1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/***************************************************************************
kmath.c Copyright (C) 1999 Christoph Reichenbach
This program may be modified and copied freely according to the terms of
the GNU general public license (GPL), as long as the above copyright
notice and the licensing information contained herein are preserved.
Please refer to www.gnu.org for licensing details.
This work is provided AS IS, without warranty of any kind, expressed or
implied, including but not limited to the warranties of merchantibility,
noninfringement, and fitness for a specific purpose. The author will not
be held liable for any damage caused by this work or derivatives of it.
By using this source code, you agree to the licensing terms as stated
above.
Please contact the maintainer for bug reports or inquiries.
Current Maintainer:
Christoph Reichenbach (CJR) [jameson@linuxgames.com]
***************************************************************************/
#include "sci/include/engine.h"
reg_t
kRandom(state_t *s, int funct_nr, int argc, reg_t *argv)
{
return make_reg(0,
SKPV(0) + (int) ((SKPV(1) + 1.0 - SKPV(0)) * (rand() / (RAND_MAX + 1.0))));
}
reg_t
kAbs(state_t *s, int funct_nr, int argc, reg_t *argv)
{
/* This is a hack, but so is the code in Hoyle1 that needs it. */
if (argv[0].segment)
return make_reg(0, 0x3e8); /* Yes people, this is an object */
return make_reg(0, abs(SKPV(0)));
}
reg_t
kSqrt(state_t *s, int funct_nr, int argc, reg_t *argv)
{
return make_reg(0, (gint16) sqrt((float) abs(SKPV(0))));
}
int
get_angle(int xrel, int yrel)
{
if ((xrel == 0) && (yrel == 0))
return 0;
else {
int val = (int) (180.0/PI * atan2(xrel, -yrel));
if (val < 0)
val += 360;
/* Take care of OB1 differences between SSCI and
FSCI. SCI games sometimes check for equality with
"round" angles */
if (val % 45 == 44)
val++;
else if (val % 45 == 1)
val--;
return val;
}
}
reg_t
kGetAngle(state_t *s, int funct_nr, int argc, reg_t *argv)
{
/* Based on behavior observed with a test program created with
** SCI Studio.
*/
int x1 = SKPV(0);
int y1 = SKPV(1);
int x2 = SKPV(2);
int y2 = SKPV(3);
int xrel = x2 - x1;
int yrel = y1 - y2; /* y-axis is mirrored. */
int angle;
/* Move (xrel, yrel) to first quadrant. */
if (y1 < y2)
yrel = -yrel;
if (x2 < x1)
xrel = -xrel;
/* Compute angle in grads. */
if (yrel == 0 && xrel == 0)
angle = 0;
else
angle = 100 * xrel / (xrel + yrel);
/* Fix up angle for actual quadrant of (xrel, yrel). */
if (y1 < y2)
angle = 200 - angle;
if (x2 < x1)
angle = 400 - angle;
/* Convert from grads to degrees by merging grad 0 with grad 1,
** grad 10 with grad 11, grad 20 with grad 21, etc. This leads to
** "degrees" that equal either one or two grads.
*/
angle -= (angle + 9) / 10;
return make_reg(0, angle);
}
reg_t
kGetDistance(state_t *s, int funct_nr, int argc, reg_t *argv)
{
int xrel = (int) (((float) SKPV(1) - SKPV_OR_ALT(3, 0))/cos(SKPV_OR_ALT(5, 0)* PI / 180.0)); /* This works because cos(0)==1 */
int yrel = SKPV(0) - SKPV_OR_ALT(2, 0);
return make_reg(0, (gint16)sqrt((float) xrel*xrel + yrel*yrel));
}
reg_t
kTimesSin(state_t *s, int funct_nr, int argc, reg_t *argv)
{
int angle = SKPV(0);
int factor = SKPV(1);
return make_reg(0, (int) (factor * 1.0 * sin(angle * PI / 180.0)));
}
reg_t
kTimesCos(state_t *s, int funct_nr, int argc, reg_t *argv)
{
int angle = SKPV(0);
int factor = SKPV(1);
return make_reg(0, (int) (factor * 1.0 * cos(angle * PI / 180.0)));
}
reg_t
kCosDiv(state_t *s, int funct_nr, int argc, reg_t *argv)
{
int angle = SKPV(0);
int value = SKPV(1);
double cosval = cos(angle * PI / 180.0);
if ((cosval < 0.0001) && (cosval > 0.0001)) {
SCIkwarn(SCIkWARNING,"Attepted division by zero\n");
return make_reg(0, (gint16)0x8000);
} else
return make_reg(0, (gint16) (value/cosval));
}
reg_t
kSinDiv(state_t *s, int funct_nr, int argc, reg_t *argv)
{
int angle = SKPV(0);
int value = SKPV(1);
double sinval = sin(angle * PI / 180.0);
if ((sinval < 0.0001) && (sinval > 0.0001)) {
SCIkwarn(SCIkWARNING,"Attepted division by zero\n");
return make_reg(0, (gint16)0x8000);
} else
return make_reg(0, (gint16) (value/sinval));
}
reg_t
kTimesTan(state_t *s, int funct_nr, int argc, reg_t *argv)
{
int param = SKPV(0);
int scale = SKPV_OR_ALT(1, 1);
param -= 90;
if ((param % 90) == 0) {
SCIkwarn(SCIkWARNING, "Attempted tan(pi/2)");
return make_reg(0, (gint16)0x8000);
} else
return make_reg(0, (gint16) -(tan(param * PI / 180.0) * scale));
}
reg_t
kTimesCot(state_t *s, int funct_nr, int argc, reg_t *argv)
{
int param = SKPV(0);
int scale = SKPV_OR_ALT(1, 1);
if ((param % 90) == 0) {
SCIkwarn(SCIkWARNING, "Attempted tan(pi/2)");
return make_reg(0, (gint16)0x8000);
} else
return make_reg(0, (gint16) (tan(param * PI / 180.0) * scale));
}
|