aboutsummaryrefslogtreecommitdiff
path: root/engines/draci/walking.cpp
blob: fed91dd8ef4599cf5dca2d965cfbcbddb7f029ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * $URL$
 * $Id$
 *
 */

#include <stdlib.h>

#include "common/stream.h"

#include "draci/animation.h"
#include "draci/draci.h"
#include "draci/walking.h"
#include "draci/sprite.h"

namespace Draci {

void WalkingMap::load(const byte *data, uint length) {
	Common::MemoryReadStream mapReader(data, length);

	_realWidth = mapReader.readUint16LE();
	_realHeight = mapReader.readUint16LE();
	_deltaX = mapReader.readUint16LE();
	_deltaY = mapReader.readUint16LE();
	_mapWidth = mapReader.readUint16LE();
	_mapHeight = mapReader.readUint16LE();
	_byteWidth = mapReader.readUint16LE();

	// Set the data pointer to raw map data
	_data = data + mapReader.pos();
}

bool WalkingMap::getPixel(int x, int y) const {
	const byte *pMapByte = _data + _byteWidth * y + x / 8;
	return *pMapByte & (1 << x % 8);
}

bool WalkingMap::isWalkable(int x, int y) const {
	// Convert to map pixels
	return getPixel(x / _deltaX, y / _deltaY);
}

Sprite *WalkingMap::newOverlayFromMap(byte colour) const {
	// HACK: Create a visible overlay from the walking map so we can test it
	byte *wlk = new byte[_realWidth * _realHeight];
	memset(wlk, 255, _realWidth * _realHeight);

	for (int i = 0; i < _mapWidth; ++i) {
		for (int j = 0; j < _mapHeight; ++j) {
			if (getPixel(i, j)) {
				drawOverlayRectangle(Common::Point(i, j), colour, wlk);
			}
		}
	}

	Sprite *ov = new Sprite(_realWidth, _realHeight, wlk, 0, 0, false);
	// ov has taken the ownership of wlk.

	return ov;
}

/**
 * @brief For a given point, find a nearest walkable point on the walking map
 *
 * @param startX    x coordinate of the point
 * @param startY    y coordinate of the point
 *
 * @return A Common::Point representing the nearest walkable point
 *
 *  The algorithm was copied from the original engine for exactness.
 *  TODO: Study this algorithm in more detail so it can be documented properly and
 *  possibly improved / simplified.
 */
Common::Point WalkingMap::findNearestWalkable(int startX, int startY, Common::Rect searchRect) const {
	// If the starting point is walkable, just return that
	if (searchRect.contains(startX, startY) && isWalkable(startX, startY)) {
		return Common::Point(startX, startY);
	}

	int signs[] = { 1, -1 };
	const uint kSignsNum = 2;

	int radius = 0;
	int x, y;
	int dx, dy;
	int prediction;

	// The place where, eventually, the result coordinates will be stored
	int finalX, finalY;

	// The algorithm appears to start off with an ellipse with the minor radius equal to
	// zero and the major radius equal to the walking map delta (the number of pixels
	// one map pixel represents). It then uses a heuristic to gradually reshape it into
	// a circle (by shortening the major radius and lengthening the minor one). At each
	// such resizing step, it checks some select points on the ellipse for walkability.
	// It also does the same check for the ellipse perpendicular to it (rotated by 90 degrees).

	while (1) {
		// The default major radius
		radius += _deltaX;

		// The ellipse radii (minor, major) that get resized
		x = 0;
		y = radius;

		// Heuristic variables
		prediction = 1 - radius;
		dx = 3;
		dy = 2 * radius - 2;

		do {
			// The following two loops serve the purpose of checking the points on the two
			// ellipses for walkability. The signs[] array is there to obliterate the need
			// of writing out all combinations manually.

			for (uint i = 0; i < kSignsNum; ++i) {
				finalY = startY + y * signs[i];

				for (uint j = 0; j < kSignsNum; ++j) {
					finalX = startX + x * signs[j];

