aboutsummaryrefslogtreecommitdiff
path: root/engines/glk/tads/tads2/regex.cpp
blob: c0404202bf67d315a6d71a3cd0044c71d3fe3ab8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 */

/*
Regular Expression Parser and Recognizer for TADS
Function
  Parses and recognizes regular expressions
Notes
  Regular expression syntax:

	 abc|def    either abc or def
	 (abc)      abc
	 abc+       abc, abcc, abccc, ...
	 abc*     ab, abc, abcc, ...
	 abc?       ab or abc
	 .          any single character
	 abc$       abc at the end of the line
	 ^abc       abc at the beginning of the line
	 %^abc      literally ^abc
	 [abcx-z]   matches a, b, c, x, y, or z
	 [^abcx-z]  matches any character except a, b, c, x, y, or z
	 [^]-q]     matches any character except ], -, or q

  Note that using ']' or '-' in a character range expression requires
  special ordering.  If ']' is to be used, it must be the first character
  after the '^', if present, within the brackets.  If '-' is to be used,
  it must be the first character after the '^' and/or ']', if present.

  '%' is used to escape the special characters: | . ( ) * ? + ^ $ % [
  (We use '%' rather than a backslash because it's less trouble to
  enter in a TADS string -- a backslash needs to be quoted with another
  backslash, which is error-prone and hard to read.  '%' doesn't need
  any special quoting in a TADS string, which makes it a lot more
  readable.)

  In addition, '%' is used to introduce additional special sequences:

	 %1         text matching first parenthesized expression
	 %9         text matching ninth parenthesized experssion
	 %<         matches at the beginning of a word only
	 %>         matches at the end of a word only
	 %w         matches any word character
	 %W         matches any non-word character
	 %b         matches at any word boundary (beginning or end of word)
	 %B         matches except at a word boundary

  For the word matching sequences, a word is any sequence of letters and
  numbers.
*/

#include "engines/glk/tads/tads2/regex.h"
#include "engines/glk/tads/tads2/ler.h"
#include "engines/glk/tads/tads2/os.h"
//#include "engines/glk/tads/tads2/std.h"
#//include "engines/glk/tads/tads2/ler.h"

namespace Glk {
namespace TADS {
namespace TADS2 {

/**
 * A "machine" (i.e., a finite state automaton) is a set of state
 * transition tuples.  A tuple has three elements: the state ID, the ID
 * of the state that we transition to, and the condition for the
 * transition.  The condition is simply the character that we must match
 * to make the transition, or a special distinguished symbol "epsilon,"
 * which refers to a transition with no input character consumed.
 * 
 * The primitive elements of our machines guarantee that we never have
 * more than two transitions out of a particular state, so we can
 * denormalize the representation of a state by storing the two possible
 * tuples for that state in a single combined tuple.  This has the
 * performance advantage that we can use the state ID as an index into
 * an array of state tuples.
 * 
 * A particular machine always has a single initial and single final
 * (successful) state, so we can define a machine by its initial and
 * final state ID's.  
 */
enum {
	// the special symbol value for "epsilon"
	RE_EPSILON            = '\001',

	// the special symbol value for a wildcard character
	RE_WILDCARD           = '\002',

	// special symbol values for beginning and end of text
	RE_TEXT_BEGIN         = '\003',
	RE_TEXT_END           = '\004',

	// special symbol values for start and end of a word
	RE_WORD_BEGIN         = '\005',
	RE_WORD_END           = '\006',

	// special symbols for word-char and non-word-char
	RE_WORD_CHAR          = '\007',
	RE_NON_WORD_CHAR      = '\010',

	// special symbols for word-boundary and non-word-boundary
	RE_WORD_BOUNDARY      = '\011',
	RE_NON_WORD_BOUNDARY  = '\012',

	// special symbol for a character range/exclusion range
	RE_RANGE              = '\013',
	RE_RANGE_EXCL         = '\014',

	// a range of special symbol values for group matchers
	RE_GROUP_MATCH_0      = '\015',
	RE_GROUP_MATCH_9      = (RE_GROUP_MATCH_0 + 9)
};

re_context::re_context(errcxdef *errctx) {
	// save the error context
	_errctx = errctx;
	
	// clear states
	_next_state = RE_STATE_FIRST_VALID;

	// clear groups
	_cur_group = 0;

	// no string buffer yet
	_strbuf = 0;
}

re_context::~re_context() {
	// reset state
	reset();

