aboutsummaryrefslogtreecommitdiff
path: root/common/array.h
blob: bb7e03c4f737730d6d2b7da2eb2598f93b84fd8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 */

#ifndef COMMON_ARRAY_H
#define COMMON_ARRAY_H

#include "common/scummsys.h"
#include "common/algorithm.h"
#include "common/textconsole.h" // For error()
#include "common/memory.h"

namespace Common {

/**
 * This class implements a dynamically sized container, which
 * can be accessed similar to a regular C++ array. Accessing
 * elements is performed in constant time (like with plain arrays).
 * In addition, one can append, insert and remove entries (this
 * is the 'dynamic' part). Doing that in general takes time
 * proportional to the number of elements in the array.
 *
 * The container class closest to this in the C++ standard library is
 * std::vector. However, there are some differences.
 */
template<class T>
class Array {
public:
	typedef T *iterator;
	typedef const T *const_iterator;

	typedef T value_type;

	typedef uint size_type;

protected:
	size_type _capacity;
	size_type _size;
	T *_storage;

public:
	Array() : _capacity(0), _size(0), _storage(0) {}

	/**
	 * Constructs an array with `count` default-inserted instances of T. No
	 * copies are made.
	 */
	explicit Array(size_type count) : _size(0) {
		allocCapacity(count);
		resize(count);
	}

	/**
	 * Constructs an array with `count` copies of elements with value `value`.
	 */
	Array(size_type count, const T &value) : _size(count) {
		allocCapacity(count);
		uninitialized_fill_n(_storage, count, value);
	}

	Array(const Array<T> &array) : _capacity(array._size), _size(array._size), _storage(0) {
		if (array._storage) {
			allocCapacity(_size);
			uninitialized_copy(array._storage, array._storage + _size, _storage);
		}
	}

	/**
	 * Construct an array by copying data from a regular array.
	 */
	template<class T2>
	Array(const T2 *array, size_type n) {
		_size = n;
		allocCapacity(n);
		uninitialized_copy(array, array + _size, _storage);
	}

	~Array() {
		freeStorage(_storage, _size);
		_storage = 0;
		_capacity = _size = 0;
	}

	/** Appends element to the end of the array. */
	void push_back(const T &element) {
		if (_size + 1 <= _capacity)
			new ((void *)&_storage[_size++]) T(element);
		else
			insert_aux(end(), &element, &element + 1);
	}

	void push_back(const Array<T> &array) {
		if (_size + array.size() <= _capacity) {
			uninitialized_copy(array.begin(), array.end(), end());
			_size += array.size();
		} else
			insert_aux(end(), array.begin(), array.end());
	}

	/** Removes the last element of the array. */
	void pop_back() {
		assert(_size > 0);
		_size--;
		// We also need to destroy the last object properly here.
		_storage[_size].~T();
	}

	/** Returns a pointer to the underlying memory serving as element storage. */
	const T *data() const {
		return _storage;
	}

	/** Returns a pointer to the underlying memory serving as element storage. */
	T *data() {
		return _storage;
	}

	/** Returns a reference to the first element of the array. */
	T &front() {
		assert(_size > 0);
		return _storage[0];
	}

	/** Returns a reference to the first element of the array. */
	const T &front() const {
		assert(_size > 0);
		return _storage[0];
	}

	/** Returns a reference to the last element of the array. */
	T &back() {
		assert(_size > 0);
		return _storage[_size-1];
	}

	/** Returns a reference to the last element of the array. */
	const T &back() const {
		assert(_size > 0);
		return _storage[_size-1];
	}


	void insert_at(size_type idx, const T &element) {
		assert(idx <= _size);
		insert_aux(_storage + idx, &element, &element + 1);
	}

	void insert_at(size_type idx, const Array<T> &array) {
		assert(idx <= _size);
		insert_aux(_storage + idx, array.begin(), array.end());
	}

	/**
	 * Inserts element before pos.
	 */
	void insert(iterator pos, const T &element) {
		insert_aux(pos, &element, &element + 1);
	}

	T remove_at(size_type idx) {
		assert(idx < _size);
		T tmp = _storage[idx];
		copy(_storage + idx + 1, _storage + _size, _storage + idx);
		_size--;
		// We also need to destroy the last object properly here.
		_storage[_size].~T();
		return tmp;
	}

	// TODO: insert, remove, ...

