aboutsummaryrefslogtreecommitdiff
path: root/engines/sci/engine/kpathing.cpp
blob: 46f257d31ceec80144081a30ba7b64583821d723 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * $URL$
 * $Id$
 *
 */

/* Detailed information on the implementation can be found in the report
** which can be downloaded from FIXME.
*/

#include "sci/engine/state.h"
#include "sci/engine/aatree.h"
#include "sci/gfx/gfx_widgets.h"
#include "sci/engine/kernel.h"

#include "common/list.h"

namespace Sci {

#define POLY_LAST_POINT 0x7777
#define POLY_POINT_SIZE 4

static void POLY_GET_POINT(byte *p, int i, Common::Point &pt) {
	pt.x = (int16)READ_LE_UINT16((p) + (i) * POLY_POINT_SIZE);
	pt.y = (int16)READ_LE_UINT16((p) + (i) * POLY_POINT_SIZE + 2);
}

static void POLY_SET_POINT(byte *p, int i, const Common::Point &pt) {
	WRITE_LE_UINT16((p) + (i) * POLY_POINT_SIZE, pt.x);
	WRITE_LE_UINT16((p) + (i) * POLY_POINT_SIZE + 2, pt.y);
}

static void POLY_GET_POINT_REG_T(reg_t *p, int i, Common::Point &pt) {
	pt.x = KP_SINT((p)[(i) * 2]);
	pt.y = KP_SINT((p)[(i) * 2 + 1]);
}

// SCI-defined polygon types
enum {
	POLY_TOTAL_ACCESS = 0,
	POLY_NEAREST_ACCESS = 1,
	POLY_BARRED_ACCESS = 2,
	POLY_CONTAINED_ACCESS = 3
};

// Polygon containment types
enum {
	CONT_OUTSIDE = 0,
	CONT_ON_EDGE = 1,
	CONT_INSIDE = 2
};

#define HUGE_DISTANCE 1e10

// Visibility matrix
#define VIS_MATRIX_ROW_SIZE(N) (((N) / 8) + ((N) % 8 ? 1 : 0))
#define SET_VISIBLE(S, P, Q) ((S)->vis_matrix)[(P) * VIS_MATRIX_ROW_SIZE((S)->vertices) \
	+ (Q) / 8] |= (1 << ((Q) % 8))
#define IS_VISIBLE(S, P, Q) (((S)->vis_matrix[(P) * VIS_MATRIX_ROW_SIZE((S)->vertices) \
	+ (Q) / 8] & (1 << ((Q) % 8))) != 0)

#define VERTEX_HAS_EDGES(V) ((V) != CLIST_NEXT(V))

// Error codes
enum {
	PF_OK = 0,
	PF_ERROR = -1,
	PF_FATAL = -2
};	

// Floating point struct
struct FloatPoint {
	FloatPoint() : x(0), y(0) {}
	FloatPoint(float x_, float y_) : x(x_), y(y_) {}

	float x, y;
};

FloatPoint toFloatPoint(Common::Point p) {
	return FloatPoint(p.x, p.y);
}

struct Vertex {
	// Location
	Common::Point v;

	// Index
	int idx;

	// Vertex circular list entry
	struct {
		Vertex *cle_next;	// next element
		Vertex *cle_prev;	// previous element
	} entries;

	// Distance from starting vertex
	float dist;

	// Previous vertex in shortest path
	Vertex *path_prev;

public:
	Vertex(const Common::Point &p) : v(p) {
		dist = HUGE_DISTANCE;
		path_prev = NULL;
	}
};

typedef Common::List<Vertex *> VertexList;


class CircularVertexList {
public:
	Vertex *_head;

public:
	CircularVertexList() : _head(0) {}
	
	Vertex *first() {
		return _head;
	}
	
	void insertHead(Vertex *elm) {
		if (_head == NULL) {
			elm->entries.cle_next = elm->entries.cle_prev = elm;
		} else {
			elm->entries.cle_next = _head;
			elm->entries.cle_prev = _head->entries.cle_prev;
			_head->entries.cle_prev = elm;
			elm->entries.cle_prev->entries.cle_next = elm;
		}
		_head = elm;
	}

	static void insertAfter(Vertex *listelm, Vertex *elm) {
		elm->entries.cle_prev = listelm;
		(elm)->entries.cle_next = listelm->entries.cle_next;
		listelm->entries.cle_next->entries.cle_prev = elm;
		listelm->entries.cle_next = elm;
	}

	void remove(Vertex *elm) {
		if (elm->entries.cle_next == elm) {
			_head = NULL;
		} else {
			if (_head == elm)
				_head = elm->entries.cle_next;
			elm->entries.cle_prev->entries.cle_next = elm->entries.cle_next;
			elm->entries.cle_next->entries.cle_prev = elm->entries.cle_prev;
		}
	}

	bool empty() const {
		return _head == NULL;
	}
};

/* Circular list definitions. */

#define CLIST_FOREACH(var, head)					\
	for ((var) = (head)->first();					\
		(var);							\
		(var) = ((var)->entries.cle_next == (head)->first() ?	\
		    NULL : (var)->entries.cle_next))

/* Circular list access methods. */
#define CLIST_NEXT(elm)		((elm)->entries.cle_next)
#define CLIST_PREV(elm)		((elm)->entries.cle_prev)


struct Polygon {
	// SCI polygon type
	int type;

	// Circular list of vertices
	CircularVertexList vertices;

public:
	Polygon(int t) : type(t) {
	}

	~Polygon() {
		while (!vertices.empty()) {
			Vertex *vertex = vertices.first();
			vertices.remove(vertex);
			delete vertex;
		}
	}
};

typedef Common::List<Polygon *> PolygonList;

// Pathfinding state
struct PathfindingState {
	// List of all polygons
	PolygonList polygons;

	// Original start and end points
	Common::Point start, end;

	// Flags for adding original points to final path
	char keep_start, keep_end;

