aboutsummaryrefslogtreecommitdiff
path: root/engines/sci/engine/kmath.cpp
blob: b2aaa01b45ffaca9bd92cae7e7485ebe91b32fa0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 */

#include "sci/engine/state.h"
#include "sci/engine/kernel.h"

namespace Sci {

reg_t kRandom(EngineState *s, int argc, reg_t *argv) {
	switch (argc) {
	case 1: // set seed to argv[0]
		// SCI0/SCI01 just reset the seed to 0 instead of using argv[0] at all
		return NULL_REG;

	case 2: { // get random number
		// numbers are definitely unsigned, for example lsl5 door code in k rap radio is random
		//  and 5-digit - we get called kRandom(10000, 65000)
		//  some codes in sq4 are also random and 5 digit (if i remember correctly)
		const uint16 fromNumber = argv[0].toUint16();
		const uint16 toNumber = argv[1].toUint16();
		// Some scripts may request a range in the reverse order (from largest
		// to smallest). An example can be found in Longbow, room 710, where a
		// random number is requested from 119 to 83. In this case, we're
		// supposed to return toNumber (determined by the KQ5CD disasm).
		// Fixes bug #3413020.
		if (fromNumber > toNumber)
			return make_reg(0, toNumber);

		uint16 range = toNumber - fromNumber + 1;
		// calculating range is exactly how sierra sci did it and is required for hoyle 4
		//  where we get called with kRandom(0, -1) and we are supposed to give back values from 0 to 0
		//  the returned value will be used as displace-offset for a background cel
		//  note: i assume that the hoyle4 code is actually buggy and it was never fixed because of
		//         the way sierra sci handled it - "it just worked". It should have called kRandom(0, 0)
		if (range)
			range--; // the range value was never returned, our random generator gets 0->range, so fix it

		const int randomNumber = fromNumber + (int)g_sci->getRNG().getRandomNumber(range);
		return make_reg(0, randomNumber);
	}

	case 3: // get seed
		// SCI0/01 did not support this at all
		// Actually we would have to return the previous seed
		error("kRandom: scripts asked for previous seed");
		break;

	default:
		error("kRandom: unsupported argc");
	}
}

reg_t kAbs(EngineState *s, int argc, reg_t *argv) {
	return make_reg(0, ABS(argv[0].toSint16()));
}

reg_t kSqrt(EngineState *s, int argc, reg_t *argv) {
	return make_reg(0, (int16) sqrt((float) ABS(argv[0].toSint16())));
}

uint16 kGetAngle_SCI0(int16 x1, int16 y1, int16 x2, int16 y2) {
	int16 xRel = x2 - x1;
	int16 yRel = y1 - y2; // y-axis is mirrored.
	int16 angle;

	// Move (xrel, yrel) to first quadrant.
	if (y1 < y2)
		yRel = -yRel;
	if (x2 < x1)
		xRel = -xRel;

	// Compute angle in grads.
	if (yRel == 0 && xRel == 0)
		return 0;
	else
		angle = 100 * xRel / (xRel + yRel);

	// Fix up angle for actual quadrant of (xRel, yRel).
	if (y1 < y2)
		angle = 200 - angle;
	if (x2 < x1)
		angle = 400 - angle;

	// Convert from grads to degrees by merging grad 0 with grad 1,
	// grad 10 with grad 11, grad 20 with grad 21, etc. This leads to
	// "degrees" that equal either one or two grads.
	angle -= (angle + 9) / 10;
	return angle;
}

// atan2 for first octant, x >= y >= 0. Returns [0,45] (inclusive)
int kGetAngle_SCI1_atan2_base(int y, int x) {
	if (x == 0)
		return 0;

	// fixed point tan(a)
	int tan_fp = 10000 * y / x;

	if ( tan_fp >= 1000 ) {
		// For tan(a) >= 0.1, interpolate between multiples of 5 degrees

		// 10000 * tan([5, 10, 15, 20, 25, 30, 35, 40, 45])
		const int tan_table[] = { 875, 1763, 2679, 3640, 4663, 5774,
		                          7002, 8391, 10000 };

		// Look up tan(a) in our table
		int i = 1;
		while (tan_fp > tan_table[i]) ++i;

		// The angle a is between 5*i and 5*(i+1). We linearly interpolate.
		int dist = tan_table[i] - tan_table[i-1];
		int interp = (5 * (tan_fp - tan_table[i-1]) + dist/2) / dist;
		return 5*i + interp;
	} else {
		// for tan(a) < 0.1, tan(a) is approximately linear in a.
		// tan'(0) = 1, so in degrees the slope of atan is 180/pi = 57.29...
		return (57 * y + x/2) / x;
	}
}

int kGetAngle_SCI1_atan2(int y, int x) {
	if (y < 0) {
		int a = kGetAngle_SCI1_atan2(-y, -x);
		if (a == 180)
			return 0;
		else
			return 180 + a;
	}
	if (x < 0)
		return 90 + kGetAngle_SCI1_atan2(-x, y);
	if (y > x)
		return 90 - kGetAngle_SCI1_atan2_base(x, y);
	else
		return kGetAngle_SCI1_atan2_base(y, x);

