aboutsummaryrefslogtreecommitdiff
path: root/common/func.h
blob: b58474b2f39ef56eeaf7118837de537c6a8cb5c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 */

#ifndef COMMON_FUNC_H
#define COMMON_FUNC_H

#include "common/scummsys.h"

namespace Common {

/**
 * Generic unary function.
 */
template<class Arg, class Result>
struct UnaryFunction {
	typedef Arg ArgumenType;
	typedef Result ResultType;
};

/**
 * Generic binary function.
 */
template<class Arg1, class Arg2, class Result>
struct BinaryFunction {
	typedef Arg1 FirstArgumentType;
	typedef Arg2 SecondArgumentType;
	typedef Result ResultType;
};

/**
 * Predicate to check for equallity of two data elements.
 */
template<class T>
struct EqualTo : public BinaryFunction<T, T, bool> {
	bool operator()(const T &x, const T &y) const { return x == y; }
};

/**
 * Predicate to check for x being less than y.
 */
template<class T>
struct Less : public BinaryFunction<T, T, bool> {
	bool operator()(const T &x, const T &y) const { return x < y; }
};

/**
 * Predicate to check for x being greater than y.
 */
template<class T>
struct Greater : public BinaryFunction<T, T, bool> {
	bool operator()(const T &x, const T &y) const { return x > y; }
};

template<class Op>
class Binder1st : public UnaryFunction<typename Op::SecondArgumentType, typename Op::ResultType> {
private:
	Op _op;
	typename Op::FirstArgumentType _arg1;
public:
	Binder1st(const Op &op, typename Op::FirstArgumentType arg1) : _op(op), _arg1(arg1) {}

	typename Op::ResultType operator()(typename Op::SecondArgumentType v) const {
		return _op(_arg1, v);
	}
};

/**
 * Transforms a binary function object into an unary function object.
 * To achieve that the first parameter is bound to the passed value t.
 */
template<class Op>
inline Binder1st<Op> bind1st(const Op &op, typename Op::FirstArgumentType t) {
	return Binder1st<Op>(op, t);
}

template<class Op>
class Binder2nd : public UnaryFunction<typename Op::FirstArgumentType, typename Op::ResultType> {
private:
	Op _op;
	typename Op::SecondArgumentType _arg2;
public:
	Binder2nd(const Op &op, typename Op::SecondArgumentType arg2) : _op(op), _arg2(arg2) {}

	typename Op::ResultType operator()(typename Op::FirstArgumentType v) const {
		return _op(v, _arg2);
	}
};

/**
 * Transforms a binary function object into an unary function object.
 * To achieve that the first parameter is bound to the passed value t.
 */
template<class Op>
inline Binder2nd<Op> bind2nd(const Op &op, typename Op::SecondArgumentType t) {
	return Binder2nd<Op>(op, t);
}

template<class Arg, class Result>
class PointerToUnaryFunc : public UnaryFunction<Arg, Result> {
private:
	Result (*_func)(Arg);
public:
	typedef Result (*FuncType)(Arg);

	PointerToUnaryFunc(const FuncType &func) : _func(func) {}
	Result operator()(Arg v) const {
		return _func(v);
	}
};

template<class Arg1, class Arg2, class Result>
class PointerToBinaryFunc : public BinaryFunction<Arg1, Arg2, Result> {
private:
	Result (*_func)(Arg1, Arg2);
public:
	typedef Result (*FuncType)(Arg1, Arg2);

	PointerToBinaryFunc(const FuncType &func) : _func(func) {}
	Result operator()(Arg1 v1, Arg2 v2) const {
		return _func(v1, v2);
	}
};

/**
 * Creates an unary function object from a function pointer.
 */
template<class Arg, class Result>
inline PointerToUnaryFunc<Arg, Result> ptr_fun(Result (*func)(Arg)) {
	return PointerToUnaryFunc<Arg, Result>(func);
}

/**
 * Creates an binary function object from a function pointer.
 */
template<class Arg1, class Arg2, class Result>
inline PointerToBinaryFunc<Arg1, Arg2, Result> ptr_fun(Result (*func)(Arg1, Arg2)) {
	return PointerToBinaryFunc<Arg1, Arg2, Result>(func);
}

template<class Result, class T>
class MemFunc0 : public UnaryFunction<T *, Result> {
private:
	Result (T::*_func)();
public:
	typedef Result (T::*FuncType)();

