aboutsummaryrefslogtreecommitdiff
path: root/common/hashmap.h
blob: bbc227b3ae217333ebd020f5fd7db5c4d989c2e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * $URL$
 * $Id$
 *
 */

// The hash map (associative array) implementation in this file is
// based on the PyDict implementation of CPython. The erase() method
// is based on example code in the Wikipedia article on Hash tables.

#ifndef COMMON_HASHMAP_H
#define COMMON_HASHMAP_H

#include "common/func.h"
#include "common/str.h"
#include "common/util.h"

#define USE_HASHMAP_MEMORY_POOL
#ifdef USE_HASHMAP_MEMORY_POOL
#include "common/memorypool.h"
#endif

namespace Common {

// Enable the following #define if you want to check how many collisions the
// code produces (many collisions indicate either a bad hash function, or a
// hash table that is too small).
//#define DEBUG_HASH_COLLISIONS


/**
 * HashMap<Key,Val> maps objects of type Key to objects of type Val.
 * For each used Key type, we need an "uint hashit(Key,uint)" function
 * that computes a hash for the given Key object and returns it as an
 * an integer from 0 to hashsize-1, and also an "equality functor".
 * that returns true if if its two arguments are to be considered
 * equal. Also, we assume that "=" works on Val objects for assignment.
 *
 * If aa is an HashMap<Key,Val>, then space is allocated each time aa[key] is
 * referenced, for a new key. If the object is const, then an assertion is
 * triggered instead. Hence if you are not sure whether a key is contained in
 * the map, use contains() first to check for its presence.
 */
template<class Key, class Val, class HashFunc = Hash<Key>, class EqualFunc = EqualTo<Key> >
class HashMap {
private:
#if defined (PALMOS_MODE)
public:
#endif

	typedef HashMap<Key, Val, HashFunc, EqualFunc> HM_t;

	struct Node {
		const Key _key;
		Val _value;
		Node(const Key &key) : _key(key), _value() {}
	};

	enum {
		HASHMAP_PERTURB_SHIFT = 5,
		HASHMAP_MIN_CAPACITY = 16,
		
		// The quotient of the next two constants controls how much the 
		// internal storage of the hashmap may fill up before being
		// increased automatically.
		// Note: the quotient of these two must be between and different
		// from 0 and 1.
		HASHMAP_LOADFACTOR_NUMERATOR = 2,
		HASHMAP_LOADFACTOR_DENOMINATOR = 3,
		
		HASHMAP_MEMORYPOOL_SIZE = HASHMAP_MIN_CAPACITY * HASHMAP_LOADFACTOR_NUMERATOR / HASHMAP_LOADFACTOR_DENOMINATOR
	};


	ObjectPool<Node, HASHMAP_MEMORYPOOL_SIZE> _nodePool;

	Node *allocNode(const Key &key) {
		return new (_nodePool) Node(key);
	} 

	void freeNode(Node *node) {
		_nodePool.deleteChunk(node);
	}

	Node **_storage;	// hashtable of size arrsize.
	uint _mask;		/**< Capacity of the HashMap minus one; must be a power of two of minus one */
	uint _size;

	HashFunc _hash;
	EqualFunc _equal;

	// Default value, returned by the const getVal.
	const Val _defaultVal;

#ifdef DEBUG_HASH_COLLISIONS
	mutable int _collisions, _lookups;
#endif

	void assign(const HM_t &map);
	int lookup(const Key &key) const;
	int lookupAndCreateIfMissing(const Key &key);
	void expandStorage(uint newCapacity);

	template<class T> friend class IteratorImpl;

	/**
	 * Simple HashMap iterator implementation.
	 */
	template<class NodeType>
	class IteratorImpl {
		friend class HashMap;
		template<class T> friend class IteratorImpl;
	protected:
		typedef const HashMap hashmap_t;

		uint _idx;
		hashmap_t *_hashmap;

	protected:
		IteratorImpl(uint idx, hashmap_t *hashmap) : _idx(idx), _hashmap(hashmap) {}

