aboutsummaryrefslogtreecommitdiff
path: root/audio/softsynth/mt32/tables.cpp
blob: 9fdb595467c18c52e8dbe3d17a064a49b957c2e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/* Copyright (c) 2003-2005 Various contributors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */


// FIXME: Avoid using rand
#define FORBIDDEN_SYMBOL_EXCEPTION_rand

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "mt32emu.h"

#if defined(MACOSX) || defined(SOLARIS) || defined(__MINGW32__)
// Older versions of Mac OS X didn't supply a powf function, so using it
// will cause a binary incompatibility when trying to run a binary built
// on a newer OS X release on an older one. And Solaris 8 doesn't provide
// powf, floorf, fabsf etc. at all.
// Cross-compiled MinGW32 toolchains suffer from a cross-compile bug in
// libstdc++. math/stubs.o should be empty, but it comes with a symbol for
// powf, resulting in a linker error because of multiple definitions.
// Hence we re-define them here. The only potential drawback is that it
// might be a little bit slower this way.
#define powf(x,y)	((float)pow(x,y))
#define floorf(x)	((float)floor(x))
#define fabsf(x)	((float)fabs(x))
#endif

#define FIXEDPOINT_MAKE(x, point) ((Bit32u)((1 << point) * x))

namespace MT32Emu {

//Amplitude time velocity follow exponential coefficients
static const double tvcatconst[5] = {0.0, 0.002791309, 0.005942882, 0.012652792, 0.026938637};
static const double tvcatmult[5] = {1.0, 1.072662811, 1.169129367, 1.288579123, 1.229630539};

// These are division constants for the TVF depth key follow
static const Bit32u depexp[5] = {3000, 950, 485, 255, 138};

//Envelope time keyfollow exponential coefficients
static const double tkcatconst[5] = {0.0, 0.005853144, 0.011148054, 0.019086143, 0.043333215};
static const double tkcatmult[5] = {1.0, 1.058245688, 1.048488989, 1.016049301, 1.097538067};

// Begin filter stuff

// Pre-warp the coefficients of a numerator or denominator.
// Note that a0 is assumed to be 1, so there is no wrapping
// of it.
static void prewarp(double *a1, double *a2, double fc, double fs) {
	double wp;

	wp = 2.0 * fs * tan(DOUBLE_PI * fc / fs);

	*a2 = *a2 / (wp * wp);
	*a1 = *a1 / wp;
}

// Transform the numerator and denominator coefficients
// of s-domain biquad section into corresponding
// z-domain coefficients.
//
//      Store the 4 IIR coefficients in array pointed by coef
//      in following order:
//             beta1, beta2    (denominator)
//             alpha1, alpha2  (numerator)
//
// Arguments:
//             a0-a2   - s-domain numerator coefficients
//             b0-b2   - s-domain denominator coefficients
//             k               - filter gain factor. initially set to 1
//                                and modified by each biquad section in such
//                                a way, as to make it the coefficient by
//                                which to multiply the overall filter gain
//                                in order to achieve a desired overall filter gain,
//                                specified in initial value of k.
//             fs             - sampling rate (Hz)
//             coef    - array of z-domain coefficients to be filled in.
//
// Return:
//             On return, set coef z-domain coefficients
static void bilinear(double a0, double a1, double a2, double b0, double b1, double b2, double *k, double fs, float *coef) {
	double ad, bd;

	// alpha (Numerator in s-domain)
	ad = 4. * a2 * fs * fs + 2. * a1 * fs + a0;
	// beta (Denominator in s-domain)
	bd = 4. * b2 * fs * fs + 2. * b1* fs + b0;

	// update gain constant for this section
	*k *= ad/bd;

	// Denominator
	*coef++ = (float)((2. * b0 - 8. * b2 * fs * fs) / bd);           // beta1
	*coef++ = (float)((4. * b2 * fs * fs - 2. * b1 * fs + b0) / bd); // beta2