	MemFunc0(const FuncType &func) : _func(func) {}
	Result operator()(T *v) const {
		return (v->*_func)();
	}
};

template<class Result, class T>
class ConstMemFunc0 : public UnaryFunction<T *, Result> {
private:
	Result (T::*_func)() const;
public:
	typedef Result (T::*FuncType)() const;

	ConstMemFunc0(const FuncType &func) : _func(func) {}
	Result operator()(const T *v) const {
		return (v->*_func)();
	}
};

template<class Result, class Arg, class T>
class MemFunc1 : public BinaryFunction<T *, Arg, Result> {
private:
	Result (T::*_func)(Arg);
public:
	typedef Result (T::*FuncType)(Arg);

	MemFunc1(const FuncType &func) : _func(func) {}
	Result operator()(T *v1, Arg v2) const {
		return (v1->*_func)(v2);
	}
};

template<class Result, class Arg, class T>
class ConstMemFunc1 : public BinaryFunction<T *, Arg, Result> {
private:
	Result (T::*_func)(Arg) const;
public:
	typedef Result (T::*FuncType)(Arg) const;

	ConstMemFunc1(const FuncType &func) : _func(func) {}
	Result operator()(const T *v1, Arg v2) const {
		return (v1->*_func)(v2);
	}
};

/**
 * Creates a unary function object from a class member function pointer.
 * The parameter passed to the function object is the 'this' pointer to
 * be used for the function call.
 */
template<class Result, class T>
inline MemFunc0<Result, T> mem_fun(Result (T::*f)()) {
	return MemFunc0<Result, T>(f);
}

/**
 * Creates a unary function object from a class member function pointer.
 * The parameter passed to the function object is the 'this' pointer to
 * be used for the function call.
 */
template<class Result, class T>
inline ConstMemFunc0<Result, T> mem_fun(Result (T::*f)() const) {
	return ConstMemFunc0<Result, T>(f);
}

/**
 * Creates a binary function object from a class member function pointer.
 * The first parameter passed to the function object is the 'this' pointer to
 * be used for the function call.
 * The second one is the parameter passed to the member function.
 */
template<class Result, class Arg, class T>
inline MemFunc1<Result, Arg, T> mem_fun(Result (T::*f)(Arg)) {
	return MemFunc1<Result, Arg, T>(f);
}

/**
 * Creates a binary function object from a class member function pointer.
 * The first parameter passed to the function object is the 'this' pointer to
 * be used for the function call.
 * The second one is the parameter passed to the member function.
 */
template<class Result, class Arg, class T>
inline ConstMemFunc1<Result, Arg, T> mem_fun(Result (T::*f)(Arg) const) {
	return ConstMemFunc1<Result, Arg, T>(f);
}

template<class Result, class T>
class MemFuncRef0 : public UnaryFunction<T &, Result> {
private:
	Result (T::*_func)();
public:
	typedef Result (T::*FuncType)();

	MemFuncRef0(const FuncType &func) : _func(func) {}
	Result operator()(T &v) const {
		return (v.*_func)();
	}
};

template<class Result, class T>
class ConstMemFuncRef0 : public UnaryFunction<T &, Result> {
private:
	Result (T::*_func)() const;
public:
	typedef Result (T::*FuncType)() const;

	ConstMemFuncRef0(const FuncType &func) : _func(func) {}
	Result operator()(const T &v) const {
		return (v.*_func)();
	}
};

template<class Result, class Arg, class T>
class MemFuncRef1 : public BinaryFunction<T &, Arg, Result> {
private:
	Result (T::*_func)(Arg);
public:
	typedef Result (T::*FuncType)(Arg);

	MemFuncRef1(const FuncType &func) : _func(func) {}
	Result operator()(T &v1, Arg v2) const {
		return (v1.*_func)(v2);
	}
};

template<class Result, class Arg, class T>
class ConstMemFuncRef1 : public BinaryFunction<T &, Arg, Result> {
private:
	Result (T::*_func)(Arg) const;
public:
	typedef Result (T::*FuncType)(Arg) const;