	T &operator[](size_type idx) {
		assert(idx < _size);
		return _storage[idx];
	}

	const T &operator[](size_type idx) const {
		assert(idx < _size);
		return _storage[idx];
	}

	Array<T> &operator=(const Array<T> &array) {
		if (this == &array)
			return *this;

		freeStorage(_storage, _size);
		_size = array._size;
		allocCapacity(_size);
		uninitialized_copy(array._storage, array._storage + _size, _storage);

		return *this;
	}

	size_type size() const {
		return _size;
	}

	void clear() {
		freeStorage(_storage, _size);
		_storage = 0;
		_size = 0;
		_capacity = 0;
	}

	iterator erase(iterator pos) {
		copy(pos + 1, _storage + _size, pos);
		_size--;
		// We also need to destroy the last object properly here.
		_storage[_size].~T();
		return pos;
	}

	bool empty() const {
		return (_size == 0);
	}

	bool operator==(const Array<T> &other) const {
		if (this == &other)
			return true;
		if (_size != other._size)
			return false;
		for (size_type i = 0; i < _size; ++i) {
			if (_storage[i] != other._storage[i])
				return false;
		}
		return true;
	}

	bool operator!=(const Array<T> &other) const {
		return !(*this == other);
	}

	iterator       begin() {
		return _storage;
	}

	iterator       end() {
		return _storage + _size;
	}

	const_iterator begin() const {
		return _storage;
	}

	const_iterator end() const {
		return _storage + _size;
	}

	void reserve(size_type newCapacity) {
		if (newCapacity <= _capacity)
			return;

		T *oldStorage = _storage;
		allocCapacity(newCapacity);

		if (oldStorage) {
			// Copy old data
			uninitialized_copy(oldStorage, oldStorage + _size, _storage);
			freeStorage(oldStorage, _size);
		}
	}

	void resize(size_type newSize) {
		reserve(newSize);
		for (size_type i = _size; i < newSize; ++i)
			new ((void *)&_storage[i]) T();
		_size = newSize;
	}

	void assign(const_iterator first, const_iterator last) {
		resize(distance(first, last)); // FIXME: ineffective?
		T *dst = _storage;
		while (first != last)
			*dst++ = *first++;
	}

protected:
	static size_type roundUpCapacity(size_type capacity) {
		// Round up capacity to the next power of 2;
		// we use a minimal capacity of 8.
		size_type capa = 8;
		while (capa < capacity)
			capa <<= 1;
		return capa;
	}

	void allocCapacity(size_type capacity) {
		_capacity = capacity;
		if (capacity) {
			_storage = (T *)malloc(sizeof(T) * capacity);
			if (!_storage)
				::error("Common::Array: failure to allocate %u bytes", capacity * (size_type)sizeof(T));
		} else {
			_storage = 0;
		}
	}

	void freeStorage(T *storage, const size_type elements) {
		for (size_type i = 0; i < elements; ++i)
			storage[i].~T();
		free(storage);
	}

	/**
	 * Insert a range of elements coming from this or another array.
	 * Unlike std::vector::insert, this method does not accept
	 * arbitrary iterators, mainly because our iterator system is
	 * seriously limited and does not distinguish between input iterators,
	 * output iterators, forward iterators or random access iterators.
	 *
	 * So, we simply restrict to Array iterators. Extending this to arbitrary
	 * random access iterators would be trivial.
	 *
	 * Moreover, this method does not handle all cases of inserting a subrange
	 * of an array into itself; this is why it is private for now.
	 */
	iterator insert_aux(iterator pos, const_iterator first, const_iterator last) {
		assert(_storage <= pos && pos <= _storage + _size);
		assert(first <= last);
		const size_type n = last - first;
		if (n) {
			const size_type idx = pos - _storage;
			if (_size + n > _capacity || (_storage <= first && first <= _storage + _size)) {
				T *const oldStorage = _storage;