	// if we allocated a string buffer, delete it
	if (_strbuf != 0) {
		mchfre(_strbuf);
		_strbuf = nullptr;
	}
}

void re_context::reset() {
	int i;
	
	// delete any range tables we've allocated
	for (i = 0 ; i < _next_state ; ++i) {
		if (_tuple_arr[i].char_range != 0) {
			mchfre(_tuple_arr[i].char_range);
			_tuple_arr[i].char_range = 0;
		}
	}

	// clear states
	_next_state = RE_STATE_FIRST_VALID;

	// clear groups
	_cur_group = 0;
}

re_state_id re_context::alloc_state() {
	// If we don't have enough room for another state, expand the array 
	if (_next_state >= (int)_tuple_arr.size()) {
		// bump the size by a bit
		_tuple_arr.resize(_tuple_arr.size() + 100);
	}

	// initialize the next state
	_tuple_arr[_next_state].next_state_1 = RE_STATE_INVALID;
	_tuple_arr[_next_state].next_state_2 = RE_STATE_INVALID;
	_tuple_arr[_next_state].ch = RE_EPSILON;
	_tuple_arr[_next_state].flags = 0;
	_tuple_arr[_next_state].char_range = 0;

	// return the new state's ID
	return _next_state++;
}

void re_context::set_trans(re_state_id id, re_state_id dest_id, char ch) {
	re_tuple *tuple;
	
	/* 
	 * get the tuple containing the transitions for this state ID - the
	 * state ID is the index of the state's transition tuple in the array 
	 */
	tuple = &_tuple_arr[id];

	/*
	 * If the first state pointer hasn't been set yet, set it to the new
	 * destination.  Otherwise, set the second state pointer.
	 * 
	 * Only set the character on setting the first state.  When setting
	 * the second state, we must assume that the character for the state
	 * has already been set, since any given state can have only one
	 * character setting.  
	 */
	if (tuple->next_state_1 == RE_STATE_INVALID) {
		/* 
		 * set the character ID, unless the state has been marked with a
		 * special flag which indicates that the character value has
		 * another meaning (in particular, a group marker) 
		 */
		if (!(tuple->flags & (RE_STATE_GROUP_BEGIN | RE_STATE_GROUP_END)))
			tuple->ch = ch;

		// set the first transition
		tuple->next_state_1 = dest_id;
	} else {
		// set only the second transition state - don't set the character
		tuple->next_state_2 = dest_id;
	}
}

void re_context::init_machine(re_machine *machine) {
	machine->init = alloc_state();
	machine->final = alloc_state();
}

void re_context::build_char(re_machine *machine, char ch) {
	// initialize our new machine
	init_machine(machine);

	// allocate a transition tuple for the new state
	set_trans(machine->init, machine->final, ch);
}

void re_context::build_char_range(re_machine *machine, unsigned char *range, int exclusion) {
	unsigned char *range_copy;
	
	// initialize our new machine
	init_machine(machine);

	// allocate a transition table for the new state
	set_trans(machine->init, machine->final, (char)(exclusion ? RE_RANGE_EXCL : RE_RANGE));

	// allocate a copy of the range bit vector
	range_copy = (unsigned char *)mchalo(_errctx, 32, "regex range");

	// copy the caller's range
	memcpy(range_copy, range, 32);

	// store it in the tuple
	_tuple_arr[machine->init].char_range = range_copy;
}

void re_context::build_group_matcher(re_machine *machine, int group_num) {
	// initialize our new machine
	init_machine(machine);

	/* 
	 * Allocate a transition tuple for the new state, using the group ID
	 * as the character code.  Store the special code for a group
	 * recognizer rather than the normal literal character code.  
	 */
	set_trans(machine->init, machine->final, (char)(group_num + RE_GROUP_MATCH_0));
}

void re_context::build_concat(re_machine *new_machine, re_machine *lhs, re_machine *rhs) {
	// initialize the new machine
	init_machine(new_machine);

	/* 
	 * Set up an epsilon transition from the new machine's initial state
	 * to the first submachine's initial state 
	 */
	set_trans(new_machine->init, lhs->init, RE_EPSILON);

	/*
	 * Set up an epsilon transition from the first submachine's final
	 * state to the second submachine's initial state 
	 */
	set_trans(lhs->final, rhs->init, RE_EPSILON);

	/*
	 * Set up an epsilon transition from the second submachine's final
	 * state to our new machine's final state 
	 */
	set_trans(rhs->final, new_machine->final, RE_EPSILON);
}

void re_context::build_group(re_machine *new_machine, re_machine *sub_machine, int group_id) {
	// initialize the container machine
	init_machine(new_machine);

