1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* LGPL licensed version of MAMEs fmopl (V0.37a modified) by
* Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <math.h>
#include "mame.h"
#include "common/textconsole.h"
#include "common/util.h"
#if defined (_WIN32_WCE) || defined (__SYMBIAN32__) || defined(__GP32__) || defined(GP2X) || defined (__MAEMO__) || defined(__DS__) || defined (__MINT__) || defined(__N64__)
#include "common/config-manager.h"
#endif
#if defined(__DS__)
#include "dsmain.h"
#endif
namespace OPL {
namespace MAME {
OPL::~OPL() {
MAME::OPLDestroy(_opl);
_opl = 0;
}
bool OPL::init(int rate) {
if (_opl)
MAME::OPLDestroy(_opl);
_opl = MAME::makeAdLibOPL(rate);
return (_opl != 0);
}
void OPL::reset() {
MAME::OPLResetChip(_opl);
}
void OPL::write(int a, int v) {
MAME::OPLWrite(_opl, a, v);
}
byte OPL::read(int a) {
return MAME::OPLRead(_opl, a);
}
void OPL::writeReg(int r, int v) {
MAME::OPLWriteReg(_opl, r, v);
}
void OPL::readBuffer(int16 *buffer, int length) {
MAME::YM3812UpdateOne(_opl, buffer, length);
}
/* -------------------- preliminary define section --------------------- */
/* attack/decay rate time rate */
#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
#define FREQ_BITS 24 /* frequency turn */
/* counter bits = 20 , octerve 7 */
#define FREQ_RATE (1<<(FREQ_BITS-20))
#define TL_BITS (FREQ_BITS+2)
/* final output shift , limit minimum and maximum */
#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
/* -------------------- quality selection --------------------- */
/* sinwave entries */
/* used static memory = SIN_ENT * 4 (byte) */
#ifdef __DS__
#define SIN_ENT_SHIFT 8
#else
#define SIN_ENT_SHIFT 11
#endif
#define SIN_ENT (1<<SIN_ENT_SHIFT)
/* output level entries (envelope,sinwave) */
/* envelope counter lower bits */
int ENV_BITS;
/* envelope output entries */
int EG_ENT;
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
/* used static memory = EG_ENT*4 (byte) */
int EG_OFF; /* OFF */
int EG_DED;
int EG_DST; /* DECAY START */
int EG_AED;
#define EG_AST 0 /* ATTACK START */
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
/* LFO table entries */
#define VIB_ENT 512
#define VIB_SHIFT (32-9)
#define AMS_ENT 512
#define AMS_SHIFT (32-9)
#define VIB_RATE_SHIFT 8
#define VIB_RATE (1<<VIB_RATE_SHIFT)
/* -------------------- local defines , macros --------------------- */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
/* envelope phase */
#define ENV_MOD_RR 0x00
#define ENV_MOD_DR 0x01
#define ENV_MOD_AR 0x02
/* -------------------- tables --------------------- */
static const int slot_array[32] = {
0, 2, 4, 1, 3, 5,-1,-1,
6, 8,10, 7, 9,11,-1,-1,
12,14,16,13,15,17,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1
};
static uint KSL_TABLE[8 * 16];
static const double KSL_TABLE_SEED[8 * 16] = {
/* OCT 0 */
0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000,
/* OCT 1 */
0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000,
0.000, 0.750, 1.125, 1.500,
1.875, 2.250, 2.625, 3.000,
/* OCT 2 */
0.000, 0.000, 0.000, 0.000,
0.000, 1.125, 1.875, 2.625,
3.000, 3.750, 4.125, 4.500,
4.875, 5.250, 5.625, 6.000,
/* OCT 3 */
0.000, 0.000, 0.000, 1.875,
3.000, 4.125, 4.875, 5.625,
6.000, 6.750, 7.125, 7.500,
7.875, 8.250, 8.625, 9.000,
/* OCT 4 */
0.000, 0.000, 3.000, 4.875,
6.000, 7.125, 7.875, 8.625,
9.000, 9.750, 10.125, 10.500,
10.875, 11.250, 11.625, 12.000,
/* OCT 5 */
0.000, 3.000, 6.000, 7.875,
9.000, 10.125, 10.875, 11.625,
12.000, 12.750, 13.125, 13.500,
13.875, 14.250, 14.625, 15.000,
/* OCT 6 */
0.000, 6.000, 9.000, 10.875,
12.000, 13.125, 13.875, 14.625,
15.000, 15.750, 16.125, 16.500,
16.875, 17.250, 17.625, 18.000,
/* OCT 7 */
0.000, 9.000, 12.000, 13.875,
15.000, 16.125, 16.875, 17.625,
18.000, 18.750, 19.125, 19.500,
19.875, 20.250, 20.625, 21.000
};
/* sustain level table (3db per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
static int SL_TABLE[16];
static const uint SL_TABLE_SEED[16] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31
};
#define TL_MAX (EG_ENT * 2) /* limit(tl + ksr + envelope) + sinwave */
/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
/* TL_TABLE[ 0 to TL_MAX ] : plus section */
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
static int *TL_TABLE;
/* pointers to TL_TABLE with sinwave output offset */
static int **SIN_TABLE;
/* LFO table */
static int *AMS_TABLE;
static int *VIB_TABLE;
/* envelope output curve table */
/* attack + decay + OFF */
//static int ENV_CURVE[2*EG_ENT+1];
//static int ENV_CURVE[2 * 4096 + 1]; // to keep it static ...