		NodeType *deref() const {
			assert(_hashmap != 0);
			assert(_idx <= _hashmap->_mask);
			Node *node = _hashmap->_storage[_idx];
			assert(node != 0);
			return node;
		}

	public:
		IteratorImpl() : _idx(0), _hashmap(0) {}
		template<class T>
		IteratorImpl(const IteratorImpl<T> &c) : _idx(c._idx), _hashmap(c._hashmap) {}

		NodeType &operator*() const { return *deref(); }
		NodeType *operator->() const { return deref(); }

		bool operator==(const IteratorImpl &iter) const { return _idx == iter._idx && _hashmap == iter._hashmap; }
		bool operator!=(const IteratorImpl &iter) const { return !(*this == iter); }

		IteratorImpl &operator++() {
			assert(_hashmap);
			do {
				_idx++;
			} while (_idx <= _hashmap->_mask && _hashmap->_storage[_idx] == 0);
			if (_idx > _hashmap->_mask)
				_idx = (uint)-1;

			return *this;
		}

		IteratorImpl operator++(int) {
			IteratorImpl old = *this;
			operator ++();
			return old;
		}
	};

public:
	typedef IteratorImpl<Node> iterator;
	typedef IteratorImpl<const Node> const_iterator;

	HashMap();
	HashMap(const HM_t &map);
	~HashMap();

	HM_t &operator=(const HM_t &map) {
		if (this == &map)
			return *this;

		// Remove the previous content and ...
		clear();
		delete[] _storage;
		// ... copy the new stuff.
		assign(map);
		return *this;
	}

	bool contains(const Key &key) const;

	Val &operator[](const Key &key);
	const Val &operator[](const Key &key) const;

	Val &getVal(const Key &key);
	const Val &getVal(const Key &key) const;
	void setVal(const Key &key, const Val &val);

	void clear(bool shrinkArray = 0);

	void erase(const Key &key);

	uint size() const { return _size; }

	iterator	begin() {
		// Find and return the _key non-empty entry
		for (uint ctr = 0; ctr <= _mask; ++ctr) {
			if (_storage[ctr])
				return iterator(ctr, this);
		}
		return end();
	}
	iterator	end() {
		return iterator((uint)-1, this);
	}

	const_iterator	begin() const {
		// Find and return the first non-empty entry
		for (uint ctr = 0; ctr <= _mask; ++ctr) {
			if (_storage[ctr])
				return const_iterator(ctr, this);
		}
		return end();
	}
	const_iterator	end() const {
		return const_iterator((uint)-1, this);
	}

	iterator	find(const Key &key) {
		uint ctr = lookup(key);
		if (_storage[ctr])
			return iterator(ctr, this);
		return end();
	}

	const_iterator	find(const Key &key) const {
		uint ctr = lookup(key);
		if (_storage[ctr])
			return const_iterator(ctr, this);
		return end();
	}

	// TODO: insert() method?

	bool empty() const {
		return (_size == 0);
	}
};

//-------------------------------------------------------
// HashMap functions

/**
 * Base constructor, creates an empty hashmap.
 */
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::HashMap() :
	_defaultVal() {
	_mask = HASHMAP_MIN_CAPACITY - 1;
	_storage = new Node *[HASHMAP_MIN_CAPACITY];
	assert(_storage != NULL);
	memset(_storage, 0, HASHMAP_MIN_CAPACITY * sizeof(Node *));

	_size = 0;

#ifdef DEBUG_HASH_COLLISIONS
	_collisions = 0;
	_lookups = 0;
#endif
}

/**
 * Copy constructor, creates a full copy of the given hashmap.
 * We must provide a custom copy constructor as we use pointers
 * to heap buffers for the internal storage.
 */
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::HashMap(const HM_t &map) : 
	_defaultVal()  {
	assign(map);
}