	/* 
	 * set up an epsilon transition from the new machine's initial state
	 * into the initial state of the group, and another transition from
	 * the group's final state into the container's final state 
	 */
	set_trans(new_machine->init, sub_machine->init, RE_EPSILON);
	set_trans(sub_machine->final, new_machine->final, RE_EPSILON);

	// Mark the initial and final states of the group machine as being group markers
	_tuple_arr[new_machine->init].flags |= RE_STATE_GROUP_BEGIN;
	_tuple_arr[new_machine->final].flags |= RE_STATE_GROUP_END;

	// store the group ID in the 'ch' member of the start and end states
	_tuple_arr[new_machine->init].ch = group_id;
	_tuple_arr[new_machine->final].ch = group_id;
}

void re_context::build_alter(re_machine *new_machine, re_machine *lhs, re_machine *rhs) {
	// initialize the new machine
	init_machine(new_machine);

	/*
	 * Set up an epsilon transition from our new machine's initial state
	 * to the initial state of each submachine 
	 */
	set_trans(new_machine->init, lhs->init, RE_EPSILON);
	set_trans(new_machine->init, rhs->init, RE_EPSILON);

	/*
	 * Set up an epsilon transition from the final state of each
	 * submachine to our final state 
	 */
	set_trans(lhs->final, new_machine->final, RE_EPSILON);
	set_trans(rhs->final, new_machine->final, RE_EPSILON);
}

void re_context::build_closure(re_machine *new_machine, re_machine *sub, char specifier) {
	// initialize the new machine
	init_machine(new_machine);

	/* 
	 * Set up an epsilon transition from our initial state to the submachine's initial
	 * state, and from the submachine's final state to our final state 
	 */
	set_trans(new_machine->init, sub->init, RE_EPSILON);
	set_trans(sub->final, new_machine->final, RE_EPSILON);

	/*
	 * If this is an unbounded closure ('*' or '+', but not '?'), set up
	 * the loop transition that takes us from the new machine's final
	 * state back to its initial state.  We don't do this on the
	 * zero-or-one closure, because we can only match the expression
	 * once.  
	 */
	if (specifier != '?')
		set_trans(sub->final, sub->init, RE_EPSILON);

	/*
	 * If this is a zero-or-one closure or a zero-or-more closure, set
	 * up an epsilon transition from our initial state to our final
	 * state, since we can skip the entire subexpression.  We don't do
	 * this on the one-or-more closure, because we can't skip the
	 * subexpression in this case.  
	 */
	if (specifier != '+')
		set_trans(new_machine->init, new_machine->final, RE_EPSILON);
}

void re_context::concat_onto(re_machine *dest, re_machine *rhs) {
	// check for a null destination machine
	if (dest->isNull()) {
		/* 
		 * the first machine is null - simply copy the second machine
		 * onto the first unchanged 
		 */
		*dest = *rhs;
	} else {
		re_machine new_machine;
		
		// build the concatenated machine
		build_concat(&new_machine, dest, rhs);

		// copy the concatenated machine onto the first machine
		*dest = new_machine;
	}
}

void re_context::alternate_onto(re_machine *dest, re_machine *rhs) {
	// check to see if the first machine is null
	if (dest->isNull()) {
		/* 
		 * the first machine is null - simply copy the second machine
		 * onto the first 
		 */
		*dest = *rhs;
	} else {
		/* 
		 * if the second machine is null, don't do anything; otherwise,
		 * build the alternation 
		 */
		if (!rhs->isNull()) {
			re_machine new_machine;
			
			// build the alternation
			build_alter(&new_machine, dest, rhs);

			// replace the first machine with the alternation
			*dest = new_machine;
		}
	}
}

/**
 * Set a bit in a bit vector.
 */
#define re_set_bit(set, bit) \
	(((unsigned char *)(set))[(bit) >> 3] |= (1 << ((bit) & 7)))

/**
 * Test a bit in a bit vector 
 */
#define re_is_bit_set(set, bit) \
	((((unsigned char *)(set))[(bit) >> 3] & (1 << ((bit) & 7))) != 0)

re_status_t re_context::compile(const char *expr, size_t exprlen, re_machine *result_machine) {
	re_machine cur_machine;
	re_machine alter_machine;
	re_machine new_machine;
	size_t group_stack_level;
	struct {
		re_machine old_cur;
		re_machine old_alter;
		int group_id;
	} group_stack[50];

