1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sci/sci.h"
#include "sci/console.h" // for parse_reg_t
#include "sci/resource.h"
#include "sci/engine/state.h"
#include "sci/engine/kernel.h"
namespace Sci {
/*
Compute "velocity" vector (xStep,yStep)=(vx,vy) for a jump from (0,0) to (dx,dy), with gravity gy.
The gravity is assumed to be non-negative.
If this was ordinary continuous physics, we would compute the desired (floating point!)
velocity vector (vx,vy) as follows, under the assumption that vx and vy are linearly correlated
by some constant factor c, i.e. vy = c * vx:
dx = t * vx
dy = t * vy + gy * t^2 / 2
=> dy = c * dx + gy * (dx/vx)^2 / 2
=> |vx| = sqrt( gy * dx^2 / (2 * (dy - c * dx)) )
Here, the sign of vx must be chosen equal to the sign of dx, obviously.
Clearly, this square root only makes sense in our context if the denominator is positive,
or equivalently, (dy - c * dx) must be positive. For simplicity and by symmetry
along the x-axis, we assume dx to be positive for all computations, and only adjust for
its sign in the end. Switching the sign of c appropriately, we set tmp := (dy + c * dx)
and compute c so that this term becomes positive.
Remark #1: If the jump is straight up, i.e. dx == 0, then we should not assume the above
linear correlation vy = c * vx of the velocities (as vx will be 0, but vy shouldn't be,
unless we drop).
Remark #2: We are actually in a discrete setup. The motion is computed iteratively: each iteration,
we add vx and vy to the position, then add gy to vy. So the real formula is the following
(where t is ideally close to an int):
dx = t * vx
dy = t * vy + gy * t*(t-1) / 2
But the solution resulting from that is a lot more complicated, so we use the above approximation instead.
Still, what we compute in the end is of course not a real velocity anymore, but an integer approximation,
used in an iterative stepping algorithm
*/
reg_t kSetJump(EngineState *s, int funct_nr, int argc, reg_t *argv) {
// Input data
reg_t object = argv[0];
int dx = SKPV(1);
int dy = SKPV(2);
int gy = SKPV(3);
// Derived data
int c;
int tmp;
int vx = 0; // x velocity
int vy = 0; // y velocity
int dxWasNegative = (dx < 0);
dx = abs(dx);
assert(gy >= 0);
if (dx == 0) {
// Upward jump. Value of c doesn't really matter
c = 1;
} else {
// Compute a suitable value for c respectively tmp.
// The important thing to consider here is that we want the resulting
// *discrete* x/y velocities to be not-too-big integers, for a smooth
// curve (i.e. we could just set vx=dx, vy=dy, and be done, but that
// is hardly what you would call a parabolic jump, would ya? ;-).
//
// So, we make sure that 2.0*tmp will be bigger than dx (that way,
// we ensure vx will be less than sqrt(gy * dx)).
if (dx + dy < 0) {
// dy is negative and |dy| > |dx|
c = (2 * abs(dy)) / dx;
//tmp = abs(dy); // ALMOST the resulting value, except for obvious rounding issues
} else {
// dy is either positive, or |dy| <= |dx|
c = (dx * 3 / 2 - dy) / dx;
// We force c to be strictly positive
if (c < 1)
c = 1;
//tmp = dx * 3 / 2; // ALMOST the resulting value, except for obvious rounding issues
// FIXME: Where is the 3 coming from? Maybe they hard/coded, by "accident", that usually gy=3 ?
// Then this choice of will make t equal to roughly sqrt(dx)
}
}
// POST: c >= 1
tmp = c * dx + dy;
// POST: (dx != 0) ==> abs(tmp) > abs(dx)
// POST: (dx != 0) ==> abs(tmp) ~>=~ abs(dy)
debugC(2, kDebugLevelBresen, "c: %d, tmp: %d\n", c, tmp);
// Compute x step
if (tmp != 0)
vx = (int)(dx * sqrt(gy / (2.0 * tmp)));
else
vx = 0;
// Restore the left/right direction: dx and vx should have the same sign.
if (dxWasNegative)
vx = -vx;
if ((dy < 0) && (vx == 0)) {
// Special case: If this was a jump (almost) straight upward, i.e. dy < 0 (upward),
// and vx == 0 (i.e. no horizontal movement, at least not after rounding), then we
// compute vy directly.