	// Start and end points for pathfinding
	Vertex *vertex_start, *vertex_end;

	// Array to quickly find vertices by idx
	Vertex **vertex_index;

	// Visibility matrix
	char *vis_matrix;

	// Total number of vertices
	int vertices;
	
	PathfindingState(const Common::Point &s, const Common::Point &e) : start(s), end(e) {
		keep_start = 0;
		keep_end = 0;
		vertex_start = NULL;
		vertex_end = NULL;
		vertex_index = NULL;
		vis_matrix = NULL;
		vertices = 0;
	}
	
	~PathfindingState() {
		free(vertex_index);
		free(vis_matrix);
	
		for (PolygonList::iterator it = polygons.begin(); it != polygons.end(); ++it) {
			delete *it;
		}
	}
};


static Vertex *vertex_cur;

// Temporary hack to deal with points in reg_ts
static int polygon_is_reg_t(unsigned char *list, int size) {
	int i;

	// Check the first three reg_ts
	for (i = 0; i < (size < 3 ? size : 3); i++)
		if ((((reg_t *) list) + i)->segment)
			// Non-zero segment, cannot be reg_ts
			return 0;

	// First three segments were zero, assume reg_ts
	return 1;
}

static Common::Point read_point(unsigned char *list, int is_reg_t, int offset) {
	Common::Point point;

	if (!is_reg_t) {
		POLY_GET_POINT(list, offset, point);
	} else {
		POLY_GET_POINT_REG_T((reg_t *)list, offset, point);
	}

	return point;
}

static void draw_line(EngineState *s, Common::Point p1, Common::Point p2, int type) {
	// Colors for polygon debugging.
	// Green: Total access
	// Red : Barred access
	// Blue: Near-point access
	// Yellow: Contained access
	int poly_colors[][3] = {{0, 255, 0}, {0, 0, 255}, {255, 0, 0}, {255, 255, 0}};
	gfx_color_t col;
	gfxw_list_t *decorations = s->picture_port->decorations;
	gfxw_primitive_t *line;

	col.visual.global_index = GFX_COLOR_INDEX_UNMAPPED;
	col.visual.r = poly_colors[type][0];
	col.visual.g = poly_colors[type][1];
	col.visual.b = poly_colors[type][2];
	col.alpha = 0;
	col.priority = -1;
	col.control = 0;
	col.mask = GFX_MASK_VISUAL | GFX_MASK_PRIORITY;

	p1.y += 10;
	p2.y += 10;

	line = gfxw_new_line(p1, p2, col, GFX_LINE_MODE_CORRECT, GFX_LINE_STYLE_NORMAL);
	decorations->add((gfxw_container_t *)decorations, (gfxw_widget_t *)line);
}

static void draw_point(EngineState *s, Common::Point p, int start) {
	// Colors for starting and end point
	// Green: End point
	// Blue: Starting point
	int point_colors[][3] = {{0, 255, 0}, {0, 0, 255}};
	gfx_color_t col;
	gfxw_list_t *decorations = s->picture_port->decorations;
	gfxw_box_t *box;

	col.visual.global_index = GFX_COLOR_INDEX_UNMAPPED;
	col.visual.r = point_colors[start][0];
	col.visual.g = point_colors[start][1];
	col.visual.b = point_colors[start][2];
	col.alpha = 0;
	col.priority = -1;
	col.control = 0;
	col.mask = GFX_MASK_VISUAL | GFX_MASK_PRIORITY;

	box = gfxw_new_box(s->gfx_state, gfx_rect(p.x - 1, p.y - 1 + 10, 3, 3), col, col, GFX_BOX_SHADE_FLAT);
	decorations->add((gfxw_container_t *) decorations, (gfxw_widget_t *) box);
}

static void draw_polygon(EngineState *s, reg_t polygon) {
	reg_t points = GET_SEL32(polygon, points);
	int size = KP_UINT(GET_SEL32(polygon, size));
	int type = KP_UINT(GET_SEL32(polygon, type));
	Common::Point first, prev;
	unsigned char *list = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE);
	int is_reg_t = polygon_is_reg_t(list, size);
	int i;

	prev = first = read_point(list, is_reg_t, 0);

	for (i = 1; i < size; i++) {
		Common::Point point = read_point(list, is_reg_t, i);
		draw_line(s, prev, point, type);
		prev = point;
	}

	draw_line(s, prev, first, type % 3);
}

static void draw_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) {
	List *list;
	Node *node;

	draw_point(s, start, 1);
	draw_point(s, end, 0);

	if (!poly_list.segment)
		return;

	list = LOOKUP_LIST(poly_list);

	if (!list) {
		warning("Could not obtain polygon list");
		return;
	}

	node = LOOKUP_NODE(list->first);

	while (node) {
		draw_polygon(s, node->value);
		node = LOOKUP_NODE(node->succ);
	}
}

static void print_polygon(EngineState *s, reg_t polygon) {
	reg_t points = GET_SEL32(polygon, points);
	int size = KP_UINT(GET_SEL32(polygon, size));
	int type = KP_UINT(GET_SEL32(polygon, type));
	int i;
	unsigned char *point_array = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE);
	int is_reg_t = polygon_is_reg_t(point_array, size);
	Common::Point point;

	sciprintf("%i:", type);

	for (i = 0; i < size; i++) {
		point = read_point(point_array, is_reg_t, i);
		sciprintf(" (%i, %i)", point.x, point.y);
	}

	point = read_point(point_array, is_reg_t, 0);
	sciprintf(" (%i, %i);\n", point.x, point.y);
}

static void print_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) {
	List *list;
	Node *node;

	sciprintf("Start point: (%i, %i)\n", start.x, start.y);
	sciprintf("End point: (%i, %i)\n", end.x, end.y);
	sciprintf("Optimization level: %i\n", opt);

	if (!poly_list.segment)
		return;