	// reset everything
	reset();

	// start out with no current machine and no alternate machine
	cur_machine.build_null_machine();
	alter_machine.build_null_machine();

	// nothing on the stack yet
	group_stack_level = 0;

	// loop until we run out of expression to parse
	for (; exprlen != 0 ; ++expr, --exprlen) {
		switch(*expr) {
		case '^':
			/*
			 * beginning of line - if we're not at the beginning of the
			 * current expression (i.e., we already have some
			 * concatentations accumulated), treat it as an ordinary
			 * character 
			 */
			if (!cur_machine.isNull())
				goto normal_char;

			// build a new start-of-text recognizer
			build_char(&new_machine, RE_TEXT_BEGIN);

			/* 
			 * concatenate it onto the string - note that this can't
			 * have any postfix operators 
			 */
			concat_onto(&cur_machine, &new_machine);
			break;

		case '$':
			/*
			 * End of line specifier - if there's anything left after
			 * the '$' other than a close parens or alternation
			 * specifier, great it as a normal character 
			 */
			if (exprlen > 1
				&& (*(expr+1) != ')' && *(expr+1) != '|'))
				goto normal_char;

			// build a new end-of-text recognizer
			build_char(&new_machine, RE_TEXT_END);

			/* 
			 * concatenate it onto the string - note that this can't
			 * have any postfix operators 
			 */
			concat_onto(&cur_machine, &new_machine);
			break;
			
		case '(':
			/* 
			 * Add a nesting level.  Push the current machine and
			 * alternate machines onto the group stack, and clear
			 * everything out for the new group. 
			 */
			if (group_stack_level > sizeof(group_stack)/sizeof(group_stack[0])) {
				/* we cannot proceed - return an error */
				return RE_STATUS_GROUP_NESTING_TOO_DEEP;
			}

			// save the current state on the stack
			group_stack[group_stack_level].old_cur = cur_machine;
			group_stack[group_stack_level].old_alter = alter_machine;

			/* 
			 * Assign the group a group ID - groups are numbered in
			 * order of their opening (left) parentheses, so we want to
			 * assign a group number now.  We won't actually need to
			 * know the group number until we get to the matching close
			 * paren, but we need to assign it now, so store it in the
			 * group stack. 
			 */
			group_stack[group_stack_level].group_id = _cur_group;

			// consume the group number
			_cur_group++;

			// push the level
			++group_stack_level;

			// start the new group with empty machines
			cur_machine.build_null_machine();
			alter_machine.build_null_machine();
			break;

		case ')':
			// if there's nothing on the stack, ignore this
			if (group_stack_level == 0)
				break;

			// take a level off the stack
			--group_stack_level;

			/* 
			 * Remove a nesting level.  If we have a pending alternate
			 * expression, build the alternation expression.  This will
			 * leave the entire group expression in alter_machine,
			 * regardless of whether an alternation was in progress or
			 * not.  
			 */
			alternate_onto(&alter_machine, &cur_machine);

			/*
			 * Create a group machine that encloses the group and marks
			 * it with a group number.  We assigned the group number
			 * when we parsed the open paren, so read that group number
			 * from the stack.
			 * 
			 * Note that this will leave 'new_machine' with the entire
			 * group machine.  
			 */
			build_group(&new_machine, &alter_machine,
				group_stack[group_stack_level].group_id);

			/*
			 * Pop the stack - restore the alternation and current
			 * machines that were in progress before the group started. 
			 */
			cur_machine = group_stack[group_stack_level].old_cur;
			alter_machine = group_stack[group_stack_level].old_alter;

			/*
			 * Check the group expression (in new_machine) for postfix
			 * expressions 
			 */
			goto apply_postfix;

		case '|':
			/* 
			 * Start a new alternation.  This ends the current
			 * alternation; if we have a previous pending alternate,
			 * build an alternation machine out of the previous
			 * alternate and the current machine and move that to the
			 * alternate; otherwise, simply move the current machine to
			 * the pending alternate. 
			 */
			alternate_onto(&alter_machine, &cur_machine);

			/* 
			 * the alternation starts out with a blank slate, so null
			 * out the current machine 
			 */
			cur_machine.build_null_machine();
			break;

		case '%':
			// quoted character - skip the quote mark and see what we have 
			++expr;
			--exprlen;