static int *ENV_CURVE;
/* multiple table */
#define ML(a) (int)(a * 2)
static const uint MUL_TABLE[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
ML(8.00), ML(9.00), ML(10.00), ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
};
#undef ML
/* dummy attack / decay rate ( when rate == 0 ) */
static int RATE_0[16]=
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/* -------------------- static state --------------------- */
/* lock level of common table */
static int num_lock = 0;
/* work table */
static void *cur_chip = NULL; /* current chip point */
/* currenct chip state */
/* static OPLSAMPLE *bufL,*bufR; */
static OPL_CH *S_CH;
static OPL_CH *E_CH;
OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
static int outd[1];
static int ams;
static int vib;
int *ams_table;
int *vib_table;
static int amsIncr;
static int vibIncr;
static int feedback2; /* connect for SLOT 2 */
/* --------------------- rebuild tables ------------------- */
#define SC_KSL(mydb) ((uint) (mydb / (EG_STEP / 2)))
#define SC_SL(db) (int)(db * ((3 / EG_STEP) * (1 << ENV_BITS))) + EG_DST
void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM) {
int i;
ENV_BITS = ENV_BITS_PARAM;
EG_ENT = EG_ENT_PARAM;
EG_OFF = ((2 * EG_ENT)<<ENV_BITS); /* OFF */
EG_DED = EG_OFF;
EG_DST = (EG_ENT << ENV_BITS); /* DECAY START */
EG_AED = EG_DST;
//EG_STEP = (96.0/EG_ENT);
for (i = 0; i < ARRAYSIZE(KSL_TABLE_SEED); i++)
KSL_TABLE[i] = SC_KSL(KSL_TABLE_SEED[i]);
for (i = 0; i < ARRAYSIZE(SL_TABLE_SEED); i++)
SL_TABLE[i] = SC_SL(SL_TABLE_SEED[i]);
}
#undef SC_KSL
#undef SC_SL
/* --------------------- subroutines --------------------- */
/* status set and IRQ handling */
inline void OPL_STATUS_SET(FM_OPL *OPL, int flag) {
/* set status flag */
OPL->status |= flag;
if (!(OPL->status & 0x80)) {
if (OPL->status & OPL->statusmask) { /* IRQ on */
OPL->status |= 0x80;
/* callback user interrupt handler (IRQ is OFF to ON) */
if (OPL->IRQHandler)
(OPL->IRQHandler)(OPL->IRQParam,1);
}
}
}
/* status reset and IRQ handling */
inline void OPL_STATUS_RESET(FM_OPL *OPL, int flag) {
/* reset status flag */
OPL->status &= ~flag;
if ((OPL->status & 0x80)) {
if (!(OPL->status & OPL->statusmask)) {
OPL->status &= 0x7f;
/* callback user interrupt handler (IRQ is ON to OFF) */
if (OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
}
}
}
/* IRQ mask set */
inline void OPL_STATUSMASK_SET(FM_OPL *OPL, int flag) {
OPL->statusmask = flag;
/* IRQ handling check */
OPL_STATUS_SET(OPL,0);
OPL_STATUS_RESET(OPL,0);
}
/* ----- key on ----- */
inline void OPL_KEYON(OPL_SLOT *SLOT) {
/* sin wave restart */
SLOT->Cnt = 0;
/* set attack */
SLOT->evm = ENV_MOD_AR;
SLOT->evs = SLOT->evsa;
SLOT->evc = EG_AST;
SLOT->eve = EG_AED;
}
/* ----- key off ----- */
inline void OPL_KEYOFF(OPL_SLOT *SLOT) {
if (SLOT->evm > ENV_MOD_RR) {
/* set envelope counter from envleope output */
// WORKAROUND: The Kyra engine does something very strange when
// starting a new song. For each channel:
//
// * The release rate is set to "fastest".
// * Any note is keyed off.
// * A very low-frequency note is keyed on.
//
// Usually, what happens next is that the real notes is keyed
// on immediately, in which case there's no problem.
//
// However, if the note is again keyed off (because the channel
// begins on a rest rather than a note), the envelope counter
// was moved from the very lowest point on the attack curve to
// the very highest point on the release curve.