// For this, we drop the assumption on the linear correlation of vx and vy (obviously).
// FIXME: This choice of vy makes t roughly (2+sqrt(2))/gy * sqrt(dy);
// so if gy==3, then t is roughly sqrt(dy)...
vy = (int)sqrt((double)gy * abs(2 * dy)) + 1;
} else {
// As stated above, the vertical direction is correlated to the horizontal by the
// (non-zero) factor c.
// Strictly speaking, we should probably be using the value of vx *before* rounding
// it to an integer... Ah well
vy = c * vx;
}
// Always force vy to be upwards
vy = -abs(vy);
debugC(2, kDebugLevelBresen, "SetJump for object at %04x:%04x\n", PRINT_REG(object));
debugC(2, kDebugLevelBresen, "xStep: %d, yStep: %d\n", vx, vy);
PUT_SEL32V(object, xStep, vx);
PUT_SEL32V(object, yStep, vy);
return s->r_acc;
}
#define _K_BRESEN_AXIS_X 0
#define _K_BRESEN_AXIS_Y 1
static void initialize_bresen(EngineState *s, int argc, reg_t *argv, reg_t mover, int step_factor, int deltax, int deltay) {
reg_t client = GET_SEL32(mover, client);
int stepx = GET_SEL32SV(client, xStep) * step_factor;
int stepy = GET_SEL32SV(client, yStep) * step_factor;
int numsteps_x = stepx ? (abs(deltax) + stepx - 1) / stepx : 0;
int numsteps_y = stepy ? (abs(deltay) + stepy - 1) / stepy : 0;
int bdi, i1;
int numsteps;
int deltax_step;
int deltay_step;
if (numsteps_x > numsteps_y) {
numsteps = numsteps_x;
deltax_step = (deltax < 0) ? -stepx : stepx;
deltay_step = numsteps ? deltay / numsteps : deltay;
} else { // numsteps_x <= numsteps_y
numsteps = numsteps_y;
deltay_step = (deltay < 0) ? -stepy : stepy;
deltax_step = numsteps ? deltax / numsteps : deltax;
}
/* if (abs(deltax) > abs(deltay)) {*/ // Bresenham on y
if (numsteps_y < numsteps_x) {
PUT_SEL32V(mover, b_xAxis, _K_BRESEN_AXIS_Y);
PUT_SEL32V(mover, b_incr, (deltay < 0) ? -1 : 1);
//i1 = 2 * (abs(deltay) - abs(deltay_step * numsteps)) * abs(deltax_step);
//bdi = -abs(deltax);
i1 = 2 * (abs(deltay) - abs(deltay_step * (numsteps - 1))) * abs(deltax_step);
bdi = -abs(deltax);
} else { // Bresenham on x
PUT_SEL32V(mover, b_xAxis, _K_BRESEN_AXIS_X);
PUT_SEL32V(mover, b_incr, (deltax < 0) ? -1 : 1);
//i1= 2 * (abs(deltax) - abs(deltax_step * numsteps)) * abs(deltay_step);
//bdi = -abs(deltay);
i1 = 2 * (abs(deltax) - abs(deltax_step * (numsteps - 1))) * abs(deltay_step);
bdi = -abs(deltay);
}
PUT_SEL32V(mover, dx, deltax_step);
PUT_SEL32V(mover, dy, deltay_step);
debugC(2, kDebugLevelBresen, "Init bresen for mover %04x:%04x: d=(%d,%d)\n", PRINT_REG(mover), deltax, deltay);
debugC(2, kDebugLevelBresen, " steps=%d, mv=(%d, %d), i1= %d, i2=%d\n",
numsteps, deltax_step, deltay_step, i1, bdi*2);
//PUT_SEL32V(mover, b_movCnt, numsteps); // Needed for HQ1/Ogre?