					// If the current point is walkable, return it
					if (searchRect.contains(finalX, finalY) && isWalkable(finalX, finalY)) {
						return Common::Point(finalX, finalY);
					}
				}
			}

			if (x == y) {
				// If the starting point is walkable, just return that
				if (searchRect.contains(finalX, finalY) && isWalkable(finalX, finalY)) {
					return Common::Point(finalX, finalY);
				}
			}

			for (uint i = 0; i < kSignsNum; ++i) {
				finalY = startY + x * signs[i];

				for (uint j = 0; j < kSignsNum; ++j) {
					finalX = startX + y * signs[j];

					// If the current point is walkable, return it
					if (searchRect.contains(finalX, finalY) && isWalkable(finalX, finalY)) {
						return Common::Point(finalX, finalY);
					}
				}
			}

			// If prediction is non-negative, we need to decrease the major radius of the
			// ellipse
			if (prediction >= 0) {
				prediction -= dy;
				dy -= 2 * _deltaX;
				y -= _deltaX;
			}

			// Increase the minor radius of the ellipse and update heuristic variables
			prediction += dx;
			dx += 2 * _deltaX;
			x += _deltaX;

		// If the current ellipse has been reshaped into a circle,
		// end this loop and enlarge the radius
		} while (x <= y);
	}
}

// We don't use Common::Point due to using static initialization.
int WalkingMap::kDirections[][2] = { {0, -1}, {0, +1}, {-1, 0}, {+1, 0} };

bool WalkingMap::findShortestPath(Common::Point p1, Common::Point p2, WalkingPath *path) const {
	// Round the positions to map squares.
	p1.x /= _deltaX;
	p2.x /= _deltaX;
	p1.y /= _deltaY;
	p2.y /= _deltaY;

	// Allocate buffers for breadth-first search.  The buffer of points for
	// exploration should be large enough.
	const int bufSize = 4 * _realHeight;
	int8 *cameFrom = new int8[_mapWidth * _mapHeight];
	Common::Point *toSearch = new Common::Point[bufSize];

	// Insert the starting point as a single seed.
	int toRead = 0, toWrite = 0;
	memset(cameFrom, -1, _mapWidth * _mapHeight);	// -1 = not found yet
	cameFrom[p1.y * _mapWidth + p1.x] = 0;
	toSearch[toWrite++] = p1;

	// Search until we empty the whole buffer (not found) or find the
	// destination point.
	while (toRead != toWrite) {
		const Common::Point &here = toSearch[toRead];
		const int from = cameFrom[here.y * _mapWidth + here.x];
		if (here == p2) {
			break;
		}
		// Look into all 4 directions in a particular order depending
		// on the direction we came to this point from.  This is to
		// ensure that among many paths of the same length, the one
		// with the smallest number of turns is preferred.
		for (int addDir = 0; addDir < 4; ++addDir) {
			const int probeDirection = (from + addDir) % 4;
			const int x = here.x + kDirections[probeDirection][0];
			const int y = here.y + kDirections[probeDirection][1];
			if (x < 0 || x >= _mapWidth || y < 0 || y >= _mapHeight) {
				continue;
			}
			// If this point is walkable and we haven't seen it
			// yet, record how we have reached it and insert it
			// into the round buffer for exploration.
			if (getPixel(x, y) && cameFrom[y * _mapWidth + x] == -1) {
				cameFrom[y * _mapWidth + x] = probeDirection;
				toSearch[toWrite++] = Common::Point(x, y);
				toWrite %= bufSize;
			}
		}
		++toRead;
		toRead %= bufSize;
	}

	// The path doesn't exist.
	if (toRead == toWrite) {
		delete[] cameFrom;
		delete[] toSearch;
		return false;
	}