	// Nominator
	*coef++ = (float)((2. * a0 - 8. * a2 * fs * fs) / ad);           // alpha1
	*coef = (float)((4. * a2 * fs * fs - 2. * a1 * fs + a0) / ad);   // alpha2
}

// a0-a2: numerator coefficients
// b0-b2: denominator coefficients
// fc: Filter cutoff frequency
// fs: sampling rate
// k: overall gain factor
// coef: pointer to 4 iir coefficients
static void szxform(double *a0, double *a1, double *a2, double *b0, double *b1, double *b2, double fc, double fs, double *k, float *coef) {
	// Calculate a1 and a2 and overwrite the original values
	prewarp(a1, a2, fc, fs);
	prewarp(b1, b2, fc, fs);
	bilinear(*a0, *a1, *a2, *b0, *b1, *b2, k, fs, coef);
}

static void initFilter(float fs, float fc, float *icoeff, float Q) {
	float *coef;
	double a0, a1, a2, b0, b1, b2;

	double k = 1.5;    // Set overall filter gain factor
	coef = icoeff + 1; // Skip k, or gain

	// Section 1
	a0 = 1.0;
	a1 = 0;
	a2 = 0;
	b0 = 1.0;
	b1 = 0.765367 / Q; // Divide by resonance or Q
	b2 = 1.0;
	szxform(&a0, &a1, &a2, &b0, &b1, &b2, fc, fs, &k, coef);
	coef += 4;         // Point to next filter section

	// Section 2
	a0 = 1.0;
	a1 = 0;
	a2 = 0;
	b0 = 1.0;
	b1 = 1.847759 / Q;
	b2 = 1.0;
	szxform(&a0, &a1, &a2, &b0, &b1, &b2, fc, fs, &k, coef);

	icoeff[0] = (float)k;
}

void Tables::initFiltCoeff(float samplerate) {
	for (int j = 0; j < FILTERGRAN; j++) {
		for (int res = 0; res < 31; res++) {
			float tres = resonanceFactor[res];
			initFilter((float)samplerate, (((float)(j+1.0)/FILTERGRAN)) * ((float)samplerate/2), filtCoeff[j][res], tres);
		}
	}
}

void Tables::initEnvelopes(float samplerate) {
	for (int lf = 0; lf <= 100; lf++) {
		float elf = (float)lf;

		// General envelope
		// This formula fits observation of the CM-32L by +/- 0.03s or so for the second time value in the filter,
		// when all other times were 0 and all levels were 100. Note that variations occur depending on the level
		// delta of the section, which we're not fully emulating.
		float seconds = powf(2.0f, (elf / 8.0f) + 7.0f) / 32768.0f;
		int samples = (int)(seconds * samplerate);
		envTime[lf] = samples;

		// Cap on envelope times depending on the level delta
		if (elf == 0) {
			envDeltaMaxTime[lf] = 63;
		} else {
			float cap = 11.0f * (float)log(elf) + 64;
			if (cap > 100.0f) {
				cap = 100.0f;
			}
			envDeltaMaxTime[lf] = (int)cap;
		}


		// This (approximately) represents the time durations when the target level is 0.
		// Not sure why this is a special case, but it's seen to be from the real thing.
		seconds = powf(2, (elf / 8.0f) + 6) / 32768.0f;
		envDecayTime[lf]  = (int)(seconds * samplerate);