//
// Again, this might not be a problem, if the release rate is
// still set to "fastest". But in many cases, it had already
// been increased. And, possibly because of inaccuracies in the
// envelope generator, that would cause the note to "fade out"
// for quite a long time.
//
// What we really need is a way to find the correct starting
// point for the envelope counter, and that may be what the
// commented-out line below is meant to do. For now, simply
// handle the pathological case.
if (SLOT->evm == ENV_MOD_AR && SLOT->evc == EG_AST)
SLOT->evc = EG_DED;
else if (!(SLOT->evc & EG_DST))
//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
SLOT->evc = EG_DST;
SLOT->eve = EG_DED;
SLOT->evs = SLOT->evsr;
SLOT->evm = ENV_MOD_RR;
}
}
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
/* return : envelope output */
inline uint OPL_CALC_SLOT(OPL_SLOT *SLOT) {
/* calcrate envelope generator */
if ((SLOT->evc += SLOT->evs) >= SLOT->eve) {
switch (SLOT->evm) {
case ENV_MOD_AR: /* ATTACK -> DECAY1 */
/* next DR */
SLOT->evm = ENV_MOD_DR;
SLOT->evc = EG_DST;
SLOT->eve = SLOT->SL;
SLOT->evs = SLOT->evsd;
break;
case ENV_MOD_DR: /* DECAY -> SL or RR */
SLOT->evc = SLOT->SL;
SLOT->eve = EG_DED;
if (SLOT->eg_typ) {
SLOT->evs = 0;
} else {
SLOT->evm = ENV_MOD_RR;
SLOT->evs = SLOT->evsr;
}
break;
case ENV_MOD_RR: /* RR -> OFF */
SLOT->evc = EG_OFF;
SLOT->eve = EG_OFF + 1;
SLOT->evs = 0;
break;
}
}
/* calcrate envelope */
return SLOT->TLL + ENV_CURVE[SLOT->evc>>ENV_BITS] + (SLOT->ams ? ams : 0);
}
/* set algorythm connection */
static void set_algorythm(OPL_CH *CH) {
int *carrier = &outd[0];
CH->connect1 = CH->CON ? carrier : &feedback2;
CH->connect2 = carrier;
}
/* ---------- frequency counter for operater update ---------- */
inline void CALC_FCSLOT(OPL_CH *CH, OPL_SLOT *SLOT) {
int ksr;
/* frequency step counter */
SLOT->Incr = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if (SLOT->ksr != ksr) {
SLOT->ksr = ksr;
/* attack , decay rate recalcration */
SLOT->evsa = SLOT->AR[ksr];
SLOT->evsd = SLOT->DR[ksr];
SLOT->evsr = SLOT->RR[ksr];
}
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
/* set multi,am,vib,EG-TYP,KSR,mul */
inline void set_mul(FM_OPL *OPL, int slot, int v) {
OPL_CH *CH = &OPL->P_CH[slot>>1];
OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
SLOT->mul = MUL_TABLE[v & 0x0f];
SLOT->KSR = (v & 0x10) ? 0 : 2;
SLOT->eg_typ = (v & 0x20) >> 5;
SLOT->vib = (v & 0x40);
SLOT->ams = (v & 0x80);
CALC_FCSLOT(CH, SLOT);
}
/* set ksl & tl */
inline void set_ksl_tl(FM_OPL *OPL, int slot, int v) {
OPL_CH *CH = &OPL->P_CH[slot>>1];
OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */
SLOT->ksl = ksl ? 3-ksl : 31;
SLOT->TL = (int)((v & 0x3f) * (0.75 / EG_STEP)); /* 0.75db step */
if (!(OPL->mode & 0x80)) { /* not CSM latch total level */
SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
}
}
/* set attack rate & decay rate */
inline void set_ar_dr(FM_OPL *OPL, int slot, int v) {
OPL_CH *CH = &OPL->P_CH[slot>>1];
OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
int ar = v >> 4;
int dr = v & 0x0f;
SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0;
SLOT->evsa = SLOT->AR[SLOT->ksr];
if (SLOT->evm == ENV_MOD_AR)
SLOT->evs = SLOT->evsa;
SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
SLOT->evsd = SLOT->DR[SLOT->ksr];
if (SLOT->evm == ENV_MOD_DR)
SLOT->evs = SLOT->evsd;
}
/* set sustain level & release rate */
inline void set_sl_rr(FM_OPL *OPL, int slot, int v) {
OPL_CH *CH = &OPL->P_CH[slot>>1];
OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
int sl = v >> 4;
int rr = v & 0x0f;
SLOT->SL = SL_TABLE[sl];
if (SLOT->evm == ENV_MOD_DR)
SLOT->eve = SLOT->SL;
SLOT->RR = &OPL->DR_TABLE[rr<<2];
SLOT->evsr = SLOT->RR[SLOT->ksr];
if (SLOT->evm == ENV_MOD_RR)
SLOT->evs = SLOT->evsr;
}
/* operator output calcrator */
#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt + con)>>(24-SIN_ENT_SHIFT)) & (SIN_ENT-1)][env]