	// Trace the path back and store it.  Count the path length, resize the
	// output array, and then track the pack from the end.
	path->clear();
	for (int pass = 0; pass < 2; ++pass) {
		Common::Point p = p2;
		int index = 0;
		while (1) {
			++index;
			if (pass == 1) {
				(*path)[path->size() - index] = p;
			}
			if (p == p1) {
				break;
			}
			const int from = cameFrom[p.y * _mapWidth + p.x];
			p.x -= kDirections[from][0];
			p.y -= kDirections[from][1];
		}
		if (pass == 0) {
			path->resize(index);
		}
	}

	delete[] cameFrom;
	delete[] toSearch;
	return true;
}

void WalkingMap::obliquePath(const WalkingPath& path, WalkingPath *obliquedPath) {
	// Prune the path to only contain vertices where the direction is changing.
	obliquedPath->clear();
	if (path.empty()) {
		return;
	}
	obliquedPath->push_back(path[0]);
	uint index = 1;
	while (index < path.size()) {
		// index1 points to the last vertex inserted into the
		// simplified path.
		uint index1 = index - 1;
		// Probe the vertical direction.  Notice that the shortest path
		// never turns by 180 degrees and therefore it is sufficient to
		// test that the X coordinates are equal.
		while (index < path.size() && path[index].x == path[index1].x) {
			++index;
		}
		if (index - 1 > index1) {
			index1 = index - 1;
			obliquedPath->push_back(path[index1]);
		}
		// Probe the horizontal direction.
		while (index < path.size() && path[index].y == path[index1].y) {
			++index;
		}
		if (index - 1 > index1) {
			index1 = index - 1;
			obliquedPath->push_back(path[index1]);
		}
	}

	// Repeatedly oblique the path until it cannot be improved.  This
	// process is finite, because after each success the number of vertices
	// goes down.
	while (managedToOblique(obliquedPath)) {}
}

Sprite *WalkingMap::newOverlayFromPath(const WalkingPath &path, byte colour) const {
	// HACK: Create a visible overlay from the walking map so we can test it
	byte *wlk = new byte[_realWidth * _realHeight];
	memset(wlk, 255, _realWidth * _realHeight);

	for (uint segment = 1; segment < path.size(); ++segment) {
		const Common::Point &v1 = path[segment-1];
		const Common::Point &v2 = path[segment];
		const int steps = pointsBetween(v1, v2);
		// Draw only points in the interval [v1, v2).  These half-open
		// half-closed intervals connect all the way to the last point.
		for (int step = 0; step < steps; ++step) {
			drawOverlayRectangle(interpolate(v1, v2, step, steps), colour, wlk);
		}
	}
	// Draw the last point.  This works also when the path has no segment,
	// but just one point.
	if (path.size() > 0) {
		const Common::Point &vLast = path[path.size()-1];
		drawOverlayRectangle(vLast, colour, wlk);
	}

	Sprite *ov = new Sprite(_realWidth, _realHeight, wlk, 0, 0, false);
	// ov has taken the ownership of wlk.

	return ov;
}

void WalkingMap::drawOverlayRectangle(const Common::Point &p, byte colour, byte *buf) const {
	for (int i = 0; i < _deltaX; ++i) {
		for (int j = 0; j < _deltaY; ++j) {
			buf[(p.y * _deltaY + j) * _realWidth + (p.x * _deltaX + i)] = colour;
		}
	}
}

int WalkingMap::pointsBetween(const Common::Point &p1, const Common::Point &p2) {
	return MAX(abs(p2.x - p1.x), abs(p2.y - p1.y));
}

Common::Point WalkingMap::interpolate(const Common::Point &p1, const Common::Point &p2, int i, int n) {
	const int x = (p1.x * (n-i) + p2.x * i + n/2) / n;
	const int y = (p1.y * (n-i) + p2.y * i + n/2) / n;
	return Common::Point(x, y);
}

bool WalkingMap::lineIsCovered(const Common::Point &p1, const Common::Point &p2) const {
	const int steps = pointsBetween(p1, p2);
	for (int step = 0; step <= steps; ++step) {
		Common::Point p = interpolate(p1, p2, step, steps);
		if (!getPixel(p.x, p.y)) {
			return false;
		}
	}
	return true;
}

bool WalkingMap::managedToOblique(WalkingPath *path) const {
	bool improved = false;