		// I am certain of this:  Verified by hand LFO log
		lfoPeriod[lf] = (Bit32u)(((float)samplerate) / (powf(1.088883372f, (float)lf) * 0.021236044f));
	}
}

void Tables::initMT32ConstantTables(Synth *synth) {
	int lf;
	synth->printDebug("Initializing Pitch Tables");
	for (lf = -108; lf <= 108; lf++) {
		tvfKeyfollowMult[lf + 108] = (int)(256 * powf(2.0f, (float)(lf / 24.0f)));
		//synth->printDebug("KT %d = %d", f, keytable[f+108]);
	}

	for (int res = 0; res < 31; res++) {
		resonanceFactor[res] = powf((float)res / 30.0f, 5.0f) + 1.0f;
	}

	int period = 65536;

	for (int ang = 0; ang < period; ang++) {
		int halfang = (period / 2);
		int angval = ang % halfang;
		float tval = (((float)angval / (float)halfang) - 0.5f) * 2;
		if (ang >= halfang)
			tval = -tval;
		sintable[ang] = (Bit16s)(tval * 50.0f) + 50;
	}

	int velt, dep;
	float tempdep;
	for (velt = 0; velt < 128; velt++) {
		for (dep = 0; dep < 5; dep++) {
			if (dep > 0) {
				float ff = (float)(exp(3.5f * tvcatconst[dep] * (59.0f - (float)velt)) * tvcatmult[dep]);
				tempdep = 256.0f * ff;
				envTimeVelfollowMult[dep][velt] = (int)tempdep;
				//if ((velt % 16) == 0) {
				//	synth->printDebug("Key %d, depth %d, factor %d", velt, dep, (int)tempdep);
				//}
			} else
				envTimeVelfollowMult[dep][velt] = 256;
		}

		for (dep = -7; dep < 8; dep++) {
			float fldep = (float)abs(dep) / 7.0f;
			fldep = powf(fldep,2.5f);
			if (dep < 0)
				fldep = fldep * -1.0f;
			pwVelfollowAdd[dep+7][velt] = Bit32s((fldep * (float)velt * 100) / 128.0);
		}
	}

	for (dep = 0; dep <= 100; dep++) {
		for (velt = 0; velt < 128; velt++) {
			float fdep = (float)dep * 0.000347013f; // Another MT-32 constant
			float fv = ((float)velt - 64.0f)/7.26f;
			float flogdep = powf(10, fdep * fv);
			float fbase;

			if (velt > 64)
				synth->tables.tvfVelfollowMult[velt][dep] = (int)(flogdep * 256.0);
			else {
				//lff = 1 - (pow(((128.0 - (float)lf) / 64.0),.25) * ((float)velt / 96));
				fbase = 1 - (powf(((float)dep / 100.0f),.25f) * ((float)(64-velt) / 96.0f));
				synth->tables.tvfVelfollowMult[velt][dep] = (int)(fbase * 256.0);
			}
			//synth->printDebug("Filvel dep %d velt %d = %x", dep, velt, filveltable[velt][dep]);
		}
	}

	for (lf = 0; lf < 128; lf++) {
		float veloFract = lf / 127.0f;
		for (int velsens = 0; velsens <= 100; velsens++) {
			float sensFract = (velsens - 50) / 50.0f;
			if (velsens < 50) {
				tvaVelfollowMult[lf][velsens] = FIXEDPOINT_MAKE(1.0f / powf(2.0f, veloFract * -sensFract * 127.0f / 20.0f), 8);
			} else {
				tvaVelfollowMult[lf][velsens] = FIXEDPOINT_MAKE(1.0f / powf(2.0f, (1.0f - veloFract) * sensFract * 127.0f / 20.0f), 8);
			}
		}
	}

	for (lf = 0; lf <= 100; lf++) {
		// Converts the 0-100 range used by the MT-32 to volume multiplier
		volumeMult[lf] = FIXEDPOINT_MAKE(powf((float)lf / 100.0f, FLOAT_LN), 7);
	}

	for (lf = 0; lf <= 100; lf++) {
		float mv = lf / 100.0f;
		float pt = mv - 0.5f;
		if (pt < 0)
			pt = 0;

		// Original (CC version)
		//pwFactor[lf] = (int)(pt * 210.04f) + 128;