/**
 * Destructor, frees all used memory.
 */
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::~HashMap() {
	for (uint ctr = 0; ctr <= _mask; ++ctr)
		if (_storage[ctr] != NULL)
		  freeNode(_storage[ctr]);

	delete[] _storage;
#ifdef DEBUG_HASH_COLLISIONS
	extern void updateHashCollisionStats(int, int, int, int);
	updateHashCollisionStats(_collisions, _lookups, _mask+1, _size);
#endif
}

/**
 * Internal method for assigning the content of another HashMap
 * to this one.
 *
 * @note We do *not* deallocate the previous storage here -- the caller is
 *       responsible for doing that!
 */
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::assign(const HM_t &map) {
	_mask = map._mask;
	_storage = new Node *[_mask+1];
	assert(_storage != NULL);
	memset(_storage, 0, (_mask+1) * sizeof(Node *));

	// Simply clone the map given to us, one by one.
	_size = 0;
	for (uint ctr = 0; ctr <= _mask; ++ctr) {
		if (map._storage[ctr] != NULL) {
			_storage[ctr] = allocNode(map._storage[ctr]->_key);
			_storage[ctr]->_value = map._storage[ctr]->_value;
			_size++;
		}
	}
	// Perform a sanity check (to help track down hashmap corruption)
	assert(_size == map._size);
}


template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::clear(bool shrinkArray) {
	for (uint ctr = 0; ctr <= _mask; ++ctr) {
		if (_storage[ctr] != NULL) {
			freeNode(_storage[ctr]);
			_storage[ctr] = NULL;
		}
	}

#ifdef USE_HASHMAP_MEMORY_POOL
	_nodePool.freeUnusedPages();
#endif

	if (shrinkArray && _mask >= HASHMAP_MIN_CAPACITY) {
		delete[] _storage;

		_mask = HASHMAP_MIN_CAPACITY;
		_storage = new Node *[HASHMAP_MIN_CAPACITY];
		assert(_storage != NULL);
		memset(_storage, 0, HASHMAP_MIN_CAPACITY * sizeof(Node *));
	}

	_size = 0;
}

template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::expandStorage(uint newCapacity) {
	assert(newCapacity > _mask+1);

	const uint old_size = _size;
	const uint old_mask = _mask;
	Node **old_storage = _storage;

	// allocate a new array
	_size = 0;
	_mask = newCapacity - 1;
	_storage = new Node *[newCapacity];
	assert(_storage != NULL);
	memset(_storage, 0, newCapacity * sizeof(Node *));

	// rehash all the old elements
	for (uint ctr = 0; ctr <= old_mask; ++ctr) {
		if (old_storage[ctr] == NULL)
			continue;

		// Insert the element from the old table into the new table.
		// Since we know that no key exists twice in the old table, we
		// can do this slightly better than by calling lookup, since we
		// don't have to call _equal().
		const uint hash = _hash(old_storage[ctr]->_key);
		uint idx = hash & _mask;
		for (uint perturb = hash; _storage[idx] != NULL; perturb >>= HASHMAP_PERTURB_SHIFT) {
			idx = (5 * idx + perturb + 1) & _mask;
		}

		_storage[idx] = old_storage[ctr];
		_size++;
	}

	// Perform a sanity check: Old number of elements should match the new one!
	// This check will fail if some previous operation corrupted this hashmap.
	assert(_size == old_size);

	delete[] old_storage;

	return;
}

template<class Key, class Val, class HashFunc, class EqualFunc>
int HashMap<Key, Val, HashFunc, EqualFunc>::lookup(const Key &key) const {
	const uint hash = _hash(key);
	uint ctr = hash & _mask;
	for (uint perturb = hash; ; perturb >>= HASHMAP_PERTURB_SHIFT) {
		if (_storage[ctr] == NULL || _equal(_storage[ctr]->_key, key))
			break;

		ctr = (5 * ctr + perturb + 1) & _mask;