/* ---------- calcrate one of channel ---------- */
inline void OPL_CALC_CH(OPL_CH *CH) {
uint env_out;
OPL_SLOT *SLOT;
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env_out=OPL_CALC_SLOT(SLOT);
if (env_out < (uint)(EG_ENT - 1)) {
/* PG */
if (SLOT->vib)
SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
else
SLOT->Cnt += SLOT->Incr;
/* connection */
if (CH->FB) {
int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB;
CH->op1_out[1] = CH->op1_out[0];
*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
} else {
*CH->connect1 += OP_OUT(SLOT, env_out, 0);
}
} else {
CH->op1_out[1] = CH->op1_out[0];
CH->op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH->SLOT[SLOT2];
env_out=OPL_CALC_SLOT(SLOT);
if (env_out < (uint)(EG_ENT - 1)) {
/* PG */
if (SLOT->vib)
SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
else
SLOT->Cnt += SLOT->Incr;
/* connection */
outd[0] += OP_OUT(SLOT, env_out, feedback2);
}
}
/* ---------- calcrate rythm block ---------- */
#define WHITE_NOISE_db 6.0
inline void OPL_CALC_RH(FM_OPL *OPL, OPL_CH *CH) {
uint env_tam, env_sd, env_top, env_hh;
// This code used to do int(OPL->rnd.getRandomBit() * (WHITE_NOISE_db / EG_STEP)),
// but EG_STEP = 96.0/EG_ENT, and WHITE_NOISE_db=6.0. So, that's equivalent to
// int(OPL->rnd.getRandomBit() * EG_ENT/16). We know that EG_ENT is 4096, or 1024,
// or 128, so we can safely avoid any FP ops.
int whitenoise = OPL->rnd->getRandomBit() * (EG_ENT>>4);
int tone8;
OPL_SLOT *SLOT;
int env_out;
/* BD : same as FM serial mode and output level is large */
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
env_out = OPL_CALC_SLOT(SLOT);
if (env_out < EG_ENT-1) {
/* PG */
if (SLOT->vib)
SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
else
SLOT->Cnt += SLOT->Incr;
/* connection */
if (CH[6].FB) {
int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB;
CH[6].op1_out[1] = CH[6].op1_out[0];
feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
}
else {
feedback2 = OP_OUT(SLOT, env_out, 0);
}
} else {
feedback2 = 0;
CH[6].op1_out[1] = CH[6].op1_out[0];
CH[6].op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH[6].SLOT[SLOT2];
env_out = OPL_CALC_SLOT(SLOT);
if (env_out < EG_ENT-1) {
/* PG */
if (SLOT->vib)
SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
else
SLOT->Cnt += SLOT->Incr;
/* connection */
outd[0] += OP_OUT(SLOT, env_out, feedback2) * 2;
}
// SD (17) = mul14[fnum7] + white noise
// TAM (15) = mul15[fnum8]
// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
// HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
env_sd = OPL_CALC_SLOT(SLOT7_2) + whitenoise;
env_tam =OPL_CALC_SLOT(SLOT8_1);
env_top = OPL_CALC_SLOT(SLOT8_2);
env_hh = OPL_CALC_SLOT(SLOT7_1) + whitenoise;
/* PG */
if (SLOT7_1->vib)
SLOT7_1->Cnt += (SLOT7_1->Incr * vib) >> (VIB_RATE_SHIFT-1);
else
SLOT7_1->Cnt += 2 * SLOT7_1->Incr;
if (SLOT7_2->vib)
SLOT7_2->Cnt += (CH[7].fc * vib) >> (VIB_RATE_SHIFT-3);
else
SLOT7_2->Cnt += (CH[7].fc * 8);
if (SLOT8_1->vib)
SLOT8_1->Cnt += (SLOT8_1->Incr * vib) >> VIB_RATE_SHIFT;
else
SLOT8_1->Cnt += SLOT8_1->Incr;
if (SLOT8_2->vib)
SLOT8_2->Cnt += ((CH[8].fc * 3) * vib) >> (VIB_RATE_SHIFT-4);
else
SLOT8_2->Cnt += (CH[8].fc * 48);
tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
/* SD */
if (env_sd < (uint)(EG_ENT - 1))
outd[0] += OP_OUT(SLOT7_1, env_sd, 0) * 8;
/* TAM */
if (env_tam < (uint)(EG_ENT - 1))
outd[0] += OP_OUT(SLOT8_1, env_tam, 0) * 2;
/* TOP-CY */
if (env_top < (uint)(EG_ENT - 1))
outd[0] += OP_OUT(SLOT7_2, env_top, tone8) * 2;
/* HH */
if (env_hh < (uint)(EG_ENT-1))
outd[0] += OP_OUT(SLOT7_2, env_hh, tone8) * 2;
}
/* ----------- initialize time tabls ----------- */
static void init_timetables(FM_OPL *OPL, int ARRATE, int DRRATE) {
int i;
double rate;
/* make attack rate & decay rate tables */
for (i = 0; i < 4; i++)
OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
for (i = 4; i <= 60; i++) {
rate = OPL->freqbase; /* frequency rate */