	ConstMemFuncRef1(const FuncType &func) : _func(func) {}
	Result operator()(const T &v1, Arg v2) const {
		return (v1.*_func)(v2);
	}
};

/**
 * Creates a unary function object from a class member function pointer.
 * The parameter passed to the function object is the object instance to
 * be used for the function call. Note unlike mem_fun, it takes a reference
 * as parameter. Note unlike mem_fun, it takes a reference
 * as parameter.
 */
template<class Result, class T>
inline MemFuncRef0<Result, T> mem_fun_ref(Result (T::*f)()) {
	return MemFuncRef0<Result, T>(f);
}

/**
 * Creates a unary function object from a class member function pointer.
 * The parameter passed to the function object is the object instance to
 * be used for the function call. Note unlike mem_fun, it takes a reference
 * as parameter.
 */
template<class Result, class T>
inline ConstMemFuncRef0<Result, T> mem_fun_Ref(Result (T::*f)() const) {
	return ConstMemFuncRef0<Result, T>(f);
}

/**
 * Creates a binary function object from a class member function pointer.
 * The first parameter passed to the function object is the object instance to
 * be used for the function call. Note unlike mem_fun, it takes a reference
 * as parameter.
 * The second one is the parameter passed to the member function.
 */
template<class Result, class Arg, class T>
inline MemFuncRef1<Result, Arg, T> mem_fun_ref(Result (T::*f)(Arg)) {
	return MemFuncRef1<Result, Arg, T>(f);
}

/**
 * Creates a binary function object from a class member function pointer.
 * The first parameter passed to the function object is the object instance to
 * be used for the function call. Note unlike mem_fun, it takes a reference
 * as parameter.
 * The second one is the parameter passed to the member function.
 */
template<class Result, class Arg, class T>
inline ConstMemFuncRef1<Result, Arg, T> mem_fun_ref(Result (T::*f)(Arg) const) {
	return ConstMemFuncRef1<Result, Arg, T>(f);
}

// functor code

/**
 * Generic functor object for function objects without parameters.
 *
 * @see Functor1
 */
template<class Res>
struct Functor0 {
	virtual ~Functor0() {}

	virtual bool isValid() const = 0;
	virtual Res operator()() const = 0;
};

/**
 * Functor object for a class member function without parameter.
 *
 * Example creation:
 *
 * Foo bar;
 * Functor0Mem<void, Foo> myFunctor(&bar, &Foo::myFunc);
 *
 * Example usage:
 *
 * myFunctor();
 */
template<class Res, class T>
class Functor0Mem : public Functor0<Res> {
public:
	typedef Res (T::*FuncType)();

	Functor0Mem(T *t, const FuncType &func) : _t(t), _func(func) {}

	bool isValid() const { return _func != 0 && _t != 0; }
	Res operator()() const {
		return (_t->*_func)();
	}
private:
	mutable T *_t;
	const FuncType _func;
};

/**
 * Generic functor object for unary function objects.
 *
 * A typical usage for an unary function object is for executing opcodes
 * in a script interpreter. To achieve that one can create an Common::Array
 * object with 'Functor1<Arg, Res> *' as type. Now after the right engine version
 * has been determined and the opcode table to use is found one could easily
 * add the opcode implementations like this:
 *
 * Common::Array<Functor1<ScriptState, void> *> opcodeTable;
 * opcodeTable[0] = new Functor1Mem<ScriptState, void, MyEngine_v1>(&myEngine, &MyEngine_v1::o1_foo);
 * opcodeTable[1] = new Functor1Mem<ScriptState, void, MyEngine_v2>(&myEngine, &MyEngine_v2::o2_foo);
 * // unimplemented/unused opcode
 * opcodeTable[2] = 0;
 * etc.
 *
 * This makes it easy to add member functions of different classes as
 * opcode functions to the function table. Since with the generic
 * Functor1<ScriptState, void> object the only requirement for an
 * function to be used is 'ScriptState' as argument and 'void' as return
 * value.
 *
 * Now for calling the opcodes one has simple to do:
 * if (opcodeTable[opcodeNum] && opcodeTable[opcodeNum]->isValid())
 *     (*opcodeTable[opcodeNum])(scriptState);
 * else
 *     warning("Unimplemented opcode %d", opcodeNum);
 *
 * If you want to see an real world example check the kyra engine.
 * Files: engines/kyra/script.cpp and .h and engines/kyra/script_*.cpp
 * are interesting for that matter.
 */
template<class Arg, class Res>
struct Functor1 : public UnaryFunction<Arg, Res> {
	virtual ~Functor1() {}