	list = LOOKUP_LIST(poly_list);

	if (!list) {
		warning("Could not obtain polygon list");
		return;
	}

	sciprintf("Polygons:\n");
	node = LOOKUP_NODE(list->first);

	while (node) {
		print_polygon(s, node->value);
		node = LOOKUP_NODE(node->succ);
	}
}

static int area(Common::Point a, Common::Point b, Common::Point c) {
	// Computes the area of a triangle
	// Parameters: (Common::Point) a, b, c: The points of the triangle
	// Returns   : (int) The area multiplied by two
	return (b.x - a.x) * (a.y - c.y) - (c.x - a.x) * (a.y - b.y);
}

static int left(Common::Point a, Common::Point b, Common::Point c) {
	// Determines whether or not a point is to the left of a directed line
	// Parameters: (Common::Point) a, b: The directed line (a, b)
	//             (Common::Point) c: The query point
	// Returns   : (int) 1 if c is to the left of (a, b), 0 otherwise
	return area(a, b, c) > 0;
}

static int left_on(Common::Point a, Common::Point b, Common::Point c) {
	// Determines whether or not a point is to the left of or collinear with a
	// directed line
	// Parameters: (Common::Point) a, b: The directed line (a, b)
	//             (Common::Point) c: The query point
	// Returns   : (int) 1 if c is to the left of or collinear with (a, b), 0
	//                   otherwise
	return area(a, b, c) >= 0;
}

static int collinear(Common::Point a, Common::Point b, Common::Point c) {
	// Determines whether or not three points are collinear
	// Parameters: (Common::Point) a, b, c: The three points
	// Returns   : (int) 1 if a, b, and c are collinear, 0 otherwise
	return area(a, b, c) == 0;
}

static int between(Common::Point a, Common::Point b, Common::Point c) {
	// Determines whether or not a point lies on a line segment
	// Parameters: (Common::Point) a, b: The line segment (a, b)
	//             (Common::Point) c: The query point
	// Returns   : (int) 1 if c lies on (a, b), 0 otherwise
	if (!collinear(a, b, c))
		return 0;

	// Assumes a != b.
	if (a.x != b.x)
		return ((a.x <= c.x) && (c.x <= b.x)) || ((a.x >= c.x) && (c.x >= b.x));
	else
		return ((a.y <= c.y) && (c.y <= b.y)) || ((a.y >= c.y) && (c.y >= b.y));
}

static int intersect_proper(Common::Point a, Common::Point b, Common::Point c, Common::Point d) {
	// Determines whether or not two line segments properly intersect
	// Parameters: (Common::Point) a, b: The line segment (a, b)
	//             (Common::Point) c, d: The line segment (c, d)
	// Returns   : (int) 1 if (a, b) properly intersects (c, d), 0 otherwise
	int ab = (left(a, b, c) && left(b, a, d)) || (left(a, b, d) && left(b, a, c));
	int cd = (left(c, d, a) && left(d, c, b)) || (left(c, d, b) && left(d, c, a));

	return ab && cd;
}

static int intersect(Common::Point a, Common::Point b, Common::Point c, Common::Point d) {
	// Determines whether or not two line segments intersect
	// Parameters: (Common::Point) a, b: The line segment (a, b)
	//             (Common::Point) c, d: The line segment (c, d)
	// Returns   : (int) 1 if (a, b) intersects (c, d), 0 otherwise
	if (intersect_proper(a, b, c, d))
		return 1;

	return between(a, b, c) || between(a, b, d) || between(c, d, a) || between(c, d, b);
}

static int contained(Common::Point p, Polygon *polygon) {
	// Polygon containment test
	// Parameters: (Common::Point) p: The point
	//             (Polygon *) polygon: The polygon
	// Returns   : (int) CONT_INSIDE if p is strictly contained in polygon,
	//                   CONT_ON_EDGE if p lies on an edge of polygon,
	//                   CONT_OUTSIDE otherwise
	// Number of ray crossing left and right
	int lcross = 0, rcross = 0;
	Vertex *vertex;

	// Iterate over edges
	CLIST_FOREACH(vertex, &polygon->vertices) {
		Common::Point v1 = vertex->v;
		Common::Point v2 = CLIST_NEXT(vertex)->v;

		// Flags for ray straddling left and right
		int rstrad, lstrad;

		// Check if p is a vertex
		if (p == v1)
			return CONT_ON_EDGE;

		// Check if edge straddles the ray
		rstrad = (v1.y < p.y) != (v2.y < p.y);
		lstrad = (v1.y > p.y) != (v2.y > p.y);

		if (lstrad || rstrad) {
			// Compute intersection point x / xq
			int x = v2.x * v1.y - v1.x * v2.y + (v1.x - v2.x) * p.y;
			int xq = v1.y - v2.y;

			// Multiply by -1 if xq is negative (for comparison that follows)
			if (xq < 0) {
				x = -x;
				xq = -xq;
			}

			// Avoid floats by multiplying instead of dividing
			if (rstrad && (x > xq * p.x))
				rcross++;
			else if (lstrad && (x < xq * p.x))
				lcross++;
		}
	}

	// If we counted an odd number of total crossings the point is on an edge
	if ((lcross + rcross) % 2 == 1)
		return CONT_ON_EDGE;

	// If there are an odd number of crossings to one side the point is contained in the polygon
	if (rcross % 2 == 1) {
		// Invert result for contained access polygons.
		if (polygon->type == POLY_CONTAINED_ACCESS)
			return CONT_OUTSIDE;
		return CONT_INSIDE;
	}

