBiasMult[partialParam->tvf.biasLevel]; // Calculation range: -7140 to 7140
			// baseCutoff range now: -10164 to 10164
		}
	} else {
		// biasPoint range here: 64 to 127
		int bias = biasPoint - 31 - key; // bias range here: -75 to 84
		if (bias < 0) {
			baseCutoff += bias * biasLevelToBiasMult[partialParam->tvf.biasLevel]; // Calculation range: -6375 to 6375
			// baseCutoff range now: -9399 to 9399
		}
	}
	// baseCutoff range now: -10164 to 10164
	baseCutoff += ((partialParam->tvf.cutoff << 4) - 800);
	// baseCutoff range now: -10964 to 10964
	if (baseCutoff >= 0) {
		// FIXME: Potentially bad if baseCutoff ends up below -2056?
		int pitchDeltaThing = (basePitch >> 4) + baseCutoff - 3584;
		if (pitchDeltaThing > 0) {
			baseCutoff -= pitchDeltaThing;
		}
	} else if (quirkTVFBaseCutoffLimit) {
		if (baseCutoff <= -0x400) {
			baseCutoff = -400;
		}
	} else {
		if (baseCutoff < -2048) {
			baseCutoff = -2048;
		}
	}
	baseCutoff += 2056;
	baseCutoff >>= 4; // PORTABILITY NOTE: Hmm... Depends whether it could've been below -2056, but maybe arithmetic shift assumed?
	if (baseCutoff > 255) {
		baseCutoff = 255;
	}
	return Bit8u(baseCutoff);
}

TVF::TVF(const Partial *usePartial, LA32Ramp *useCutoffModifierRamp) :
	partial(usePartial), cutoffModifierRamp(useCutoffModifierRamp) {
}

void TVF::startRamp(Bit8u newTarget, Bit8u newIncrement, int newPhase) {
	target = newTarget;
	phase = newPhase;
	cutoffModifierRamp->startRamp(newTarget, newIncrement);
#if MT32EMU_MONITOR_TVF >= 1
	partial->getSynth()->printDebug("[+%lu] [Partial %d] TVF,ramp,%x,%s%x,%d", partial->debugGetSampleNum(), partial->debugGetPartialNum(), newTarget, (newIncrement & 0x80) ? "-" : "+", (newIncrement & 0x7F), newPhase);
#endif
}

void TVF::reset(const TimbreParam::PartialParam *newPartialParam, unsigned int basePitch) {
	partialParam = newPartialParam;

	unsigned int key = partial->getPoly()->getKey();
	unsigned int velocity = partial->getPoly()->getVelocity();

	const Tables *tables = &Tables::getInstance();

	baseCutoff = calcBaseCutoff(newPartialParam, basePitch, key, partial->getSynth()->controlROMFeatures->quirkTVFBaseCutoffLimit);
#if MT32EMU_MONITOR_TVF >= 1
	partial->getSynth()->printDebug("[+%lu] [Partial %d] TVF,base,%d", partial->debugGetSampleNum(), partial->debugGetPartialNum(), baseCutoff);
#endif

	int newLevelMult = velocity * newPartialParam->tvf.envVeloSensitivity;
	newLevelMult >>= 6;
	newLevelMult += 109 - newPartialParam->tvf.envVeloSensitivity;
	newLevelMult += (signed(key) - 60) >> (4 - newPartialParam->tvf.envDepthKeyfollow);
	if (newLevelMult < 0) {
		newLevelMult = 0;
	}
	newLevelMult *= newPartialParam->tvf.envDepth;
	newLevelMult >>= 6;
	if (newLevelMult > 255) {
		newLevelMult = 255;
	}
	levelMult = newLevelMult;

	if (newPartialParam->tvf.envTimeKeyfollow != 0) {
		keyTimeSubtraction = (signed(key) - 60) >> (5 - newPartialParam->tvf.envTimeKeyfollow);
	} else {
		keyTimeSubtraction = 0;
	}

	int newTarget = (newLevelMult * newPartialParam->tvf.envLevel[0]) >> 8;
	int envTimeSetting = newPartialParam->tvf.envTime[0] - keyTimeSubtraction;
	int newIncrement;
	if (envTimeSetting <= 0) {
		newIncrement = (0x80 | 127);
	} else {
		newIncrement = tables->envLogarithmicTime[newTarget] - envTimeSetting;
		if (newIncrement <= 0) {
			newIncrement = 1;
		}
	}
	cutoffModifierRamp->reset();
	startRamp(newTarget, newIncrement, PHASE_2 - 1);
}

Bit8u TVF::getBaseCutoff() const {
	return baseCutoff;
}

void TVF::handleInterrupt() {
	nextPhase();
}

void TVF::startDecay() {
	if (phase >= PHASE_RELEASE) {
		return;
	}
	if (partialParam->tvf.envTime[4] == 0) {
		startRamp(0, 1, PHASE_DONE - 1);
	} else {
		startRamp(0, -partialParam->tvf.envTime[4], PHASE_DONE - 1);
	}
}

void TVF::nextPhase() {
	const Tables *tables = &Tables::getInstance();
	int newPhase = phase + 1;

	switch (newPhase) {
	case PHASE_DONE:
		startRamp(0, 0, newPhase);
		return;
	case PHASE_SUSTAIN:
	case PHASE_RELEASE:
		// FIXME: Afaict newPhase should never be PHASE_RELEASE here. And if it were, this is an odd way to handle it.
		if (!partial->getPoly()->canSustain()) {
			phase = newPhase; // FIXME: Correct?
			startDecay(); // FIXME: This should actually start decay even if phase is already 6. Does that matter?
			return;
		}
		startRamp((levelMult * partialParam->tvf.envLevel[3]) >> 8, 0, newPhase);
		return;
	}

	int envPointIndex = phase;
	int envTimeSetting = partialParam->tvf.envTime[envPointIndex] - keyTimeSubtraction;

	int newTarget = (levelMult * partialParam->tvf.envLevel[envPointIndex]) >> 8;
	int newIncrement;
	if (envTimeSetting > 0) {
		int targetDelta = newTarget - target;
		if (targetDelta == 0) {
			if (newTarget == 0) {
				targetDelta = 1;
				newTarget = 1;
			} else {
				targetDelta = -1;
				newTarget--;
			}
		}
		newIncrement = tables->envLogarithmicTime[targetDelta < 0 ? -targetDelta : targetDelta] - envTimeSetting;
		if (newIncrement <= 0) {
			newIncrement = 1;
		}
		if (targetDelta < 0) {
			newIncrement |= 0x80;
		}
	} else {
		newIncrement = newTarget >= target ? (0x80 | 127) : 127;
	}
	startRamp(newTarget, newIncrement, newPhase);
}

} // namespace MT32Emu