				// If there is not enough space, allocate more.
				// Likewise, if this is a self-insert, we allocate new
				// storage to avoid conflicts.
				allocCapacity(roundUpCapacity(_size + n));

				// Copy the data from the old storage till the position where
				// we insert new data
				uninitialized_copy(oldStorage, oldStorage + idx, _storage);
				// Copy the data we insert
				uninitialized_copy(first, last, _storage + idx);
				// Afterwards copy the old data from the position where we
				// insert.
				uninitialized_copy(oldStorage + idx, oldStorage + _size, _storage + idx + n);

				freeStorage(oldStorage, _size);
			} else if (idx + n <= _size) {
				// Make room for the new elements by shifting back
				// existing ones.
				// 1. Move a part of the data to the uninitialized area
				uninitialized_copy(_storage + _size - n, _storage + _size, _storage + _size);
				// 2. Move a part of the data to the initialized area
				copy_backward(pos, _storage + _size - n, _storage + _size);

				// Insert the new elements.
				copy(first, last, pos);
			} else {
				// Copy the old data from the position till the end to the new
				// place.
				uninitialized_copy(pos, _storage + _size, _storage + idx + n);

				// Copy a part of the new data to the position inside the
				// initialized space.
				copy(first, first + (_size - idx), pos);

				// Copy a part of the new data to the position inside the
				// uninitialized space.
				uninitialized_copy(first + (_size - idx), last, _storage + _size);
			}

			// Finally, update the internal state
			_size += n;
		}
		return pos;
	}

};

/**
 * Double linked list with sorted nodes.
 */
template<class T>
class SortedArray : public Array<T> {
public:
	typedef T *iterator;
	typedef uint size_type;

	SortedArray(int (*comparator)(const void *, const void *)) {
		_comparator = comparator;
	}

	/**
	 * Inserts element at the sorted position.
	 */
	void insert(const T &element) {
		if (!this->_size) {
			this->insert_aux(this->_storage, &element, &element + 1);
			return;
		}

		T *where = bsearchMin(element);

		if (where > this->_storage + this->_size)
			Array<T>::push_back(element);
		else
			Array<T>::insert(where, element);
	}

	T &operator[](size_type idx) {
		error("Operation []= not allowed with SortedArray");
	}

	void insert_at(size_type idx, const T &element) {
		error("Operation insert_at(idx, element) not allowed with SortedArray");
	}

	void insert_at(size_type idx, const Array<T> &array) {
		error("Operation insert_at(idx, array) not allowed with SortedArray");
	}

	void insert(iterator pos, const T &element) {
		error("Operation insert(pos, elemnet) not allowed with SortedArray");
	}

	void push_back(const T &element) {
		error("Operation push_back(element) not allowed with SortedArray");
	}

	void push_back(const Array<T> &array) {
		error("Operation push_back(array) not allowed with SortedArray");
	}

private:
	// Based on code Copyright (C) 2008-2009 Ksplice, Inc.
	// Author: Tim Abbott <tabbott@ksplice.com>
	// Licensed under GPLv2+
	T *bsearchMin(void *key) {
		uint start_ = 0, end_ = this->_size;
		int result;

		while (start_ < end_) {
			uint mid = start_ + (end_ - start_) / 2;

			result = this->_comparator(key, this->_storage[mid]);
			if (result < 0)
				end_ = mid;
			else if (result > 0)
				start_ = mid + 1;
			else
				return &this->_storage[mid];
		}

		return &this->_storage[start_];
	}

private:
	int (*_comparator)(const void *, const void *);
};

} // End of namespace Common

#endif