	// Point is outside polygon. Invert result for contained access polygons
	if (polygon->type == POLY_CONTAINED_ACCESS)
		return CONT_INSIDE;

	return CONT_OUTSIDE;
}

static int polygon_area(Polygon *polygon) {
	// Computes polygon area
	// Parameters: (Polygon *) polygon: The polygon
	// Returns   : (int) The area multiplied by two
	Vertex *first = polygon->vertices.first();
	Vertex *v;
	int size = 0;

	v = CLIST_NEXT(first);

	while (CLIST_NEXT(v) != first) {
		size += area(first->v, v->v, CLIST_NEXT(v)->v);
		v = CLIST_NEXT(v);
	}

	return size;
}

static void fix_vertex_order(Polygon *polygon) {
	// Fixes the vertex order of a polygon if incorrect. Contained access
	// polygons should have their vertices ordered clockwise, all other types
	// anti-clockwise
	// Parameters: (Polygon *) polygon: The polygon
	int area = polygon_area(polygon);

	// When the polygon area is positive the vertices are ordered
	// anti-clockwise. When the area is negative the vertices are ordered
	// clockwise
	if (((area > 0) && (polygon->type == POLY_CONTAINED_ACCESS))
	        || ((area < 0) && (polygon->type != POLY_CONTAINED_ACCESS))) {

		// Create a new circular list
		CircularVertexList vertices;

		while (!polygon->vertices.empty()) {
			// Put first vertex in new list
			Vertex *vertex = polygon->vertices.first();
			polygon->vertices.remove(vertex);
			vertices.insertHead(vertex);
		}

		polygon->vertices = vertices;
	}
}

static int vertex_compare(const void *a, const void *b) {
	// Compares two vertices by angle (first) and distance (second) in relation
	// to vertex_cur. The angle is relative to the horizontal line extending
	// right from vertex_cur, and increases clockwise
	// Parameters: (const void *) a, b: The vertices
	// Returns   : (int) -1 if a is smaller than b, 1 if a is larger than b, and
	//                   0 if a and b are equal
	Common::Point p0 = vertex_cur->v;
	Common::Point p1 = (*(Vertex **) a)->v;
	Common::Point p2 = (*(Vertex **) b)->v;

	if (p1 == p2)
		return 0;

	// Points above p0 have larger angle than points below p0
	if ((p1.y < p0.y) && (p2.y >= p0.y))
		return 1;

	if ((p2.y < p0.y) && (p1.y >= p0.y))
		return -1;

	// Handle case where all points have the same y coordinate
	if ((p0.y == p1.y) && (p0.y == p2.y)) {
		// Points left of p0 have larger angle than points right of p0
		if ((p1.x < p0.x) && (p2.x >= p0.x))
			return 1;
		if ((p1.x >= p0.x) && (p2.x < p0.x))
			return -1;
	}

	if (collinear(p0, p1, p2)) {
		// At this point collinear points must have the same angle,
		// so compare distance to p0
		if (abs(p1.x - p0.x) < abs(p2.x - p0.x))
			return -1;
		if (abs(p1.y - p0.y) < abs(p2.y - p0.y))
			return -1;

		return 1;
	}

	// If p2 is left of the directed line (p0, p1) then p1 has greater angle
	if (left(p0, p1, p2))
		return 1;

	return -1;
}

static void clockwise(Vertex *v, Common::Point *p1, Common::Point *p2) {
	// Orders the points of an edge clockwise around vertex_cur. If all three
	// points are collinear the original order is used
	// Parameters: (Vertex *) v: The first vertex of the edge
	// Returns   : (void)
	//             (Common::Point) *p1: The first point in clockwise order
	//             (Common::Point) *p2: The second point in clockwise order
	Vertex *w = CLIST_NEXT(v);

	if (left_on(vertex_cur->v, w->v, v->v)) {
		*p1 = v->v;
		*p2 = w->v;
	} else {
		*p1 = w->v;
		*p2 = v->v;
	}
}

static int edge_compare(const void *a, const void *b) {
	// Compares two edges that are intersected by the sweeping line by distance
	// from vertex_cur
	// Parameters: (const void *) a, b: The first vertices of the edges
	// Returns   : (int) -1 if a is closer than b, 1 if b is closer than a, and
	//                   0 if a and b are equal
	Common::Point v1, v2, w1, w2;

	// We can assume that the sweeping line intersects both edges and
	// that the edges do not properly intersect

	if (a == b)
		return 0;

	// Order vertices clockwise so we know vertex_cur is to the right of
	// directed edges (v1, v2) and (w1, w2)
	clockwise((Vertex *)a, &v1, &v2);
	clockwise((Vertex *)b, &w1, &w2);

	// As the edges do not properly intersect one edge must lie entirely
	// to one side of another. Note that the special case where edges are
	// collinear does not need to be handled as those edges will never be
	// in the tree simultaneously

	// b is left of a
	if (left_on(v1, v2, w1) && left_on(v1, v2, w2))
		return -1;

	// b is right of a
	if (left_on(v2, v1, w1) && left_on(v2, v1, w2))
		return 1;

	// a is left of b
	if (left_on(w1, w2, v1) && left_on(w1, w2, v2))
		return 1;

	// a is right of b
	return -1;
}

static int inside(Common::Point p, Vertex *vertex) {
	// Determines whether or not a line from a point to a vertex intersects the
	// interior of the polygon, locally at that vertex
	// Parameters: (Common::Point) p: The point
	//             (Vertex *) vertex: The vertex
	// Returns   : (int) 1 if the line (p, vertex->v) intersects the interior of
	//                   the polygon, locally at the vertex. 0 otherwise
	// Check that it's not a single-vertex polygon
	if (VERTEX_HAS_EDGES(vertex)) {
		Common::Point prev = CLIST_PREV(vertex)->v;
		Common::Point next = CLIST_NEXT(vertex)->v;
		Common::Point cur = vertex->v;

		if (left(prev, cur, next)) {
			// Convex vertex, line (p, cur) intersects the inside
			// if p is located left of both edges
			if (left(cur, next, p) && left(prev, cur, p))
				return 1;
		} else {
			// Non-convex vertex, line (p, cur) intersects the
			// inside if p is located left of either edge
			if (left(cur, next, p) || left(prev, cur, p))
				return 1;
		}
	}

	return 0;
}

static int visible(Vertex *vertex, Vertex *vertex_prev, int visible, aatree_t *tree) {
	// Determines whether or not a vertex is visible from vertex_cur
	// Parameters: (Vertex *) vertex: The vertex
	//             (Vertex *) vertex_prev: The previous vertex in the sort
	//                                       order, or NULL
	//             (int) visible: 1 if vertex_prev is visible, 0 otherwise
	//             (aatree_t *) tree: The tree of edges intersected by the
	//                                sweeping line
	// Returns   : (int) 1 if vertex is visible from vertex_cur, 0 otherwise
	Vertex *edge;
	Common::Point p = vertex_cur->v;
	Common::Point w = vertex->v;
	aatree_t *tree_n = tree;