	virtual bool isValid() const = 0;
	virtual Res operator()(Arg) const = 0;
};

/**
 * Functor object for an unary class member function.
 * Usage is like with Functor0Mem. The resulting functor object
 * will take one parameter though.
 *
 * @see Functor0Mem
 */
template<class Arg, class Res, class T>
class Functor1Mem : public Functor1<Arg, Res> {
public:
	typedef Res (T::*FuncType)(Arg);

	Functor1Mem(T *t, const FuncType &func) : _t(t), _func(func) {}

	bool isValid() const { return _func != 0 && _t != 0; }
	Res operator()(Arg v1) const {
		return (_t->*_func)(v1);
	}
private:
	mutable T *_t;
	const FuncType _func;
};

/**
 * Generic functor object for binary function objects.
 *
 * @see Functor1
 */
template<class Arg1, class Arg2, class Res>
struct Functor2 : public BinaryFunction<Arg1, Arg2, Res> {
	virtual ~Functor2() {}

	virtual bool isValid() const = 0;
	virtual Res operator()(Arg1, Arg2) const = 0;
};

/**
 * Functor object for a binary function.
 *
 * @see Functor2Mem
 */
template<class Arg1, class Arg2, class Res>
class Functor2Fun : public Functor2<Arg1, Arg2, Res> {
public:
	typedef Res (*FuncType)(Arg1, Arg2);

	Functor2Fun(const FuncType func) : _func(func) {}

	bool isValid() const { return _func != 0; }
	Res operator()(Arg1 v1, Arg2 v2) const {
		return (*_func)(v1, v2);
	}
private:
	const FuncType _func;
};

/**
 * Functor object for a binary class member function.
 * Usage is like with Functor0Mem. The resulting functor object
 * will take two parameter though.
 *
 * @see Functor0Mem
 */
template<class Arg1, class Arg2, class Res, class T>
class Functor2Mem : public Functor2<Arg1, Arg2, Res> {
public:
	typedef Res (T::*FuncType)(Arg1, Arg2);

	Functor2Mem(T *t, const FuncType &func) : _t(t), _func(func) {}

	bool isValid() const { return _func != 0 && _t != 0; }
	Res operator()(Arg1 v1, Arg2 v2) const {
		return (_t->*_func)(v1, v2);
	}
private:
	mutable T *_t;
	const FuncType _func;
};

/**
 * Base template for hash functor objects, used by HashMap.
 * This needs to be specialized for every type that you need to hash.
 */
template<typename T> struct Hash;


#define GENERATE_TRIVIAL_HASH_FUNCTOR(T) \
	template<> struct Hash<T> : public UnaryFunction<T, uint> { \
		uint operator()(T val) const { return (uint)val; } \
	}

GENERATE_TRIVIAL_HASH_FUNCTOR(bool);
GENERATE_TRIVIAL_HASH_FUNCTOR(char);
GENERATE_TRIVIAL_HASH_FUNCTOR(signed char);
GENERATE_TRIVIAL_HASH_FUNCTOR(unsigned char);
GENERATE_TRIVIAL_HASH_FUNCTOR(short);
GENERATE_TRIVIAL_HASH_FUNCTOR(int);
GENERATE_TRIVIAL_HASH_FUNCTOR(long);
GENERATE_TRIVIAL_HASH_FUNCTOR(unsigned short);
GENERATE_TRIVIAL_HASH_FUNCTOR(unsigned int);
GENERATE_TRIVIAL_HASH_FUNCTOR(unsigned long);

#undef GENERATE_TRIVIAL_HASH_FUNCTOR

} // End of namespace Common

#endif