			// check to see if we're at the end of the expression
			if (exprlen == 0) {
				/* 
				 * end of the string - ignore it, but undo the extra
				 * increment of the expression index so that we exit the
				 * enclosing loop properly 
				 */
				--expr;
				++exprlen;
				break;
			}

			// see what we have
			switch(*expr) {
			case '1':
			case '2':
			case '3':
			case '4':
			case '5':
			case '6':
			case '7':
			case '8':
			case '9':
				// group match - build a new literal group recognizer
				build_group_matcher(&new_machine, (int)(*expr - '1'));

				// apply any postfix expression to the group recognizer
				goto apply_postfix;

			case '<':
				// build a beginning-of-word recognizer
				build_char(&new_machine, RE_WORD_BEGIN);

				// it can't be postfixed - just concatenate it
				concat_onto(&cur_machine, &new_machine);
				break;

			case '>':
				// build an end-of-word recognizer */
				build_char(&new_machine, RE_WORD_END);

				// it can't be postfixed - just concatenate it
				concat_onto(&cur_machine, &new_machine);
				break;

			case 'w':
				// word character
				build_char(&new_machine, RE_WORD_CHAR);
				goto apply_postfix;

			case 'W':
				// non-word character
				build_char(&new_machine, RE_NON_WORD_CHAR);
				goto apply_postfix;

			case 'b':
				// word boundary
				build_char(&new_machine, RE_WORD_BOUNDARY);

				// it can't be postfixed
				concat_onto(&cur_machine, &new_machine);
				break;

			case 'B':
				// not a word boundary
				build_char(&new_machine, RE_NON_WORD_BOUNDARY);

				// it can't be postfixed
				concat_onto(&cur_machine, &new_machine);
				break;

			default:
				// build a new literal character recognizer
				build_char(&new_machine, *expr);

				// apply any postfix expression to the character
				goto apply_postfix;
			}
			break;

		case '.':
			/* 
			 * wildcard character - build a single character recognizer
			 * for the special wildcard symbol, then go check it for a
			 * postfix operator 
			 */
			build_char(&new_machine, RE_WILDCARD);
			goto apply_postfix;
			break;

		case '[': {
			// range expression
			int is_exclusive = false;
			unsigned char set[32];

			// clear out the set of characters in the range
			memset(set, 0, sizeof(set));

			// first, skip the open bracket
			++expr;
			--exprlen;

			// check to see if starts with the exclusion character
			if (exprlen != 0 && *expr == '^') {
				// skip the exclusion specifier
				++expr;
				--exprlen;

				// note it
				is_exclusive = true;
			}

			// if the first character is a ']', include it in the range 
			if (exprlen != 0 && *expr == ']') {
				re_set_bit(set, (int)']');
				++expr;
				--exprlen;
			}

			// if the next character is a '-', include it in the range        
			if (exprlen != 0 && *expr == '-') {
				re_set_bit(set, (int)'-');
				++expr;
				--exprlen;
			}

			// scan the character set
			while (exprlen != 0 && *expr != ']') {
				int ch;

				// note this character
				ch = (int)(unsigned char)*expr;

				// set it
				re_set_bit(set, ch);

				// skip this character of the expression
				++expr;
				--exprlen;

				// check for a range
				if (exprlen != 0 && *expr == '-') {
					int ch2;
	
					// skip the '-'
					++expr;
					--exprlen;
					if (exprlen != 0) {
						// get the other end of the range
						ch2 = (int)(unsigned char)*expr;

						// skip the second character
						++expr;
						--exprlen;

						// if the range is reversed, swap it
						if (ch > ch2)
							SWAP(ch, ch2);

						// fill in the range
						for ( ; ch <= ch2 ; ++ch)
							re_set_bit(set, ch);
					}
				}
			}

			// create a character range machine
			build_char_range(&new_machine, set, is_exclusive);

			// apply any postfix operator
			goto apply_postfix;
			break;
		}

		default:
		normal_char:
			/* 
			 * it's an ordinary character - build a single character
			 * recognizer machine, and then concatenate it onto any
			 * existing machine 
			 */
			build_char(&new_machine, *expr);

		apply_postfix:
			/*
			 * Check for a postfix operator, and apply it to the machine
			 * in 'new_machine' if present.  In any case, concatenate
			 * the 'new_machine' (modified by a postix operator or not)
			 * to the current machien.  
			 */
			if (exprlen > 1) {
				switch(*(expr+1)) {
				case '*':
				case '+':
				case '?':
					/*
					 * We have a postfix closure operator.  Build a new
					 * closure machine out of 'new_machine'.  
					 */
					{
						re_machine closure_machine;
						