#ifdef DEBUG_HASH_COLLISIONS
		_collisions++;
#endif
	}

#ifdef DEBUG_HASH_COLLISIONS
	_lookups++;
	fprintf(stderr, "collisions %d, lookups %d, ratio %f in HashMap %p; size %d num elements %d\n",
		_collisions, _lookups, ((double) _collisions / (double)_lookups),
		(const void *)this, _mask+1, _size);
#endif

	return ctr;
}

template<class Key, class Val, class HashFunc, class EqualFunc>
int HashMap<Key, Val, HashFunc, EqualFunc>::lookupAndCreateIfMissing(const Key &key) {
	uint ctr = lookup(key);

	if (_storage[ctr] == NULL) {
		_storage[ctr] = allocNode(key);
		_size++;

		// Keep the load factor below a certain threshold.
		uint capacity = _mask + 1;
		if (_size * HASHMAP_LOADFACTOR_DENOMINATOR > capacity * HASHMAP_LOADFACTOR_NUMERATOR) {
			capacity = capacity < 500 ? (capacity * 4) : (capacity * 2);
			expandStorage(capacity);
			ctr = lookup(key);
		}
	}

	return ctr;
}


template<class Key, class Val, class HashFunc, class EqualFunc>
bool HashMap<Key, Val, HashFunc, EqualFunc>::contains(const Key &key) const {
	uint ctr = lookup(key);
	return (_storage[ctr] != NULL);
}

template<class Key, class Val, class HashFunc, class EqualFunc>
Val &HashMap<Key, Val, HashFunc, EqualFunc>::operator[](const Key &key) {
	return getVal(key);
}

template<class Key, class Val, class HashFunc, class EqualFunc>
const Val &HashMap<Key, Val, HashFunc, EqualFunc>::operator[](const Key &key) const {
	return getVal(key);
}

template<class Key, class Val, class HashFunc, class EqualFunc>
Val &HashMap<Key, Val, HashFunc, EqualFunc>::getVal(const Key &key) {
	uint ctr = lookupAndCreateIfMissing(key);
	assert(_storage[ctr] != NULL);
	return _storage[ctr]->_value;
}

template<class Key, class Val, class HashFunc, class EqualFunc>
const Val &HashMap<Key, Val, HashFunc, EqualFunc>::getVal(const Key &key) const {
	uint ctr = lookup(key);
	if (_storage[ctr] != NULL)
		return _storage[ctr]->_value;
	else
		return _defaultVal;
}

template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::setVal(const Key &key, const Val &val) {
	uint ctr = lookupAndCreateIfMissing(key);
	assert(_storage[ctr] != NULL);
	_storage[ctr]->_value = val;
}

template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::erase(const Key &key) {
	// This is based on code in the Wikipedia article on Hash tables.

	const uint hash = _hash(key);
	uint i = hash & _mask;
	uint perturb;

	for (perturb = hash; ; perturb >>= HASHMAP_PERTURB_SHIFT) {
		if (_storage[i] == NULL || _equal(_storage[i]->_key, key))
			break;

		i = (5 * i + perturb + 1) & _mask;
	}

	if (_storage[i] == NULL)
		return; // key wasn't present, so no work has to be done

	// If we remove a key, we must check all subsequent keys and possibly
	// reinsert them.
	uint j = i;
	freeNode(_storage[i]);
	_storage[i] = NULL;
	for (perturb = hash; ; perturb >>= HASHMAP_PERTURB_SHIFT) {
		// Look at the next table slot
		j = (5 * j + perturb + 1) & _mask;
		// If the next slot is empty, we are done
		if (_storage[j] == NULL)
			break;
		// Compute the slot where the content of the next slot should normally be,
		// assuming an empty table, and check whether we have to move it.
		uint k = _hash(_storage[j]->_key) & _mask;
		if ((j > i && (k <= i || k > j)) ||
		    (j < i && (k <= i && k > j)) ) {
			_storage[i] = _storage[j];
			i = j;
		}
	}
	_storage[i] = NULL;
	_size--;
	return;
}

}	// End of namespace Common

#endif