		// Approximation from sample comparison
		pwFactor[lf] = (int)(pt * 179.0f) + 128;
	}

	for (unsigned int i = 0; i < MAX_SAMPLE_OUTPUT; i++) {
		int myRand;
		myRand = rand();
		//myRand = ((myRand - 16383) * 7168) >> 16;
		// This one is slower but works with all values of RAND_MAX
		myRand = (int)((myRand - RAND_MAX / 2) / (float)RAND_MAX * (7168 / 2));
		//FIXME:KG: Original ultimately set the lowest two bits to 0, for no obvious reason
		noiseBuf[i] = (Bit16s)myRand;
	}

	float tdist;
	float padjtable[51];
	for (lf = 0; lf <= 50; lf++) {
		if (lf == 0)
			padjtable[lf] = 7;
		else if (lf == 1)
			padjtable[lf] = 6;
		else if (lf == 2)
			padjtable[lf] = 5;
		else if (lf == 3)
			padjtable[lf] = 4;
		else if (lf == 4)
			padjtable[lf] = 4 - (0.333333f);
		else if (lf == 5)
			padjtable[lf] = 4 - (0.333333f * 2);
		else if (lf == 6)
			padjtable[lf] = 3;
		else if ((lf > 6) && (lf <= 12)) {
			tdist = (lf-6.0f) / 6.0f;
			padjtable[lf] = 3.0f - tdist;
		} else if ((lf > 12) && (lf <= 25)) {
			tdist = (lf - 12.0f) / 13.0f;
			padjtable[lf] = 2.0f - tdist;
		} else {
			tdist = (lf - 25.0f) / 25.0f;
			padjtable[lf] = 1.0f - tdist;
		}
		//synth->printDebug("lf %d = padj %f", lf, (double)padjtable[lf]);
	}

	float lfp, depf, finalval, tlf;
	int depat, pval, depti;
	for (lf = 0; lf <= 10; lf++) {
		// I believe the depth is cubed or something

		for (depat = 0; depat <= 100; depat++) {
			if (lf > 0) {
				depti = abs(depat - 50);
				tlf = (float)lf - padjtable[depti];
				if (tlf < 0)
					tlf = 0;
				lfp = (float)exp(0.713619942f * tlf) / 407.4945111f;

				if (depat < 50)
					finalval = 4096.0f * powf(2, -lfp);
				else
					finalval = 4096.0f * powf(2, lfp);
				pval = (int)finalval;

				pitchEnvVal[lf][depat] = pval;
				//synth->printDebug("lf %d depat %d pval %d tlf %f lfp %f", lf,depat,pval, (double)tlf, (double)lfp);
			} else {
				pitchEnvVal[lf][depat] = 4096;
				//synth->printDebug("lf %d depat %d pval 4096", lf, depat);
			}
		}
	}
	for (lf = 0; lf <= 100; lf++) {
		// It's linear - verified on MT-32 - one of the few things linear
		lfp = ((float)lf * 0.1904f) / 310.55f;

		for (depat = 0; depat <= 100; depat++) {
			depf = ((float)depat - 50.0f) / 50.0f;
			//finalval = pow(2, lfp * depf * .5);
			finalval = 4096.0f + (4096.0f * lfp * depf);

			pval = (int)finalval;

			lfoShift[lf][depat] = pval;

			//synth->printDebug("lf %d depat %d pval %x", lf,depat,pval);
		}
	}

	for (lf = 0; lf <= 12; lf++) {
		for (int distval = 0; distval < 128; distval++) {
			float amplog, dval;
			if (lf == 0) {
				amplog = 0;
				dval = 1;
				tvaBiasMult[lf][distval] = 256;
			} else {
				/*
				amplog = powf(1.431817011f, (float)lf) / FLOAT_PI;
				dval = ((128.0f - (float)distval) / 128.0f);
				amplog = exp(amplog);
				dval = powf(amplog, dval) / amplog;
				tvaBiasMult[lf][distval] = (int)(dval * 256.0);
				*/
				// Lets assume for a second it's linear