if (i < 60)
rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */
rate *= (double)(EG_ENT << ENV_BITS);
OPL->AR_TABLE[i] = (int)(rate / ARRATE);
OPL->DR_TABLE[i] = (int)(rate / DRRATE);
}
for (i = 60; i < 76; i++) {
OPL->AR_TABLE[i] = EG_AED-1;
OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
}
}
/* ---------- generic table initialize ---------- */
static int OPLOpenTable(void) {
int s,t;
double rate;
int i,j;
double pom;
#ifdef __DS__
DS::fastRamReset();
TL_TABLE = (int *) DS::fastRamAlloc(TL_MAX * 2 * sizeof(int *));
SIN_TABLE = (int **) DS::fastRamAlloc(SIN_ENT * 4 * sizeof(int *));
#else
/* allocate dynamic tables */
if ((TL_TABLE = (int *)malloc(TL_MAX * 2 * sizeof(int))) == NULL)
return 0;
if ((SIN_TABLE = (int **)malloc(SIN_ENT * 4 * sizeof(int *))) == NULL) {
free(TL_TABLE);
return 0;
}
#endif
if ((AMS_TABLE = (int *)malloc(AMS_ENT * 2 * sizeof(int))) == NULL) {
free(TL_TABLE);
free(SIN_TABLE);
return 0;
}
if ((VIB_TABLE = (int *)malloc(VIB_ENT * 2 * sizeof(int))) == NULL) {
free(TL_TABLE);
free(SIN_TABLE);
free(AMS_TABLE);
return 0;
}
/* make total level table */
for (t = 0; t < EG_ENT - 1; t++) {
rate = ((1 << TL_BITS) - 1) / pow(10.0, EG_STEP * t / 20); /* dB -> voltage */
TL_TABLE[ t] = (int)rate;
TL_TABLE[TL_MAX + t] = -TL_TABLE[t];
}
/* fill volume off area */
for (t = EG_ENT - 1; t < TL_MAX; t++) {
TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0;
}
/* make sinwave table (total level offet) */
/* degree 0 = degree 180 = off */
SIN_TABLE[0] = SIN_TABLE[SIN_ENT /2 ] = &TL_TABLE[EG_ENT - 1];
for (s = 1;s <= SIN_ENT / 4; s++) {
pom = sin(2 * M_PI * s / SIN_ENT); /* sin */
pom = 20 * log10(1 / pom); /* decibel */
j = int(pom / EG_STEP); /* TL_TABLE steps */
/* degree 0 - 90 , degree 180 - 90 : plus section */
SIN_TABLE[ s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j];
/* degree 180 - 270 , degree 360 - 270 : minus section */
SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j];
}
for (s = 0;s < SIN_ENT; s++) {
SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)];
SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s];
}
ENV_CURVE = (int *)malloc(sizeof(int) * (2*EG_ENT+1));
if (!ENV_CURVE)
error("[OPLOpenTable] Cannot allocate memory");
/* envelope counter -> envelope output table */
for (i=0; i < EG_ENT; i++) {
/* ATTACK curve */
pom = pow(((double)(EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT;
/* if (pom >= EG_ENT) pom = EG_ENT-1; */
ENV_CURVE[i] = (int)pom;
/* DECAY ,RELEASE curve */
ENV_CURVE[(EG_DST >> ENV_BITS) + i]= i;
}
/* off */
ENV_CURVE[EG_OFF >> ENV_BITS]= EG_ENT - 1;
/* make LFO ams table */
for (i=0; i < AMS_ENT; i++) {
pom = (1.0 + sin(2 * M_PI * i / AMS_ENT)) / 2; /* sin */
AMS_TABLE[i] = (int)((1.0 / EG_STEP) * pom); /* 1dB */
AMS_TABLE[AMS_ENT + i] = (int)((4.8 / EG_STEP) * pom); /* 4.8dB */
}
/* make LFO vibrate table */
for (i=0; i < VIB_ENT; i++) {
/* 100cent = 1seminote = 6% ?? */
pom = (double)VIB_RATE * 0.06 * sin(2 * M_PI * i / VIB_ENT); /* +-100sect step */
VIB_TABLE[i] = (int)(VIB_RATE + (pom * 0.07)); /* +- 7cent */
VIB_TABLE[VIB_ENT + i] = (int)(VIB_RATE + (pom * 0.14)); /* +-14cent */
}
return 1;
}
static void OPLCloseTable(void) {
#ifndef __DS__
free(TL_TABLE);
free(SIN_TABLE);
#endif
free(AMS_TABLE);
free(VIB_TABLE);
free(ENV_CURVE);
}
/* CSM Key Controll */
inline void CSMKeyControll(OPL_CH *CH) {
OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
/* all key off */
OPL_KEYOFF(slot1);
OPL_KEYOFF(slot2);
/* total level latch */
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
/* key on */
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON(slot1);
OPL_KEYON(slot2);
}
/* ---------- opl initialize ---------- */
static void OPL_initalize(FM_OPL *OPL) {
int fn;
/* frequency base */
OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
/* Timer base time */
OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
/* make time tables */