}

uint16 kGetAngle_SCI1(int16 x1, int16 y1, int16 x2, int16 y2) {
	// We flip things around to get into the standard atan2 coordinate system
	return kGetAngle_SCI1_atan2(x2 - x1, y1 - y2);

}

/**
 * Returns the angle (in degrees) between the two points determined by (x1, y1)
 * and (x2, y2). The angle ranges from 0 to 359 degrees.
 * What this function does is pretty simple but apparently the original is not
 * accurate.
 */

uint16 kGetAngleWorker(int16 x1, int16 y1, int16 x2, int16 y2) {
	if (getSciVersion() >= SCI_VERSION_1_EGA_ONLY)
		return kGetAngle_SCI1(x1, y1, x2, y2);
	else
		return kGetAngle_SCI0(x1, y1, x2, y2);
}



reg_t kGetAngle(EngineState *s, int argc, reg_t *argv) {
	// Based on behavior observed with a test program created with
	// SCI Studio.
	int x1 = argv[0].toSint16();
	int y1 = argv[1].toSint16();
	int x2 = argv[2].toSint16();
	int y2 = argv[3].toSint16();

	return make_reg(0, kGetAngleWorker(x1, y1, x2, y2));
}

reg_t kGetDistance(EngineState *s, int argc, reg_t *argv) {
	int xdiff = (argc > 3) ? argv[3].toSint16() : 0;
	int ydiff = (argc > 2) ? argv[2].toSint16() : 0;
	int angle = (argc > 5) ? argv[5].toSint16() : 0;
	int xrel = (int)(((float) argv[1].toSint16() - xdiff) / cos(angle * M_PI / 180.0)); // This works because cos(0)==1
	int yrel = argv[0].toSint16() - ydiff;
	return make_reg(0, (int16)sqrt((float) xrel*xrel + yrel*yrel));
}

reg_t kTimesSin(EngineState *s, int argc, reg_t *argv) {
	int angle = argv[0].toSint16();
	int factor = argv[1].toSint16();

	return make_reg(0, (int16)(factor * sin(angle * M_PI / 180.0)));
}

reg_t kTimesCos(EngineState *s, int argc, reg_t *argv) {
	int angle = argv[0].toSint16();
	int factor = argv[1].toSint16();

	return make_reg(0, (int16)(factor * cos(angle * M_PI / 180.0)));
}

reg_t kCosDiv(EngineState *s, int argc, reg_t *argv) {
	int angle = argv[0].toSint16();
	int value = argv[1].toSint16();
	double cosval = cos(angle * M_PI / 180.0);

	if ((cosval < 0.0001) && (cosval > -0.0001)) {
		error("kCosDiv: Attempted division by zero");
		return SIGNAL_REG;
	} else
		return make_reg(0, (int16)(value / cosval));
}

reg_t kSinDiv(EngineState *s, int argc, reg_t *argv) {
	int angle = argv[0].toSint16();
	int value = argv[1].toSint16();
	double sinval = sin(angle * M_PI / 180.0);

	if ((sinval < 0.0001) && (sinval > -0.0001)) {
		error("kSinDiv: Attempted division by zero");
		return SIGNAL_REG;
	} else
		return make_reg(0, (int16)(value / sinval));
}

reg_t kTimesTan(EngineState *s, int argc, reg_t *argv) {
	int param = argv[0].toSint16();
	int scale = (argc > 1) ? argv[1].toSint16() : 1;

	param -= 90;
	if ((param % 90) == 0) {
		error("kTimesTan: Attempted tan(pi/2)");
		return SIGNAL_REG;
	} else
		return make_reg(0, (int16) - (tan(param * M_PI / 180.0) * scale));
}

reg_t kTimesCot(EngineState *s, int argc, reg_t *argv) {
	int param = argv[0].toSint16();
	int scale = (argc > 1) ? argv[1].toSint16() : 1;

	if ((param % 90) == 0) {
		error("kTimesCot: Attempted tan(pi/2)");
		return SIGNAL_REG;
	} else
		return make_reg(0, (int16)(tan(param * M_PI / 180.0) * scale));
}

#ifdef ENABLE_SCI32

reg_t kMulDiv(EngineState *s, int argc, reg_t *argv) {
	int16 multiplicant = argv[0].toSint16();
	int16 multiplier = argv[1].toSint16();
	int16 denominator = argv[2].toSint16();

	// Sanity check...
	if (!denominator) {
		error("kMulDiv: attempt to divide by zero (%d * %d / %d", multiplicant, multiplier, denominator);
		return NULL_REG;
	}

	return make_reg(0, multiplicant * multiplier / denominator);
}

#endif

} // End of namespace Sci