				// Distance of full volume reduction
				amplog = (float)(12.0f / (float)lf) * 24.0f;
				if (distval > amplog) {
					tvaBiasMult[lf][distval] = 0;
				} else {
					dval = (amplog - (float)distval) / amplog;
					tvaBiasMult[lf][distval] = (int)(dval * 256.0f);
				}
			}
			//synth->printDebug("Ampbias lf %d distval %d = %f (%x) %f", lf, distval, (double)dval, tvaBiasMult[lf][distval],(double)amplog);
		}
	}

	for (lf = 0; lf <= 14; lf++) {
		for (int distval = 0; distval < 128; distval++) {
			float filval = fabsf((float)((lf - 7) * 12) / 7.0f);
			float amplog, dval;
			if (lf == 7) {
				amplog = 0;
				dval = 1;
				tvfBiasMult[lf][distval] = 256;
			} else {
				//amplog = pow(1.431817011, filval) / FLOAT_PI;
				amplog = powf(1.531817011f, filval) / FLOAT_PI;
				dval = (128.0f - (float)distval) / 128.0f;
				amplog = (float)exp(amplog);
				dval = powf(amplog,dval)/amplog;
				if (lf < 8) {
					tvfBiasMult[lf][distval] = (int)(dval * 256.0f);
				} else {
					dval = powf(dval, 0.3333333f);
					if (dval < 0.01f)
						dval = 0.01f;
					dval = 1 / dval;
					tvfBiasMult[lf][distval] = (int)(dval * 256.0f);
				}
			}
			//synth->printDebug("Fbias lf %d distval %d = %f (%x) %f", lf, distval, (double)dval, tvfBiasMult[lf][distval],(double)amplog);
		}
	}
}

// Per-note table initialisation follows

static void initSaw(NoteLookup *noteLookup, Bit32s div2) {
	int tmpdiv = div2 << 16;
	for (int rsaw = 0; rsaw <= 100; rsaw++) {
		float fsaw;
		if (rsaw < 50)
			fsaw = 50.0f;
		else
			fsaw = (float)rsaw;

		//(66 - (((A8 - 50) / 50) ^ 0.63) * 50) / 132
		float sawfact = (66.0f - (powf((fsaw - 50.0f) / 50.0f, 0.63f) * 50.0f)) / 132.0f;
		noteLookup->sawTable[rsaw] = (int)(sawfact * (float)tmpdiv) >> 16;
		//synth->printDebug("F %d divtable %d saw %d sawtable %d", f, div, rsaw, sawtable[f][rsaw]);
	}
}

static void initDep(KeyLookup *keyLookup, float f) {
	for (int dep = 0; dep < 5; dep++) {
		if (dep == 0) {
			keyLookup->envDepthMult[dep] = 256;
			keyLookup->envTimeMult[dep] = 256;
		} else {
			float depfac = 3000.0f;
			float ff, tempdep;
			depfac = (float)depexp[dep];

			ff = (f - (float)MIDDLEC) / depfac;
			tempdep = powf(2, ff) * 256.0f;
			keyLookup->envDepthMult[dep] = (int)tempdep;

			ff = (float)(exp(tkcatconst[dep] * ((float)MIDDLEC - f)) * tkcatmult[dep]);
			keyLookup->envTimeMult[dep] = (int)(ff * 256.0f);
		}
	}
	//synth->printDebug("F %f d1 %x d2 %x d3 %x d4 %x d5 %x", (double)f, noteLookup->fildepTable[0], noteLookup->fildepTable[1], noteLookup->fildepTable[2], noteLookup->fildepTable[3], noteLookup->fildepTable[4]);
}