init_timetables(OPL, OPL_ARRATE, OPL_DRRATE);
/* make fnumber -> increment counter table */
for (fn=0; fn < 1024; fn++) {
OPL->FN_TABLE[fn] = (uint)(OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
}
/* LFO freq.table */
OPL->amsIncr = (int)(OPL->rate ? (double)AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
OPL->vibIncr = (int)(OPL->rate ? (double)VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
}
/* ---------- write a OPL registers ---------- */
void OPLWriteReg(FM_OPL *OPL, int r, int v) {
OPL_CH *CH;
int slot;
uint block_fnum;
switch (r & 0xe0) {
case 0x00: /* 00-1f:controll */
switch (r & 0x1f) {
case 0x01:
/* wave selector enable */
if (OPL->type&OPL_TYPE_WAVESEL) {
OPL->wavesel = v & 0x20;
if (!OPL->wavesel) {
/* preset compatible mode */
int c;
for (c = 0; c < OPL->max_ch; c++) {
OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
}
}
}
return;
case 0x02: /* Timer 1 */
OPL->T[0] = (256-v) * 4;
break;
case 0x03: /* Timer 2 */
OPL->T[1] = (256-v) * 16;
return;
case 0x04: /* IRQ clear / mask and Timer enable */
if (v & 0x80) { /* IRQ flag clear */
OPL_STATUS_RESET(OPL, 0x7f);
} else { /* set IRQ mask ,timer enable*/
uint8 st1 = v & 1;
uint8 st2 = (v >> 1) & 1;
/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
OPL_STATUS_RESET(OPL, v & 0x78);
OPL_STATUSMASK_SET(OPL,((~v) & 0x78) | 0x01);
/* timer 2 */
if (OPL->st[1] != st2) {
double interval = st2 ? (double)OPL->T[1] * OPL->TimerBase : 0.0;
OPL->st[1] = st2;
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 1, interval);
}
/* timer 1 */
if (OPL->st[0] != st1) {
double interval = st1 ? (double)OPL->T[0] * OPL->TimerBase : 0.0;
OPL->st[0] = st1;
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 0, interval);
}
}
return;
}
break;
case 0x20: /* am,vib,ksr,eg type,mul */
slot = slot_array[r&0x1f];
if (slot == -1)
return;
set_mul(OPL,slot,v);
return;
case 0x40:
slot = slot_array[r&0x1f];
if (slot == -1)
return;
set_ksl_tl(OPL,slot,v);
return;
case 0x60:
slot = slot_array[r&0x1f];
if (slot == -1)
return;
set_ar_dr(OPL,slot,v);
return;
case 0x80:
slot = slot_array[r&0x1f];
if (slot == -1)
return;
set_sl_rr(OPL,slot,v);
return;
case 0xa0:
switch (r) {
case 0xbd:
/* amsep,vibdep,r,bd,sd,tom,tc,hh */
{
uint8 rkey = OPL->rythm ^ v;
OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0];
OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0];
OPL->rythm = v & 0x3f;
if (OPL->rythm & 0x20) {
/* BD key on/off */
if (rkey & 0x10) {
if (v & 0x10) {
OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
} else {
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
}
}
/* SD key on/off */
if (rkey & 0x08) {
if (v & 0x08)
OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
else
OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
}/* TAM key on/off */
if (rkey & 0x04) {
if (v & 0x04)
OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
else
OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
}
/* TOP-CY key on/off */
if (rkey & 0x02) {
if (v & 0x02)
OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
else
OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
}
/* HH key on/off */
if (rkey & 0x01) {
if (v & 0x01)
OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
else
OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
}
}
}
return;
default:
break;
}
/* keyon,block,fnum */
if ((r & 0x0f) > 8)
return;
CH = &OPL->P_CH[r & 0x0f];
if (!(r&0x10)) { /* a0-a8 */
block_fnum = (CH->block_fnum & 0x1f00) | v;
} else { /* b0-b8 */
int keyon = (v >> 5) & 1;
block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff);
if (CH->keyon != keyon) {
if ((CH->keyon=keyon)) {
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON(&CH->SLOT[SLOT1]);
OPL_KEYON(&CH->SLOT[SLOT2]);
} else {
OPL_KEYOFF(&CH->SLOT[SLOT1]);
OPL_KEYOFF(&CH->SLOT[SLOT2]);
}
}
}
/* update */
if (CH->block_fnum != block_fnum) {
int blockRv = 7 - (block_fnum >> 10);
int fnum = block_fnum & 0x3ff;