	// Making the path oblique works as follows.  If the path has at least
	// 3 remaining vertices, we try to oblique the L-shaped path between
	// them.  First we try to connect the 1st and 3rd vertex directly (if
	// all points on the line between them are walkable) and then we try to
	// walk on both edges towards the 2nd vertex in parallel and try to
	// find a shortcut (replacing the 2nd vertex by this mid-point).  If
	// either of those attempts succeeds, we have shortned the path.  We
	// update the path vertices and continue with the next segment.
	for (uint head = 2; head < path->size(); ++head) {
		const Common::Point &v1 = (*path)[head-2];
		const Common::Point &v2 = (*path)[head-1];
		const Common::Point &v3 = (*path)[head];
		const int points12 = pointsBetween(v1, v2);
		const int points32 = pointsBetween(v3, v2);
		// Find the first point p on each edge [v1, v2] and [v3, v2]
		// such that the edge [p, the third vertex] is covered.
		// Ideally we would like p \in {v1, v3} and the closer the
		// better.  The last point p = v2 should always succeed.
		int first12, first32;
		for (first12 = 0; first12 < points12; ++first12) {
			Common::Point midPoint = interpolate(v1, v2, first12, points12);
			if (lineIsCovered(midPoint, v3)) {
				break;
			}
		}
		if (first12 == 0) {
			// Can completely remove the vertex.  Head stays the
			// same after -- and ++.
			path->remove_at(--head);
			improved = true;
			continue;
		}
		for (first32 = 0; first32 < points32; ++first32) {
			Common::Point midPoint = interpolate(v3, v2, first32, points32);
			if (lineIsCovered(midPoint, v1)) {
				break;
			}
		}
		if (first12 < points12 && first32 >= points32 + MIN(first12 - points12, 0)) {
			// There is such a point on the first edge and the
			// second edge has either not succeeded or we gain more
			// by cutting this edge than the other one.
			(*path)[head-1] = interpolate(v1, v2, first12, points12);
			// After replacing the 2nd vertex, let head move on.
		} else if (first32 < points32) {
			(*path)[head-1] = interpolate(v3, v2, first32, points32);
		}
	}
	return improved;
}

void WalkingState::stopWalking() {
	_path.clear();
	_callback = NULL;
}

void WalkingState::startWalking(const Common::Point &p1, const Common::Point &p2,
	const Common::Point &mouse, SightDirection dir,
	const Common::Point &delta, const WalkingPath& path) {
	_path = path;
	_mouse = mouse;
	_dir = dir;

	if (!_path.size()) {
		_path.push_back(p1);
	}
	if (_path.size() == 1 && p2 != p1) {
		// Although the first and last point belong to the same
		// rectangle and therefore the computed path is of length 1,
		// they are different pixels.
		_path.push_back(p2);
	}
	debugC(2, kDraciWalkingDebugLevel, "Starting walking [%d,%d] -> [%d,%d] in %d segments",
		p1.x, p1.y, p2.x, p2.y, _path.size());

	// The first and last point are available with pixel accurracy.
	_path[0] = p1;
	_path[_path.size() - 1] = p2;
	// The intermediate points are given with map granularity; convert them
	// to pixels.
	for (uint i = 1; i < _path.size() - 1; ++i) {
		_path[i].x *= delta.x;
		_path[i].y *= delta.y;
	}

	// Going to start with the first segment.
	_segment = _lastAnimPhase = _position = _length = -1;
	turnForTheNextSegment();
}

void WalkingState::setCallback(const GPL2Program *program, uint16 offset) {
	_callback = program;
	_callbackOffset = offset;
}

void WalkingState::callback() {
	if (!_callback) {
		return;
	}
	debugC(2, kDraciWalkingDebugLevel, "Calling walking callback");

	// Fetch the dedicated objects' title animation / current frame
	Animation *titleAnim = _vm->_anims->getAnimation(kTitleText);
	Text *title = reinterpret_cast<Text *>(titleAnim->getCurrentFrame());

	_vm->_mouse->cursorOff();
	titleAnim->markDirtyRect(_vm->_screen->getSurface());
	title->setText("");

	const GPL2Program *originalCallback = _callback;
	_callback = NULL;
	_vm->_script->run(*originalCallback, _callbackOffset);