	// Check if sweeping line intersects the interior of the polygon
	// locally at vertex
	if (inside(p, vertex))
		return 0;

	// If vertex_prev is on the sweeping line, then vertex is invisible
	// if vertex_prev is invisible
	if (vertex_prev && !visible && between(p, w, vertex_prev->v))
		return 0;

	// Find leftmost node of tree */
	while ((tree_n = aatree_walk(tree_n, AATREE_WALK_LEFT)))
		tree = tree_n;

	edge = (Vertex*)aatree_get_data(tree);

	if (edge) {
		Common::Point p1, p2;

		// Check for intersection with sweeping line before vertex
		clockwise(edge, &p1, &p2);
		if (left(p2, p1, p) && left(p1, p2, w))
			return 0;
	}

	return 1;
}

static void visible_vertices(PathfindingState *s, Vertex *vert) {
	// Determines all vertices that are visible from a particular vertex and
	// updates the visibility matrix
	// Parameters: (PathfindingState *) s: The pathfinding state
	//             (Vertex *) vert: The vertex
	aatree_t *tree = aatree_new();
	Common::Point p = vert->v;
	Polygon *polygon;
	int i;
	int is_visible;
	Vertex **vert_sorted = (Vertex**)sci_malloc(sizeof(Vertex *) * s->vertices);

	// Sort vertices by angle (first) and distance (second)
	memcpy(vert_sorted, s->vertex_index, sizeof(Vertex *) * s->vertices);
	vertex_cur = vert;
	qsort(vert_sorted, s->vertices, sizeof(Vertex *), vertex_compare);

	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;
		vertex = polygon->vertices.first();

		// Check that there is more than one vertex.
		if (VERTEX_HAS_EDGES(vertex))
			CLIST_FOREACH(vertex, &polygon->vertices) {
			Common::Point high, low;

			// Add edges that intersect the initial position of the sweeping line
			clockwise(vertex, &high, &low);

			if ((high.y < p.y) && (low.y >= p.y) && (low != p))
				aatree_insert(vertex, &tree, edge_compare);
		}
	}

	is_visible = 1;

	// The first vertex will be vertex_cur, so we skip it
	for (i = 1; i < s->vertices; i++) {
		Vertex *v1;

		// Compute visibility of vertex_index[i]
		is_visible = visible(vert_sorted[i], vert_sorted[i - 1], is_visible, tree);

		// Update visibility matrix
		if (is_visible)
			SET_VISIBLE(s, vert->idx, vert_sorted[i]->idx);

		// Delete anti-clockwise edges from tree
		v1 = CLIST_PREV(vert_sorted[i]);
		if (left(p, vert_sorted[i]->v, v1->v)) {
			if (aatree_delete(v1, &tree, edge_compare))
				sciprintf("[avoidpath] Error: failed to remove edge from tree\n");
		}

		v1 = CLIST_NEXT(vert_sorted[i]);
		if (left(p, vert_sorted[i]->v, v1->v)) {
			if (aatree_delete(vert_sorted[i], &tree, edge_compare))
				sciprintf("[avoidpath] Error: failed to remove edge from tree\n");
		}

		// Add clockwise edges of collinear vertices when sweeping line moves
		if ((i < s->vertices - 1) && !collinear(p, vert_sorted[i]->v, vert_sorted[i + 1]->v)) {
			int j;
			for (j = i; (j >= 1) && collinear(p, vert_sorted[i]->v, vert_sorted[j]->v); j--) {
				v1 = CLIST_PREV(vert_sorted[j]);
				if (left(vert_sorted[j]->v, p, v1->v))
					aatree_insert(v1, &tree, edge_compare);

				v1 = CLIST_NEXT(vert_sorted[j]);
				if (left(vert_sorted[j]->v, p, v1->v))
					aatree_insert(vert_sorted[j], &tree, edge_compare);
			}
		}
	}

	free(vert_sorted);

	// Free tree
	aatree_free(tree);
}

static float distance(FloatPoint a, FloatPoint b) {
	// Computes the distance between two pointfs
	// Parameters: (Common::Point) a, b: The two pointfs
	// Returns   : (int) The distance between a and b, rounded to int
	float w = a.x - b.x;
	float h = a.y - b.y;

	return sqrt(w * w + h * h);
}

static int point_on_screen_border(Common::Point p) {
	// Determines if a point lies on the screen border
	// Parameters: (Common::Point) p: The point
	// Returns   : (int) 1 if p lies on the screen border, 0 otherwise
	// FIXME get dimensions from somewhere?
	return (p.x == 0) || (p.x == 319) || (p.y == 0) || (p.y == 189);
}

static int edge_on_screen_border(Common::Point p, Common::Point q) {
	// Determines if an edge lies on the screen border
	// Parameters: (Common::Point) p, q: The edge (p, q)
	// Returns   : (int) 1 if (p, q) lies on the screen border, 0 otherwise
	// FIXME get dimensions from somewhere?
	return ((p.x == 0 && q.x == 0) || (p.x == 319 && q.x == 319) || (p.y == 0 && q.y == 0) || (p.y == 189 && q.y == 189));
}

static int find_free_point(FloatPoint f, Polygon *polygon, Common::Point *ret) {
	// Searches for a nearby point that is not contained in a polygon
	// Parameters: (FloatPoint) f: The pointf to search nearby
	//             (Polygon *) polygon: The polygon
	// Returns   : (int) PF_OK on success, PF_FATAL otherwise
	//             (Common::Point) *ret: The non-contained point on success
	Common::Point p;