Bit16s Tables::clampWF(Synth *synth, const char *n, float ampVal, double input) {
	Bit32s x = (Bit32s)(input * ampVal);
	if (x < -ampVal - 1) {
		synth->printDebug("%s==%d<-WGAMP-1!", n, x);
		x = (Bit32s)(-ampVal - 1);
	} else if (x > ampVal) {
		synth->printDebug("%s==%d>WGAMP!", n, x);
		x = (Bit32s)ampVal;
	}
	return (Bit16s)x;
}

File *Tables::initWave(Synth *synth, NoteLookup *noteLookup, float ampVal, float div2, File *file) {
	int iDiv2 = (int)div2;
	noteLookup->waveformSize[0] = iDiv2 << 1;
	noteLookup->waveformSize[1] = iDiv2 << 1;
	noteLookup->waveformSize[2] = iDiv2 << 2;
	for (int i = 0; i < 3; i++) {
		if (noteLookup->waveforms[i] == NULL) {
			noteLookup->waveforms[i] = new Bit16s[noteLookup->waveformSize[i]];
		}
	}
	if (file != NULL) {
		for (int i = 0; i < 3 && file != NULL; i++) {
			size_t len = noteLookup->waveformSize[i];
			for (unsigned int j = 0; j < len; j++) {
				if (!file->readBit16u((Bit16u *)&noteLookup->waveforms[i][j])) {
					synth->printDebug("Error reading wave file cache!");
					file->close();
					file = NULL;
					break;
				}
			}
		}
	}
	if (file == NULL) {
		double sd = DOUBLE_PI / div2;

		for (int fa = 0; fa < (iDiv2 << 1); fa++) {
			// sa ranges from 0 to 2PI
			double sa = fa * sd;

			// Calculate a sample for the bandlimited sawtooth wave
			double saw = 0.0;
			int sincs = iDiv2 >> 1;
			double sinus = 1.0;
			for (int sincNum = 1; sincNum <= sincs; sincNum++) {
				saw += sin(sinus * sa) / sinus;
				sinus++;
			}

			// This works pretty well
			// Multiplied by 0.84 so that the spikes caused by bandlimiting don't overdrive the amplitude
			noteLookup->waveforms[0][fa] = clampWF(synth, "saw", ampVal, -saw / (0.5 * DOUBLE_PI) * 0.84);
			noteLookup->waveforms[1][fa] = clampWF(synth, "cos", ampVal, -cos(sa / 2.0));
			noteLookup->waveforms[2][fa * 2] = clampWF(synth, "cosoff_0", ampVal, -cos(sa - DOUBLE_PI));
			noteLookup->waveforms[2][fa * 2 + 1] = clampWF(synth, "cosoff_1", ampVal, -cos((sa + (sd / 2)) - DOUBLE_PI));
		}
	}
	return file;
}

static void initFiltTable(NoteLookup *noteLookup, float freq, float rate) {
	for (int tr = 0; tr <= 200; tr++) {
		float ftr = (float)tr;

		// Verified exact on MT-32
		if (tr > 100)
			ftr = 100.0f + (powf((ftr - 100.0f) / 100.0f, 3.0f) * 100.0f);

		// I think this is the one
		float brsq = powf(10.0f, (tr / 50.0f) - 1.0f);
		noteLookup->filtTable[0][tr] = (int)((freq * brsq) / (rate / 2) * FILTERGRAN);
		if (noteLookup->filtTable[0][tr]>=((FILTERGRAN*15)/16))
			noteLookup->filtTable[0][tr] = ((FILTERGRAN*15)/16);

		float brsa = powf(10.0f, ((tr / 55.0f) - 1.0f)) / 2.0f;
		noteLookup->filtTable[1][tr] = (int)((freq * brsa) / (rate / 2) * FILTERGRAN);
		if (noteLookup->filtTable[1][tr]>=((FILTERGRAN*15)/16))
			noteLookup->filtTable[1][tr] = ((FILTERGRAN*15)/16);
	}
}

static void initNFiltTable(NoteLookup *noteLookup, float freq, float rate) {
	for (int cf = 0; cf <= 100; cf++) {
		float cfmult = (float)cf;

		for (int tf = 0;tf <= 100; tf++) {
			float tfadd = (float)tf;