	_vm->_mouse->cursorOn();
}

bool WalkingState::continueWalking() {
	const GameObject *dragon = _vm->_game->getObject(kDragonObject);
	const Movement anim_index = static_cast<Movement> (_vm->_game->playingObjectAnimation(dragon));

	// If the current animation is a turning animation, wait a bit more.
	// When this animation has finished, heroAnimationFinished() callback
	// will be called, which starts a new scheduled one, so the code never
	// gets here if it hasn't finished yet.
	if (isTurningMovement(anim_index)) {
		return true;
	}

	// If the current segment is the last one, we have reached the
	// destination and are already facing in the right direction ===>
	// return false.
	if (_segment >= (int) (_path.size() - 1)) {
		_path.clear();
		return false;
	}

	// Read the dragon's animation's current phase.  Determine if it has
	// changed from the last time.  If not, wait until it has.
	const int animID = dragon->_anim[anim_index];
	Animation *anim = _vm->_anims->getAnimation(animID);
	const int animPhase = anim->currentFrameNum();
	const bool wasUpdated = animPhase != _lastAnimPhase;
	if (!wasUpdated) {
		return true;
	}
	_lastAnimPhase = animPhase;

	debugC(3, kDraciWalkingDebugLevel, "Continuing walking in segment %d and position %d/%d", _segment, _position, _length);

	// We are walking in the middle of an edge.  The animation phase has
	// just changed.  Update the position of the hero.
	_vm->_game->positionHeroAsAnim(anim);
	// TODO: take the [XY] coordinate determined by the animation, update
	// the other one so that the hero stays on the edge, remove _position
	// and _length, and instead test reaching the destination by computing
	// the scalar product
	_position += 4;
	// Common::Point newPos = WalkingMap::interpolate(
	// 	_path[_segment], _path[_segment+1], _position, _length);
	// _vm->_game->setHeroPosition(newPos);
	// _vm->_game->positionAnimAsHero(anim);

	// If the hero has reached the end of the edge, start transition to the
	// next phase.  This will increment _segment, either immediately (if no
	// transition is needed) or in the callback (after the transition is
	// done).
	if (_position >= _length) {
		turnForTheNextSegment();
	}

	return true;
}

void WalkingState::turnForTheNextSegment() {
	const GameObject *dragon = _vm->_game->getObject(kDragonObject);
	const Movement currentAnim = static_cast<Movement> (_vm->_game->playingObjectAnimation(dragon));
	const Movement wantAnim = directionForNextPhase();
	Movement transition = transitionBetweenAnimations(currentAnim, wantAnim);

	debugC(2, kDraciWalkingDebugLevel, "Turning for segment %d", _segment+1);

	if (transition == kMoveUndefined) {
		// Start the next segment right away as if the turning has just finished.
		heroAnimationFinished();
	} else {
		// Otherwise start the transition and wait until the Animation
		// class calls heroAnimationFinished() as a callback.
		assert(isTurningMovement(transition));
		_vm->_game->playHeroAnimation(transition);
		const int animID = dragon->_anim[transition];
		Animation *anim = _vm->_anims->getAnimation(animID);
		anim->registerCallback(&Animation::tellWalkingState);

		debugC(2, kDraciWalkingDebugLevel, "Starting turning animation %d", transition);
	}
}

void WalkingState::heroAnimationFinished() {
	// The hero is turned well for the next line segment or for facing the
	// target direction.

	// Start the desired next animation.  playHeroAnimation() takes care of
	// stopping the current animation.
	// Don't use any callbacks, because continueWalking() will decide the
	// end on its own and after walking is done callbacks shouldn't be
	// called either.  It wouldn't make much sense anyway, since the
	// walking/staying/talking animations are cyclic.
	Movement nextAnim = directionForNextPhase();
	_vm->_game->playHeroAnimation(nextAnim);