	// Try nearest point first
	p = Common::Point((int)floor(f.x + 0.5), (int)floor(f.y + 0.5));

	if (contained(p, polygon) != CONT_INSIDE) {
		*ret = p;
		return PF_OK;
	}

	p = Common::Point((int)floor(f.x), (int)floor(f.y));

	// Try (x, y), (x + 1, y), (x , y + 1) and (x + 1, y + 1)
	if (contained(p, polygon) == CONT_INSIDE) {
		p.x++;
		if (contained(p, polygon) == CONT_INSIDE) {
			p.y++;
			if (contained(p, polygon) == CONT_INSIDE) {
				p.x--;
				if (contained(p, polygon) == CONT_INSIDE)
					return PF_FATAL;
			}
		}
	}

	*ret = p;
	return PF_OK;
}

static int near_point(Common::Point p, Polygon *polygon, Common::Point *ret) {
	// Computes the near point of a point contained in a polygon
	// Parameters: (Common::Point) p: The point
	//             (Polygon *) polygon: The polygon
	// Returns   : (int) PF_OK on success, PF_FATAL otherwise
	//             (Common::Point) *ret: The near point of p in polygon on success
	Vertex *vertex;
	FloatPoint near_p;
	float dist = HUGE_DISTANCE;

	CLIST_FOREACH(vertex, &polygon->vertices) {
		Common::Point p1 = vertex->v;
		Common::Point p2 = CLIST_NEXT(vertex)->v;
		float w, h, l, u;
		FloatPoint new_point;
		float new_dist;

		// Ignore edges on the screen border
		if (edge_on_screen_border(p1, p2))
			continue;

		// Compute near point
		w = p2.x - p1.x;
		h = p2.y - p1.y;
		l = sqrt(w * w + h * h);
		u = ((p.x - p1.x) * (p2.x - p1.x) + (p.y - p1.y) * (p2.y - p1.y)) / (l * l);

		// Clip to edge
		if (u < 0.0f)
			u = 0.0f;
		if (u > 1.0f)
			u = 1.0f;

		new_point.x = p1.x + u * (p2.x - p1.x);
		new_point.y = p1.y + u * (p2.y - p1.y);

		new_dist = distance(toFloatPoint(p), new_point);

		if (new_dist < dist) {
			near_p = new_point;
			dist = new_dist;
		}
	}

	// Find point not contained in polygon
	return find_free_point(near_p, polygon, ret);
}

static int intersection(Common::Point a, Common::Point b, Vertex *vertex, FloatPoint *ret) {
	// Computes the intersection point of a line segment and an edge (not
	// including the vertices themselves)
	// Parameters: (Common::Point) a, b: The line segment (a, b)
	//             (Vertex *) vertex: The first vertex of the edge
	// Returns   : (int) FP_OK on success, PF_ERROR otherwise
	//             (FloatPoint) *ret: The intersection point
	// Parameters of parametric equations
	float s, t;
	// Numerator and denominator of equations
	float num, denom;
	Common::Point c = vertex->v;
	Common::Point d = CLIST_NEXT(vertex)->v;

	denom = a.x * (float)(d.y - c.y) + b.x * (float)(c.y - d.y) +
	        d.x * (float)(b.y - a.y) + c.x * (float)(a.y - b.y);

	if (denom == 0.0)
		// Segments are parallel, no intersection
		return PF_ERROR;

	num = a.x * (float)(d.y - c.y) + c.x * (float)(a.y - d.y) + d.x * (float)(c.y - a.y);

	s = num / denom;

	num = -(a.x * (float)(c.y - b.y) + b.x * (float)(a.y - c.y) + c.x * (float)(b.y - a.y));

	t = num / denom;

	if ((0.0 <= s) && (s <= 1.0) && (0.0 < t) && (t < 1.0)) {
		// Intersection found
		ret->x = a.x + s * (b.x - a.x);
		ret->y = a.y + s * (b.y - a.y);
		return PF_OK;
	}

	return PF_ERROR;
}

static int nearest_intersection(PathfindingState *s, Common::Point p, Common::Point q, Common::Point *ret) {
	// Computes the nearest intersection point of a line segment and the polygon
	// set. Intersection points that are reached from the inside of a polygon
	// are ignored as are improper intersections which do not obstruct
	// visibility
	// Parameters: (PathfindingState *) s: The pathfinding state
	//             (Common::Point) p, q: The line segment (p, q)
	// Returns   : (int) PF_OK on success, PF_ERROR when no intersections were
	//                   found, PF_FATAL otherwise
	//             (Common::Point) *ret: On success, the closest intersection point
	Polygon *polygon = 0;
	FloatPoint isec;
	Polygon *ipolygon = 0;
	float dist = HUGE_DISTANCE;

	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			float new_dist;
			FloatPoint new_isec;

			// Check for intersection with vertex
			if (between(p, q, vertex->v)) {
				// Skip this vertex if we hit it from the
				// inside of the polygon
				if (inside(q, vertex)) {
					new_isec.x = vertex->v.x;
					new_isec.y = vertex->v.y;
				} else
					continue;
			} else {
				// Check for intersection with edges

				// Skip this edge if we hit it from the
				// inside of the polygon
				if (!left(vertex->v, CLIST_NEXT(vertex)->v, q))
					continue;

				if (intersection(p, q, vertex, &new_isec) != PF_OK)
					continue;
			}

			new_dist = distance(toFloatPoint(p), new_isec);
			if (new_dist < dist) {
				ipolygon = polygon;
				isec = new_isec;
				dist = new_dist;
			}
		}
	}

	if (dist == HUGE_DISTANCE)
		return PF_ERROR;