CH->block_fnum = block_fnum;
CH->ksl_base = KSL_TABLE[block_fnum >> 6];
CH->fc = OPL->FN_TABLE[fnum] >> blockRv;
CH->kcode = CH->block_fnum >> 9;
if ((OPL->mode & 0x40) && CH->block_fnum & 0x100)
CH->kcode |=1;
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
return;
case 0xc0:
/* FB,C */
if ((r & 0x0f) > 8)
return;
CH = &OPL->P_CH[r&0x0f];
{
int feedback = (v >> 1) & 7;
CH->FB = feedback ? (8 + 1) - feedback : 0;
CH->CON = v & 1;
set_algorythm(CH);
}
return;
case 0xe0: /* wave type */
slot = slot_array[r & 0x1f];
if (slot == -1)
return;
CH = &OPL->P_CH[slot>>1];
if (OPL->wavesel) {
CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT];
}
return;
}
}
/* lock/unlock for common table */
static int OPL_LockTable(void) {
num_lock++;
if (num_lock>1)
return 0;
/* first time */
cur_chip = NULL;
/* allocate total level table (128kb space) */
if (!OPLOpenTable()) {
num_lock--;
return -1;
}
return 0;
}
static void OPL_UnLockTable(void) {
if (num_lock)
num_lock--;
if (num_lock)
return;
/* last time */
cur_chip = NULL;
OPLCloseTable();
}
/*******************************************************************************/
/* YM3812 local section */
/*******************************************************************************/
/* ---------- update one of chip ----------- */
void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length) {
int i;
int data;
int16 *buf = buffer;
uint amsCnt = OPL->amsCnt;
uint vibCnt = OPL->vibCnt;
uint8 rythm = OPL->rythm & 0x20;
OPL_CH *CH, *R_CH;
if ((void *)OPL != cur_chip) {
cur_chip = (void *)OPL;
/* channel pointers */
S_CH = OPL->P_CH;
E_CH = &S_CH[9];
/* rythm slot */
SLOT7_1 = &S_CH[7].SLOT[SLOT1];
SLOT7_2 = &S_CH[7].SLOT[SLOT2];
SLOT8_1 = &S_CH[8].SLOT[SLOT1];
SLOT8_2 = &S_CH[8].SLOT[SLOT2];
/* LFO state */
amsIncr = OPL->amsIncr;
vibIncr = OPL->vibIncr;
ams_table = OPL->ams_table;
vib_table = OPL->vib_table;
}
R_CH = rythm ? &S_CH[6] : E_CH;
for (i = 0; i < length; i++) {
/* channel A channel B channel C */
/* LFO */
ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
outd[0] = 0;
/* FM part */
for (CH = S_CH; CH < R_CH; CH++)
OPL_CALC_CH(CH);
/* Rythn part */
if (rythm)
OPL_CALC_RH(OPL, S_CH);
/* limit check */
data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT);
/* store to sound buffer */
buf[i] = data >> OPL_OUTSB;
}
OPL->amsCnt = amsCnt;
OPL->vibCnt = vibCnt;
}
/* ---------- reset a chip ---------- */
void OPLResetChip(FM_OPL *OPL) {
int c,s;
int i;
/* reset chip */
OPL->mode = 0; /* normal mode */
OPL_STATUS_RESET(OPL, 0x7f);
/* reset with register write */
OPLWriteReg(OPL, 0x01,0); /* wabesel disable */
OPLWriteReg(OPL, 0x02,0); /* Timer1 */
OPLWriteReg(OPL, 0x03,0); /* Timer2 */
OPLWriteReg(OPL, 0x04,0); /* IRQ mask clear */
for (i = 0xff; i >= 0x20; i--)
OPLWriteReg(OPL,i,0);
/* reset OPerator parameter */
for (c = 0; c < OPL->max_ch; c++) {
OPL_CH *CH = &OPL->P_CH[c];
/* OPL->P_CH[c].PAN = OPN_CENTER; */
for (s = 0; s < 2; s++) {
/* wave table */
CH->SLOT[s].wavetable = &SIN_TABLE[0];
/* CH->SLOT[s].evm = ENV_MOD_RR; */
CH->SLOT[s].evc = EG_OFF;
CH->SLOT[s].eve = EG_OFF + 1;
CH->SLOT[s].evs = 0;
}
}
}
/* ---------- Create a virtual YM3812 ---------- */
/* 'rate' is sampling rate and 'bufsiz' is the size of the */
FM_OPL *OPLCreate(int type, int clock, int rate) {
char *ptr;
FM_OPL *OPL;
int state_size;
int max_ch = 9; /* normaly 9 channels */
if (OPL_LockTable() == -1)
return NULL;
/* allocate OPL state space */
state_size = sizeof(FM_OPL);
state_size += sizeof(OPL_CH) * max_ch;
/* allocate memory block */
ptr = (char *)calloc(state_size, 1);
if (ptr == NULL)
return NULL;
/* clear */
memset(ptr, 0, state_size);
OPL = (FM_OPL *)ptr; ptr += sizeof(FM_OPL);
OPL->P_CH = (OPL_CH *)ptr; ptr += sizeof(OPL_CH) * max_ch;
/* set channel state pointer */
OPL->type = type;
OPL->clock = clock;
OPL->rate = rate;
OPL->max_ch = max_ch;
// Init the random source. Note: We use a fixed name for it here.