						// move onto the closure operator
						++expr;
						--exprlen;
						
						// build the closure machine
						build_closure(&closure_machine, &new_machine, *expr);
						
						// replace the original machine with the closure
						new_machine = closure_machine;
						
						/* 
						 * skip any redundant closure symbols, keeping
						 * only the first one we saw 
						 */
						while (exprlen > 1 && (*(expr+1) == '?'
											   || *(expr+1) == '+'
											   || *(expr+1) == '*')) {
							++expr;
							--exprlen;
						}
					}
					break;
					
				default:
					/* no postfix operator */
					break;
				}
			}

			/*
			 * Concatenate the new machine onto the current machine
			 * under construction.  
			 */
			concat_onto(&cur_machine, &new_machine);
			break;
		}
	}

	// complete any pending alternation
	alternate_onto(&alter_machine, &cur_machine);

	// store the resulting machine in the caller's machine descriptor
	*result_machine = alter_machine;

	// no errors encountered
	return RE_STATUS_SUCCESS;
}

void re_context::note_group(re_group_register *regs, re_state_id id, const char *p) {
	int group_index;

	/*
	 * Check to see if this is a valid state and it's a group marker -
	 * if not, there's nothing to do 
	 */
	if (id == RE_STATE_INVALID
		|| !(_tuple_arr[id].flags
			 & (RE_STATE_GROUP_BEGIN | RE_STATE_GROUP_END))
		|| (group_index = (int)_tuple_arr[id].ch) >= RE_GROUP_REG_CNT)
		return;

	// It's a valid group marker - note the appropriate register value 
	if ((_tuple_arr[id].flags & RE_STATE_GROUP_BEGIN) != 0)
		regs[group_index].start_ofs = p;
	else
		regs[group_index].end_ofs = p;
}

bool re_context::is_word_char(char c) const {
	return Common::isAlnum(c);
}

int re_context::match(const char *entire_str, const char *str, size_t origlen,
		const re_machine *machine, re_group_register *regs) {
	re_state_id cur_state;
	const char *p;
	size_t curlen;

	// start at the machine's initial state
	cur_state = machine->init;

	// start at the beginning of the string
	p = str;
	curlen = origlen;

	// note any group involved in the initial state
	note_group(regs, cur_state, p);

	/* 
	 * if we're starting in the final state, immediately return success
	 * with a zero-length match 
	 */
	if (cur_state == machine->final) {
		// return success with a zero-length match
		return 0;
	}

	// run the machine
	for (;;) {
		re_tuple *tuple;

		// get the tuple for this state
		tuple = &_tuple_arr[cur_state];

		// if this is a group state, adjust the group registers
		note_group(regs, cur_state, p);
		
		// see what kind of state we're in
		if (!(tuple->flags & (RE_STATE_GROUP_BEGIN | RE_STATE_GROUP_END))
			&& tuple->ch != RE_EPSILON) {
			/*
			 * This is a character or group recognizer state.  If we
			 * match the character or group, continue on to the next
			 * state; otherwise, return failure.
			 */
			switch(tuple->ch) {
			case RE_GROUP_MATCH_0:
			case RE_GROUP_MATCH_0 + 1:
			case RE_GROUP_MATCH_0 + 2:
			case RE_GROUP_MATCH_0 + 3:
			case RE_GROUP_MATCH_0 + 4:
			case RE_GROUP_MATCH_0 + 5:
			case RE_GROUP_MATCH_0 + 6:
			case RE_GROUP_MATCH_0 + 7:
			case RE_GROUP_MATCH_0 + 8:
			case RE_GROUP_MATCH_0 + 9: {
				int group_num;
				re_group_register *group_reg;
				size_t reg_len;

				// it's a group - get the group number
				group_num = tuple->ch - RE_GROUP_MATCH_0;
				group_reg = &regs[group_num];
					
				/* 
				 * if this register isn't defined, there's nothing
				 * to match, so fail 
				 */
				if (group_reg->start_ofs == 0 || group_reg->end_ofs == 0)
					return -1;
					
				// calculate the length of the register value
				reg_len = group_reg->end_ofs - group_reg->start_ofs;

				// if we don't have enough left to match, it fails
				if (curlen < reg_len)
					return -1;

				// if the string doesn't match exactly, we fail
				if (memcmp(p, group_reg->start_ofs, reg_len) != 0)
					return -1;
					