	// Find point not contained in polygon
	return find_free_point(isec, ipolygon, ret);
}

static int fix_point(PathfindingState *s, Common::Point p, Common::Point *ret, Polygon **ret_pol) {
	// Checks a point for containment in any of the polygons in the polygon set.
	// If the point is contained in a totally accessible polygon that polygon
	// is removed from the set. If the point is contained in a polygon of another
	// type the near point is returned. Otherwise the original point is returned
	// Parameters: (Common::Point) p: The point
	// Returns   : (int) PF_OK on success, PF_FATAL otherwise
	//             (Common::Point) *ret: A valid input point for pathfinding
	//             (Polygon *) *ret_pol: The polygon p was contained in if p
	//                                     != *ret, NULL otherwise
	PolygonList::iterator it;
	*ret_pol = NULL;

	// Check for polygon containment
	for (it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		if (contained(p, *it) != CONT_OUTSIDE)
			break;
	}

	if (it != s->polygons.end()) {
		Common::Point near_p;

		if ((*it)->type == POLY_TOTAL_ACCESS) {
			// Remove totally accessible polygon if it contains p
			
			s->polygons.erase(it);
			*ret = p;
			return PF_OK;
		}

		// Otherwise, compute near point
		if (near_point(p, (*it), &near_p) == PF_OK) {
			*ret = near_p;

			if (p != *ret)
				*ret_pol = *it;

			return PF_OK;
		}

		return PF_FATAL;
	}

	// p is not contained in any polygon
	*ret = p;
	return PF_OK;
}

static Vertex *merge_point(PathfindingState *s, Common::Point v) {
	// Merges a point into the polygon set. A new vertex is allocated for this
	// point, unless a matching vertex already exists. If the point is on an
	// already existing edge that edge is split up into two edges connected by
	// the new vertex
	// Parameters: (PathfindingState *) s: The pathfinding state
	//             (Common::Point) v: The point to merge
	// Returns   : (Vertex *) The vertex corresponding to v
	Vertex *vertex;
	Vertex *v_new;
	Polygon *polygon;

	// Check for already existing vertex
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		CLIST_FOREACH(vertex, &polygon->vertices) {
			if (vertex->v == v)
				return vertex;
		}
	}

	v_new = new Vertex(v);

	// Check for point being on an edge
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		// Skip single-vertex polygons
		if (VERTEX_HAS_EDGES(polygon->vertices.first())) {
			CLIST_FOREACH(vertex, &polygon->vertices) {
				Vertex *next = CLIST_NEXT(vertex);
		
				if (between(vertex->v, next->v, v)) {
					// Split edge by adding vertex
					polygon->vertices.insertAfter(vertex, v_new);
					return v_new;
				}
			}
		}
	}

	// Add point as single-vertex polygon
	polygon = new Polygon(POLY_BARRED_ACCESS);
	polygon->vertices.insertHead(v_new);
	s->polygons.push_front(polygon);

	return v_new;
}

static Polygon *convert_polygon(EngineState *s, reg_t polygon) {
	// Converts an SCI polygon into a Polygon
	// Parameters: (EngineState *) s: The game state
	//             (reg_t) polygon: The SCI polygon to convert
	// Returns   : (Polygon *) The converted polygon
	int i;
	reg_t points = GET_SEL32(polygon, points);
	int size = KP_UINT(GET_SEL32(polygon, size));
	unsigned char *list = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE);
	Polygon *poly = new Polygon(KP_UINT(GET_SEL32(polygon, type)));
	int is_reg_t = polygon_is_reg_t(list, size);

	for (i = 0; i < size; i++) {
		Vertex *vertex = new Vertex(read_point(list, is_reg_t, i));
		poly->vertices.insertHead(vertex);
	}

	fix_vertex_order(poly);

	return poly;
}

static void change_polygons_opt_0(PathfindingState *s) {
	// Changes the polygon list for optimization level 0 (used for keyboard
	// support). Totally accessible polygons are removed and near-point
	// accessible polygons are changed into totally accessible polygons.
	// Parameters: (PathfindingState *) s: The pathfinding state

	PolygonList::iterator it = s->polygons.begin();
	while (it != s->polygons.end()) {
		Polygon *polygon = *it;
		assert(polygon);

		if (polygon->type == POLY_TOTAL_ACCESS) {
			delete polygon;
			it = s->polygons.erase(it);
		} else {
			if (polygon->type == POLY_NEAREST_ACCESS)
				polygon->type = POLY_TOTAL_ACCESS;
			++it;
		}
	}
}

static PathfindingState *convert_polygon_set(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) {
	// Converts the SCI input data for pathfinding
	// Parameters: (EngineState *) s: The game state
	//             (reg_t) poly_list: Polygon list
	//             (Common::Point) start: The start point
	//             (Common::Point) end: The end point
	//             (int) opt: Optimization level (0, 1 or 2)
	// Returns   : (PathfindingState *) On success a newly allocated pathfinding state,
	//                            NULL otherwise
	Polygon *polygon;
	int err;
	int count = 0;
	PathfindingState *pf_s = new PathfindingState(start, end);

	// Convert all polygons
	if (poly_list.segment) {
		List *list = LOOKUP_LIST(poly_list);
		Node *node = LOOKUP_NODE(list->first);

		while (node) {
			polygon = convert_polygon(s, node->value);
			pf_s->polygons.push_front(polygon);
			count += KP_UINT(GET_SEL32(node->value, size));
			node = LOOKUP_NODE(node->succ);
		}
	}

	if (opt == 0) {
		// Keyboard support
		change_polygons_opt_0(pf_s);