			//float freqsum = exp((cfmult + tfadd) / 30.0f) / 4.0f;
			//float freqsum = 0.15f * exp(0.45f * ((cfmult + tfadd) / 10.0f));

			float freqsum = powf(2.0f, ((cfmult + tfadd) - 40.0f) / 16.0f);

			noteLookup->nfiltTable[cf][tf] = (int)((freq * freqsum) / (rate / 2) * FILTERGRAN);
			if (noteLookup->nfiltTable[cf][tf] >= ((FILTERGRAN * 15) / 16))
				noteLookup->nfiltTable[cf][tf] = ((FILTERGRAN * 15) / 16);
		}
	}
}

File *Tables::initNote(Synth *synth, NoteLookup *noteLookup, float note, float rate, float masterTune, PCMWaveEntry *pcmWaves, File *file) {
	float freq = (float)(masterTune * pow(2.0, ((double)note - MIDDLEA) / 12.0));
	float div2 = rate * 2.0f / freq;
	noteLookup->div2 = (int)div2;

	if (noteLookup->div2 == 0)
		noteLookup->div2 = 1;

	initSaw(noteLookup, noteLookup->div2);

	//synth->printDebug("Note %f; freq=%f, div=%f", (double)note, (double)freq, (double) rate / freq);
	file = initWave(synth, noteLookup, WGAMP, div2, file);

	// Create the pitch tables
	if (noteLookup->wavTable == NULL)
		noteLookup->wavTable = new Bit32u[synth->controlROMMap->pcmCount];
	double rateMult = 32000.0 / rate;
	double tuner = freq * 65536.0f;
	for (int pc = 0; pc < synth->controlROMMap->pcmCount; pc++) {
		noteLookup->wavTable[pc] = (int)(tuner / pcmWaves[pc].tune * rateMult);
	}

	initFiltTable(noteLookup, freq, rate);
	initNFiltTable(noteLookup, freq, rate);
	return file;
}

bool Tables::initNotes(Synth *synth, PCMWaveEntry *pcmWaves, float rate, float masterTune) {
	const char *NoteNames[12] = {
		"C ", "C#", "D ", "D#", "E ", "F ", "F#", "G ", "G#", "A ", "A#", "B "
	};
	char filename[64];
	int intRate = (int)rate;
	char version[4] = {0, 0, 0, 5};
	sprintf(filename, "waveformcache-%d-%.2f.raw", intRate, (double)masterTune);

	File *file = NULL;
	char header[20];
	memcpy(header, "MT32WAVE", 8);
	int pos = 8;
	// Version...
	for (int i = 0; i < 4; i++)
		header[pos++] = version[i];
	header[pos++] = (char)((intRate >> 24) & 0xFF);
	header[pos++] = (char)((intRate >> 16) & 0xFF);
	header[pos++] = (char)((intRate >> 8) & 0xFF);
	header[pos++] = (char)(intRate & 0xFF);
	int intTuning = (int)masterTune;
	header[pos++] = (char)((intTuning >> 8) & 0xFF);
	header[pos++] = (char)(intTuning & 0xFF);
	header[pos++] = 0;
	header[pos] = (char)((masterTune - intTuning) * 10);
#if MT32EMU_WAVECACHEMODE < 2
	bool reading = false;
	file = synth->openFile(filename, File::OpenMode_read);
	if (file != NULL) {
		char fileHeader[20];
		if (file->read(fileHeader, 20) == 20) {
			if (memcmp(fileHeader, header, 20) == 0) {
				Bit16u endianCheck;
				if (file->readBit16u(&endianCheck)) {
					if (endianCheck == 1) {
						reading = true;
					} else {
						synth->printDebug("Endian check in %s does not match expected", filename);
					}
				} else {
					synth->printDebug("Unable to read endian check in %s", filename);
				}
			} else {
				synth->printDebug("Header of %s does not match expected", filename);
			}
		} else {
			synth->printDebug("Error reading 16 bytes of %s", filename);
		}
		if (!reading) {
			file->close();
			file = NULL;
		}
	} else {
		synth->printDebug("Unable to open %s for reading", filename);
	}
#endif