PUT_SEL32V(mover, b_di, bdi);
PUT_SEL32V(mover, b_i1, i1);
PUT_SEL32V(mover, b_i2, bdi * 2);
}
reg_t kInitBresen(EngineState *s, int funct_nr, int argc, reg_t *argv) {
reg_t mover = argv[0];
reg_t client = GET_SEL32(mover, client);
int deltax = GET_SEL32SV(mover, x) - GET_SEL32SV(client, x);
int deltay = GET_SEL32SV(mover, y) - GET_SEL32SV(client, y);
initialize_bresen(s, argc, argv, mover, KP_UINT(KP_ALT(1, make_reg(0, 1))), deltax, deltay);
return s->r_acc;
}
#define MOVING_ON_X (((axis == _K_BRESEN_AXIS_X)&&bi1) || dx)
#define MOVING_ON_Y (((axis == _K_BRESEN_AXIS_Y)&&bi1) || dy)
enum Movecnt {
IGNORE_MOVECNT,
INCREMENT_MOVECNT,
UNINITIALIZED
};
static Movecnt handle_movecnt = UNINITIALIZED; // FIXME: Avoid non-const global vars
static int checksum_bytes(byte *data, int size) {
int result = 0;
int i;
for (i = 0; i < size; i++) {
result += *data;
data++;
}
return result;
}
static void bresenham_autodetect(EngineState *s) {
reg_t motion_class;
if (!parse_reg_t(s, "?Motion", &motion_class)) {
Object *obj = obj_get(s, motion_class);
reg_t fptr;
byte *buf;
if (obj == NULL) {
warning("bresenham_autodetect failed");
handle_movecnt = INCREMENT_MOVECNT; // Most games do this, so best guess
return;
}
if (lookup_selector(s, motion_class, s->_kernel->_selectorMap.doit, NULL, &fptr) != kSelectorMethod) {
warning("bresenham_autodetect failed");
handle_movecnt = INCREMENT_MOVECNT; // Most games do this, so best guess
return;
}
buf = s->seg_manager->getScript(fptr.segment)->buf + fptr.offset;
handle_movecnt = (s->version <= SCI_VERSION_0 || checksum_bytes(buf, 8) == 0x216) ? INCREMENT_MOVECNT : IGNORE_MOVECNT;
sciprintf("b-moveCnt action based on checksum: %s\n", handle_movecnt == IGNORE_MOVECNT ? "ignore" : "increment");
} else {
warning("bresenham_autodetect failed");
handle_movecnt = INCREMENT_MOVECNT; // Most games do this, so best guess
}
}
reg_t kDoBresen(EngineState *s, int funct_nr, int argc, reg_t *argv) {
reg_t mover = argv[0];
reg_t client = GET_SEL32(mover, client);
int x = GET_SEL32SV(client, x);
int y = GET_SEL32SV(client, y);
int oldx, oldy, destx, desty, dx, dy, bdi, bi1, bi2, movcnt, bdelta, axis;
uint16 signal = GET_SEL32V(client, signal);
int completed = 0;
int max_movcnt = GET_SEL32V(client, moveSpeed);
if (s->version > SCI_VERSION_0)
signal &= ~_K_VIEW_SIG_FLAG_HIT_OBSTACLE;
if (handle_movecnt == UNINITIALIZED)
bresenham_autodetect(s);
PUT_SEL32(client, signal, make_reg(0, signal)); // This is a NOP for SCI0
oldx = x;
oldy = y;
destx = GET_SEL32SV(mover, x);
desty = GET_SEL32SV(mover, y);
dx = GET_SEL32SV(mover, dx);
dy = GET_SEL32SV(mover, dy);
bdi = GET_SEL32SV(mover, b_di);
bi1 = GET_SEL32SV(mover, b_i1);
bi2 = GET_SEL32SV(mover, b_i2);
movcnt = GET_SEL32V(mover, b_movCnt);
bdelta = GET_SEL32SV(mover, b_incr);
axis = GET_SEL32SV(mover, b_xAxis);
//sciprintf("movecnt %d, move speed %d\n", movcnt, max_movcnt);
if (handle_movecnt) {
if (max_movcnt > movcnt) {
++movcnt;
PUT_SEL32V(mover, b_movCnt, movcnt); // Needed for HQ1/Ogre?