				/*
				 * It matches exactly - skip the entire length of
				 * the register in the source string 
				 */
				p += reg_len;
				curlen -= reg_len;
				break;
			}

			case RE_TEXT_BEGIN:
				/* 
				 * Match only the exact beginning of the string - if
				 * we're anywhere else, this isn't a match.  If this
				 * succeeds, we don't skip any characters.  
				 */
				if (p != entire_str)
					return -1;
				break;

			case RE_TEXT_END:
				/*
				 * Match only the exact end of the string - if we're
				 * anywhere else, this isn't a match.  Don't skip any
				 * characters on success.  
				 */
				if (curlen != 0)
					return -1;
				break;

			case RE_WORD_BEGIN:
				/* 
				 * if the previous character is a word character, we're
				 * not at the beginning of a word 
				 */
				if (p != entire_str && is_word_char(*(p - 1)))
					return -1;

				/* 
				 * if we're at the end of the string, or the current
				 * character isn't the start of a word, we're not at the
				 * beginning of a word 
				 */
				if (curlen == 0 || !is_word_char(*p))
					return -1;
				break;

			case RE_WORD_END:
				/*
				 * if the current character is a word character, we're not
				 * at the end of a word 
				 */
				if (curlen != 0 && is_word_char(*p))
					return -1;

				/*
				 * if we're at the beginning of the string, or the
				 * previous character is not a word character, we're not
				 * at the end of a word 
				 */
				if (p == entire_str || !is_word_char(*(p - 1)))
					return -1;
				break;

			case RE_WORD_CHAR:
				/* if it's not a word character, it's a failure */
				if (curlen == 0 || !is_word_char(*p))
					return -1;

				/* skip this character of input */
				++p;
				--curlen;
				break;

			case RE_NON_WORD_CHAR:
				/* if it's a word character, it's a failure */
				if (curlen == 0 || is_word_char(*p))
					return -1;

				/* skip the input */
				++p;
				--curlen;
				break;

			case RE_WORD_BOUNDARY:
			case RE_NON_WORD_BOUNDARY:
				{
					int prev_is_word;
					int next_is_word;
					int boundary;

					/*
					 * Determine if the previous character is a word
					 * character -- if we're at the beginning of the
					 * string, it's obviously not, otherwise check its
					 * classification 
					 */
					prev_is_word = (p != entire_str
									&& is_word_char(*(p - 1)));

					/* make the same check for the current character */
					next_is_word = (curlen != 0
									&& is_word_char(*p));

					/*
					 * Determine if this is a boundary - it is if the
					 * two states are different 
					 */
					boundary = ((prev_is_word != 0) ^ (next_is_word != 0));

					/* 
					 * make sure it matches what was desired, and return
					 * failure if not 
					 */
					if ((tuple->ch == RE_WORD_BOUNDARY && !boundary)
						|| (tuple->ch == RE_NON_WORD_BOUNDARY && boundary))
						return -1;
				}
				break;

			case RE_WILDCARD:
				// make sure we have a character to match
				if (curlen == 0)
					return -1;

				// skip this character
				++p;
				--curlen;
				break;

			case RE_RANGE:
			case RE_RANGE_EXCL: {
				int match_val;

				// make sure we have a character to match
				if (curlen == 0)
					return -1;

				// see if we match
				match_val = re_is_bit_set(tuple->char_range, (int)(unsigned char)*p);
					
				// make sure we got what we wanted
				if ((tuple->ch == RE_RANGE && !match_val)
					|| (tuple->ch == RE_RANGE_EXCL && match_val))
					return -1;

				// skip this character of the input
				++p;
				--curlen;
				break;
			}

			default:
				// make sure we have an exact match
				if (curlen == 0 || tuple->ch != *p)
					return -1;

				// skip this character of the input
				++p;
				--curlen;
				break;
			}

			/* 
			 * if we got this far, we were successful - move on to the
			 * next state 
			 */
			cur_state = tuple->next_state_1;
		} else if (tuple->next_state_2 == RE_STATE_INVALID) {
			/*
			 * We have only one transition, so this state is entirely
			 * deterministic.  Simply move on to the next state. 
			 */
			cur_state = tuple->next_state_1;
		} else {
			re_machine sub_machine;
			re_group_register regs1[RE_GROUP_REG_CNT];
			re_group_register regs2[RE_GROUP_REG_CNT];
			int ret1;
			int ret2;
			