	float progress = 0.0f;
	bool abort = false;
	synth->report(ReportType_progressInit, &progress);
	for (int f = LOWEST_NOTE; f <= HIGHEST_NOTE; f++) {
		synth->printDebug("Initializing note %s%d", NoteNames[f % 12], (f / 12) - 2);
		NoteLookup *noteLookup = &noteLookups[f - LOWEST_NOTE];
		file = initNote(synth, noteLookup, (float)f, rate, masterTune, pcmWaves, file);
		progress = (f - LOWEST_NOTE + 1) / (float)NUM_NOTES;
		abort = synth->report(ReportType_progressInit, &progress) != 0;
		if (abort)
			break;
	}

#if MT32EMU_WAVECACHEMODE == 0 || MT32EMU_WAVECACHEMODE == 2
	if (file == NULL) {
		file = synth->openFile(filename, File::OpenMode_write);
		if (file != NULL) {
			if (file->write(header, 20) == 20 && file->writeBit16u(1)) {
				for (int f = 0; f < NUM_NOTES; f++) {
					for (int i = 0; i < 3 && file != NULL; i++) {
						int len = noteLookups[f].waveformSize[i];
						for (int j = 0; j < len; j++) {
							if (!file->writeBit16u(noteLookups[f].waveforms[i][j])) {
								synth->printDebug("Error writing waveform cache file");
								file->close();
								file = NULL;
								break;
							}
						}
					}
				}
			} else {
				synth->printDebug("Error writing 16-byte header to %s - won't continue saving", filename);
			}
		} else {
			synth->printDebug("Unable to open %s for writing - won't be created", filename);
		}
	}
#endif

	if (file != NULL)
		synth->closeFile(file);
	return !abort;
}

void Tables::freeNotes() {
	for (int t = 0; t < 3; t++) {
		for (int m = 0; m < NUM_NOTES; m++) {
			if (noteLookups[m].waveforms[t] != NULL) {
				delete[] noteLookups[m].waveforms[t];
				noteLookups[m].waveforms[t] = NULL;
				noteLookups[m].waveformSize[t] = 0;
			}
			if (noteLookups[m].wavTable != NULL) {
				delete[] noteLookups[m].wavTable;
				noteLookups[m].wavTable = NULL;
			}
		}
	}
	initializedMasterTune = 0.0f;
}

Tables::Tables() {
	initializedSampleRate = 0.0f;
	initializedMasterTune = 0.0f;
	memset(&noteLookups, 0, sizeof(noteLookups));
}

bool Tables::init(Synth *synth, PCMWaveEntry *pcmWaves, float sampleRate, float masterTune) {
	if (sampleRate <= 0.0f) {
		synth->printDebug("Bad sampleRate (%f <= 0.0f)", (double)sampleRate);
		return false;
	}
	if (initializedSampleRate == 0.0f) {
		initMT32ConstantTables(synth);
	}
	if (initializedSampleRate != sampleRate) {
		initFiltCoeff(sampleRate);
		initEnvelopes(sampleRate);
		for (int key = 12; key <= 108; key++) {
			initDep(&keyLookups[key - 12], (float)key);
		}
	}
	if (initializedSampleRate != sampleRate || initializedMasterTune != masterTune) {
		freeNotes();
		if (!initNotes(synth, pcmWaves, sampleRate, masterTune)) {
			return false;
		}
		initializedSampleRate = sampleRate;
		initializedMasterTune = masterTune;
	}
	return true;
}

}