return NULL_REG;
} else {
movcnt = 0;
PUT_SEL32V(mover, b_movCnt, movcnt); // Needed for HQ1/Ogre?
}
}
if ((bdi += bi1) > 0) {
bdi += bi2;
if (axis == _K_BRESEN_AXIS_X)
dx += bdelta;
else
dy += bdelta;
}
PUT_SEL32V(mover, b_di, bdi);
x += dx;
y += dy;
if ((MOVING_ON_X && (((x < destx) && (oldx >= destx)) // Moving left, exceeded?
|| ((x > destx) && (oldx <= destx)) // Moving right, exceeded?
|| ((x == destx) && (abs(dx) > abs(dy))) // Moving fast, reached?
// Treat this last case specially- when doing sub-pixel movements
// on the other axis, we could still be far away from the destination
)) || (MOVING_ON_Y && (((y < desty) && (oldy >= desty)) /* Moving upwards, exceeded? */
|| ((y > desty) && (oldy <= desty)) /* Moving downwards, exceeded? */
|| ((y == desty) && (abs(dy) >= abs(dx))) /* Moving fast, reached? */
))) {
// Whew... in short: If we have reached or passed our target position
x = destx;
y = desty;
completed = 1;
debugC(2, kDebugLevelBresen, "Finished mover %04x:%04x\n", PRINT_REG(mover));
}
PUT_SEL32V(client, x, x);
PUT_SEL32V(client, y, y);
debugC(2, kDebugLevelBresen, "New data: (x,y)=(%d,%d), di=%d\n", x, y, bdi);
if (s->_kernel->_selectorMap.cantBeHere != -1)
invoke_selector(INV_SEL(client, cantBeHere, kStopOnInvalidSelector), 0);
else
invoke_selector(INV_SEL(client, canBeHere, kStopOnInvalidSelector), 0);
s->r_acc = not_register(s, s->r_acc);
if (!s->r_acc.offset) { // Contains the return value
signal = GET_SEL32V(client, signal);
PUT_SEL32V(client, x, oldx);
PUT_SEL32V(client, y, oldy);
PUT_SEL32V(client, signal, (signal | _K_VIEW_SIG_FLAG_HIT_OBSTACLE));
debugC(2, kDebugLevelBresen, "Finished mover %04x:%04x by collision\n", PRINT_REG(mover));
completed = 1;
}
if (s->version > SCI_VERSION_0)
if (completed)
invoke_selector(INV_SEL(mover, moveDone, kStopOnInvalidSelector), 0);
return make_reg(0, completed);
}
extern void _k_dirloop(reg_t obj, uint16 angle, EngineState *s, int funct_nr, int argc, reg_t *argv);
int is_heap_object(EngineState *s, reg_t pos);
extern int get_angle(int xrel, int yrel);
reg_t kDoAvoider(EngineState *s, int funct_nr, int argc, reg_t *argv) {
reg_t avoider = argv[0];
reg_t client, looper, mover;
int angle;
int dx, dy;
int destx, desty;
s->r_acc = make_reg(0, -1);
if (!is_heap_object(s, avoider)) {
warning("DoAvoider() where avoider %04x:%04x is not an object", PRINT_REG(avoider));
return NULL_REG;
}
client = GET_SEL32(avoider, client);
if (!is_heap_object(s, client)) {
warning("DoAvoider() where client %04x:%04x is not an object", PRINT_REG(client));
return NULL_REG;
}
looper = GET_SEL32(client, looper);
mover = GET_SEL32(client, mover);
if (!is_heap_object(s, mover)) {
if (mover.segment) {
warning("DoAvoider() where mover %04x:%04x is not an object", PRINT_REG(mover));
}
return s->r_acc;
}
destx = GET_SEL32V(mover, x);
desty = GET_SEL32V(mover, y);
debugC(2, kDebugLevelBresen, "Doing avoider %04x:%04x (dest=%d,%d)\n", PRINT_REG(avoider), destx, desty);
if (invoke_selector(INV_SEL(mover, doit, kContinueOnInvalidSelector) , 0)) {
error("Mover %04x:%04x of avoider %04x:%04x doesn't have a doit() funcselector", PRINT_REG(mover), PRINT_REG(avoider));
return NULL_REG;
}
mover = GET_SEL32(client, mover);
if (!mover.segment) // Mover has been disposed?