// So if multiple FM_OPL objects exist in parallel, then their
// random sources will have an equal name. At least in the
// current EventRecorder implementation, this causes no problems;
// but this is probably not guaranteed.
// Alas, it does not seem worthwhile to bother much with this
// at the time, so I am leaving it as it is.
OPL->rnd = new Common::RandomSource("mame");
/* init grobal tables */
OPL_initalize(OPL);
/* reset chip */
OPLResetChip(OPL);
return OPL;
}
/* ---------- Destroy one of virtual YM3812 ---------- */
void OPLDestroy(FM_OPL *OPL) {
OPL_UnLockTable();
delete OPL->rnd;
free(OPL);
}
/* ---------- Option handlers ---------- */
void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,int channelOffset) {
OPL->TimerHandler = TimerHandler;
OPL->TimerParam = channelOffset;
}
void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param) {
OPL->IRQHandler = IRQHandler;
OPL->IRQParam = param;
}
void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler,int param) {
OPL->UpdateHandler = UpdateHandler;
OPL->UpdateParam = param;
}
/* ---------- YM3812 I/O interface ---------- */
int OPLWrite(FM_OPL *OPL,int a,int v) {
if (!(a & 1)) { /* address port */
OPL->address = v & 0xff;
} else { /* data port */
if (OPL->UpdateHandler)
OPL->UpdateHandler(OPL->UpdateParam,0);
OPLWriteReg(OPL, OPL->address,v);
}
return OPL->status >> 7;
}
unsigned char OPLRead(FM_OPL *OPL,int a) {
if (!(a & 1)) { /* status port */
return OPL->status & (OPL->statusmask | 0x80);
}
/* data port */
switch (OPL->address) {
case 0x05: /* KeyBoard IN */
warning("OPL:read unmapped KEYBOARD port");
return 0;
case 0x19: /* I/O DATA */
warning("OPL:read unmapped I/O port");
return 0;
case 0x1a: /* PCM-DATA */
return 0;
default:
break;
}
return 0;
}
int OPLTimerOver(FM_OPL *OPL, int c) {
if (c) { /* Timer B */
OPL_STATUS_SET(OPL, 0x20);
} else { /* Timer A */
OPL_STATUS_SET(OPL, 0x40);
/* CSM mode key,TL controll */
if (OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */
int ch;
if (OPL->UpdateHandler)
OPL->UpdateHandler(OPL->UpdateParam,0);
for (ch = 0; ch < 9; ch++)
CSMKeyControll(&OPL->P_CH[ch]);
}
}
/* reload timer */
if (OPL->TimerHandler)
(OPL->TimerHandler)(OPL->TimerParam + c, (double)OPL->T[c] * OPL->TimerBase);
return OPL->status >> 7;
}
FM_OPL *makeAdLibOPL(int rate) {
// We need to emulate one YM3812 chip
int env_bits = FMOPL_ENV_BITS_HQ;
int eg_ent = FMOPL_EG_ENT_HQ;
#if defined (_WIN32_WCE) || defined(__SYMBIAN32__) || defined(__GP32__) || defined (GP2X) || defined(__MAEMO__) || defined(__DS__) || defined (__MINT__) || defined(__N64__)
if (ConfMan.hasKey("FM_high_quality") && ConfMan.getBool("FM_high_quality")) {
env_bits = FMOPL_ENV_BITS_HQ;
eg_ent = FMOPL_EG_ENT_HQ;
} else if (ConfMan.hasKey("FM_medium_quality") && ConfMan.getBool("FM_medium_quality")) {
env_bits = FMOPL_ENV_BITS_MQ;
eg_ent = FMOPL_EG_ENT_MQ;
} else {
env_bits = FMOPL_ENV_BITS_LQ;
eg_ent = FMOPL_EG_ENT_LQ;
}
#endif
OPLBuildTables(env_bits, eg_ent);
return OPLCreate(OPL_TYPE_YM3812, 3579545, rate);
}
} // End of namespace MAME
} // End of namespace OPL
|