	// Retrieve the current animation phase.  Don't just use 0, because we
	// cannot assume that nextAnim has just started.  If it was already
	// playing before, then playHeroAnimation(nextAnim) does nothing.
	const GameObject *dragon = _vm->_game->getObject(kDragonObject);
	const int animID = dragon->_anim[nextAnim];
	Animation *anim = _vm->_anims->getAnimation(animID);
	_lastAnimPhase = anim->currentFrameNum();

	debugC(2, kDraciWalkingDebugLevel, "Turned for segment %d, starting animation %d", _segment+1, nextAnim);

	if (++_segment < (int) (_path.size() - 1)) {
		// We are on an edge: track where the hero is on this edge.
		_position = 0;
		_length = WalkingMap::pointsBetween(_path[_segment], _path[_segment+1]);
		debugC(2, kDraciWalkingDebugLevel, "Next segment %d has length %d", _segment, _length);
	} else {
		// Otherwise we are done.  continueWalking() will return false next time.
		debugC(2, kDraciWalkingDebugLevel, "We have walked the whole path");
	}

	// TODO: do we need to clear this callback for the animation?
}

Movement WalkingState::animationForDirection(const Common::Point &here, const Common::Point &there) {
	const int dx = there.x - here.x;
	const int dy = there.y - here.y;
	if (abs(dx) >= abs(dy)) {
		return dx >= 0 ? kMoveRight : kMoveLeft;
	} else {
		return dy >= 0 ? kMoveDown : kMoveUp;
	}
}

Movement WalkingState::directionForNextPhase() const {
	if (_segment >= (int) (_path.size() - 2)) {
		return animationForSightDirection(_dir, _path[_path.size()-1], _mouse, _path);
	} else {
		return animationForDirection(_path[_segment+1], _path[_segment+2]);
	}
}

Movement WalkingState::transitionBetweenAnimations(Movement previous, Movement next) {
	switch (next) {
	case kMoveUp:
		switch (previous) {
		case kMoveLeft:
		case kStopLeft:
		case kSpeakLeft:
			return kMoveLeftUp;
		case kMoveRight:
		case kStopRight:
		case kSpeakRight:
			return kMoveRightUp;
		default:
			return kMoveUndefined;
		}
	case kMoveDown:
		switch (previous) {
		case kMoveLeft:
		case kStopLeft:
		case kSpeakLeft:
			return kMoveLeftDown;
		case kMoveRight:
		case kStopRight:
		case kSpeakRight:
			return kMoveRightDown;
		default:
			return kMoveUndefined;
		}
	case kMoveLeft:
		switch (previous) {
		case kMoveDown:
			return kMoveDownLeft;
		case kMoveUp:
			return kMoveUpLeft;
		case kMoveRight:
		case kStopRight:
		case kSpeakRight:
			return kMoveRightLeft;
		default:
			return kMoveUndefined;
		}
	case kMoveRight:
		switch (previous) {
		case kMoveDown:
			return kMoveDownRight;
		case kMoveUp:
			return kMoveUpRight;
		case kMoveLeft:
		case kStopLeft:
		case kSpeakLeft:
			return kMoveLeftRight;
		default:
			return kMoveUndefined;
		}
	case kStopLeft:
		switch (previous) {
		case kMoveUp:
			return kMoveUpStopLeft;
		case kMoveRight:
		case kStopRight:
		case kSpeakRight:
			return kMoveRightLeft;
		default:
			return kMoveUndefined;
		}
	case kStopRight:
		switch (previous) {
		case kMoveUp:
			return kMoveUpStopRight;
		case kMoveLeft:
		case kStopLeft:
		case kSpeakLeft:
			return kMoveLeftRight;
		default:
			return kMoveUndefined;
		}
	default:
		return kMoveUndefined;
	}
}

Movement WalkingState::animationForSightDirection(SightDirection dir, const Common::Point &hero, const Common::Point &mouse, const WalkingPath &path) {
	switch (dir) {
	case kDirectionMouse:
		return mouse.x < hero.x ? kStopLeft : kStopRight;
	case kDirectionLeft:
		return kStopLeft;
	case kDirectionRight:
		return kStopRight;
	default: {
		// Find the last horizontal direction on the path.
		int i = path.size() - 1;
		while (i >= 0 && path[i].x == hero.x) {
			--i;
		}
		return (i >= 0 && path[i].x < hero.x) ? kStopRight : kStopLeft;
	}
	}
}

}