return s->r_acc; // Return gracefully.
if (invoke_selector(INV_SEL(client, isBlocked, kContinueOnInvalidSelector) , 0)) {
error("Client %04x:%04x of avoider %04x:%04x doesn't"
" have an isBlocked() funcselector", PRINT_REG(client), PRINT_REG(avoider));
return NULL_REG;
}
dx = destx - GET_SEL32V(client, x);
dy = desty - GET_SEL32V(client, y);
angle = get_angle(dx, dy);
debugC(2, kDebugLevelBresen, "Movement (%d,%d), angle %d is %sblocked\n", dx, dy, angle, (s->r_acc.offset) ? " " : "not ");
if (s->r_acc.offset) { // isBlocked() returned non-zero
int rotation = (rand() & 1) ? 45 : (360 - 45); // Clockwise/counterclockwise
int oldx = GET_SEL32V(client, x);
int oldy = GET_SEL32V(client, y);
int xstep = GET_SEL32V(client, xStep);
int ystep = GET_SEL32V(client, yStep);
int moves;
debugC(2, kDebugLevelBresen, " avoider %04x:%04x\n", PRINT_REG(avoider));
for (moves = 0; moves < 8; moves++) {
int move_x = (int)(sin(angle * PI / 180.0) * (xstep));
int move_y = (int)(-cos(angle * PI / 180.0) * (ystep));
PUT_SEL32V(client, x, oldx + move_x);
PUT_SEL32V(client, y, oldy + move_y);
debugC(2, kDebugLevelBresen, "Pos (%d,%d): Trying angle %d; delta=(%d,%d)\n", oldx, oldy, angle, move_x, move_y);
if (invoke_selector(INV_SEL(client, canBeHere, kContinueOnInvalidSelector) , 0)) {
error("Client %04x:%04x of avoider %04x:%04x doesn't"
" have a canBeHere() funcselector", PRINT_REG(client), PRINT_REG(avoider));
return NULL_REG;
}
PUT_SEL32V(client, x, oldx);
PUT_SEL32V(client, y, oldy);
if (s->r_acc.offset) { // We can be here
debugC(2, kDebugLevelBresen, "Success\n");
PUT_SEL32V(client, heading, angle);
return make_reg(0, angle);
}
angle += rotation;
if (angle > 360)
angle -= 360;
}
warning("DoAvoider failed for avoider %04x:%04x", PRINT_REG(avoider));
} else {
int heading = GET_SEL32V(client, heading);
if (heading == -1)
return s->r_acc; // No change
PUT_SEL32V(client, heading, angle);
s->r_acc = make_reg(0, angle);
if (looper.segment) {
if (invoke_selector(INV_SEL(looper, doit, kContinueOnInvalidSelector), 2, angle, client)) {
error("Looper %04x:%04x of avoider %04x:%04x doesn't"
" have a doit() funcselector", PRINT_REG(looper), PRINT_REG(avoider));
} else
return s->r_acc;
} else {
// No looper? Fall back to DirLoop
_k_dirloop(client, (uint16)angle, s, funct_nr, argc, argv);
}
}
return s->r_acc;
}
} // End of namespace Sci
|