			/*
			 * This state has two possible transitions, and we don't
			 * know which one to take.  So, try both, see which one
			 * works better, and return the result.  Try the first
			 * transition first.  Note that each separate attempt must
			 * use a separate copy of the registers.  
			 */
			memcpy(regs1, regs, sizeof(regs1));
			sub_machine.init = tuple->next_state_1;
			sub_machine.final = machine->final;
			ret1 = match(entire_str, p, curlen, &sub_machine, regs1);

			/*
			 * Now try the second transition 
			 */
			memcpy(regs2, regs, sizeof(regs2));
			sub_machine.init = tuple->next_state_2;
			sub_machine.final = machine->final;
			ret2 = match(entire_str, p, curlen, &sub_machine, regs2);

			/*
			 * If they both failed, the whole thing failed.  Otherwise,
			 * return the longer of the two, plus the length we
			 * ourselves matched previously.  Note that we return the
			 * register set from the winning match.  
			 */
			if (ret1 < 0 && ret2 < 0) {
				// they both failed
				return -1;
			} else if (ret1 > ret2) {
				// use the first register set and result length
				memcpy(regs, regs1, sizeof(regs1));
				return ret1 + (p - str);
			} else {
				// use the second register set and result length
				memcpy(regs, regs2, sizeof(regs2));
				return ret2 + (p - str);
			}
		}

		// If we're in the final state, return success 
		if (cur_state == machine->final) {
			// finish off any group involved in the final state
			note_group(regs, cur_state, p);
			
			// return the length we matched
			return p - str;
		}
	}
}

int re_context::search(const char *str, size_t len, const re_machine *machine,
		re_group_register *regs, int *result_len) {
	int ofs;
	
	/*
	 * Starting at the first character in the string, search for the
	 * pattern at each subsequent character until we either find the
	 * pattern or run out of string to test. 
	 */
	for (ofs = 0 ; ofs < (int)len ; ++ofs) {
		int matchlen;
		
		// check for a match
		matchlen = match(str, str + ofs, len - ofs, machine, regs);
		if (matchlen >= 0) {
			// we found a match here - return the length and offset
			*result_len = matchlen;
			return ofs;
		}
	}

	// we didn't find a match
	return -1;
}

void re_context::save_search_str(const char *str, size_t len) {
	// if the string is empty, this is easy
	if (len == 0) {
		// nothing to store - just save the length and return
		_curlen = 0;
		return;
	}
	
	// if the current buffer isn't big enough, allocate a new one
	if (_strbuf == 0 || _strbufsiz < len) {
		/* 
		 * free any previous buffer - its contents are no longer
		 * important, since we're about to overwrite it with a new
		 * string 
		 */
		if (_strbuf != 0)
			mchfre(_strbuf);

		/* 
		 * allocate a new buffer; round up to the next 256-byte
		 * increment to make sure we're not constantly reallocating to
		 * random sizes 
		 */
		_strbufsiz = ((len + 255) & ~255);

		// allocate it
		_strbuf = (char *)mchalo(_errctx, _strbufsiz, "regex str");
	}

	// copy the string
	memcpy(_strbuf, str, len);

	// save the length
	_curlen = len;
}

int re_context::compile_and_search(const char *pattern, size_t patlen,
		const char *searchstr, size_t searchlen, int *result_len) {
	re_machine machine;
	
	// compile the expression - return failure if we get an error
	if (compile(pattern, patlen, &machine) != RE_STATUS_SUCCESS)
		return -1;

	// save the search string in our internal buffer
	save_search_str(searchstr, searchlen);

	// clear the group registers
	memset(_regs, 0, sizeof(_regs));

	/* 
	 * search for the pattern in our copy of the string - use the copy
	 * so that the group registers stay valid even if the caller
	 * deallocates the original string after we return
	 */
	return search(_strbuf, _curlen, &machine, _regs, result_len);
}

int re_context::compile_and_match(const char *pattern, size_t patlen,
		const char *searchstr, size_t searchlen) {
	re_machine machine;

	// compile the expression - return failure if we get an error
	if (compile(pattern, patlen, &machine) != RE_STATUS_SUCCESS)
		return 0;

	// save the search string in our internal buffer
	save_search_str(searchstr, searchlen);

	// clear the group registers
	memset(_regs, 0, sizeof(_regs));

	// match the string
	return match(_strbuf, _strbuf, _curlen, &machine, _regs);
}

} // End of namespace TADS2
} // End of namespace TADS
} // End of namespace Glk