		// Find nearest intersection
		err = nearest_intersection(pf_s, start, end, &start);

		if (err == PF_FATAL) {
			sciprintf("[avoidpath] Error: fatal error finding nearest intersecton\n");
			delete pf_s;
			return NULL;
		} else if (err == PF_OK)
			// Keep original start position if intersection was found
			pf_s->keep_start = 1;
	} else {
		if (fix_point(pf_s, start, &start, &polygon) != PF_OK) {
			sciprintf("[avoidpath] Error: couldn't fix start position for pathfinding\n");
			delete pf_s;
			return NULL;
		} else if (polygon) {
			// Start position has moved
			pf_s->keep_start = 1;
			if ((polygon->type != POLY_NEAREST_ACCESS))
				sciprintf("[avoidpath] Warning: start position at unreachable location\n");
		}
	}

	if (fix_point(pf_s, end, &end, &polygon) != PF_OK) {
		sciprintf("[avoidpath] Error: couldn't fix end position for pathfinding\n");
		delete pf_s;
		return NULL;
	} else {
		// Keep original end position if it is contained in a
		// near-point accessible polygon
		if (polygon && (polygon->type == POLY_NEAREST_ACCESS))
			pf_s->keep_end = 1;
	}

	// Merge start and end points into polygon set
	pf_s->vertex_start = merge_point(pf_s, start);
	pf_s->vertex_end = merge_point(pf_s, end);

	// Allocate and build vertex index
	pf_s->vertex_index = (Vertex**)sci_malloc(sizeof(Vertex *) * (count + 2));

	count = 0;

	for (PolygonList::iterator it = pf_s->polygons.begin(); it != pf_s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			vertex->idx = count;
			pf_s->vertex_index[count++] = vertex;
		}
	}

	pf_s->vertices = count;

	// Allocate and clear visibility matrix
	pf_s->vis_matrix = (char *)sci_calloc(pf_s->vertices * VIS_MATRIX_ROW_SIZE(pf_s->vertices), 1);

	return pf_s;
}

static void visibility_graph(PathfindingState *s) {
	// Computes the visibility graph
	// Parameters: (PathfindingState *) s: The pathfinding state
	Polygon *polygon;

	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			visible_vertices(s, vertex);
		}
	}
}

static int intersecting_polygons(PathfindingState *s) {
	// Detects (self-)intersecting polygons
	// Parameters: (PathfindingState *) s: The pathfinding state
	// Returns   : (int) 1 if s contains (self-)intersecting polygons, 0 otherwise
	int i, j;

	for (i = 0; i < s->vertices; i++) {
		Vertex *v1 = s->vertex_index[i];
		if (!VERTEX_HAS_EDGES(v1))
			continue;
		for (j = i + 1; j < s->vertices; j++) {
			Vertex *v2 = s->vertex_index[j];
			if (!VERTEX_HAS_EDGES(v2))
				continue;

			// Skip neighbouring edges
			if ((CLIST_NEXT(v1) == v2) || CLIST_PREV(v1) == v2)
				continue;

			if (intersect(v1->v, CLIST_NEXT(v1)->v,
			              v2->v, CLIST_NEXT(v2)->v))
				return 1;
		}
	}

	return 0;
}

static void dijkstra(PathfindingState *s) {
	// Computes a shortest path from vertex_start to vertex_end. The caller can
	// construct the resulting path by following the path_prev links from
	// vertex_end back to vertex_start. If no path exists vertex_end->path_prev
	// will be NULL
	// Parameters: (PathfindingState *) s: The pathfinding state
	Polygon *polygon;

	// Vertices of which the shortest path is known
	VertexList done;

	// The remaining vertices
	VertexList remain;

	// Start out with all vertices in set remain
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			remain.push_front(vertex);
		}
	}

	s->vertex_start->dist = 0.0f;

	// Loop until we find vertex_end
	while (1) {
		// Find vertex at shortest distance from set done
		VertexList::iterator it;
		VertexList::iterator vertex_min_it = remain.end();
		Vertex *vertex_min = 0;
		float min = HUGE_DISTANCE;
		for (it = remain.begin(); it != remain.end(); ++it) {
			Vertex *vertex = *it;
			if (vertex->dist < min) {
				vertex_min_it = it;
				vertex_min = *vertex_min_it;
				min = vertex->dist;
			}
		}

		if (min == HUGE_DISTANCE) {
			sciprintf("[avoidpath] Warning: end point (%i, %i) is unreachable\n", s->vertex_end->v.x, s->vertex_end->v.y);
			return;
		}

		// If vertex_end is at shortest distance we can stop
		if (vertex_min == s->vertex_end)
			return;

		// Move vertex from set remain to set done
		done.push_front(vertex_min);
		remain.erase(vertex_min_it);

		for (int i = 0; i < s->vertices; i++) {
			// Adjust upper bound for all vertices that are visible from vertex_min
			if (IS_VISIBLE(s, vertex_min->idx, i)) {
				float new_dist;

				// Avoid plotting path along screen edge
				if ((s->vertex_index[i] != s->vertex_end) && point_on_screen_border(s->vertex_index[i]->v))
					continue;

				new_dist = vertex_min->dist + distance(toFloatPoint(vertex_min->v), toFloatPoint(s->vertex_index[i]->v));
				if (new_dist < s->vertex_index[i]->dist) {
					s->vertex_index[i]->dist = new_dist;
					s->vertex_index[i]->path_prev = vertex_min;
				}
			}
		}
	}
}

static reg_t output_path(PathfindingState *p, EngineState *s) {
	// Stores the final path in newly allocated dynmem
	// Parameters: (PathfindingState *) p: The pathfinding state
	//             (EngineState *) s: The game state
	// Returns   : (reg_t) Pointer to dynmem containing path
	int path_len = 0;
	byte *oref;
	reg_t output;
	Vertex *vertex = p->vertex_end;
	int i;
	int unreachable = vertex->path_prev == NULL;

	if (unreachable) {
		// If pathfinding failed we only return the path up to vertex_start
		oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * 3, AVOIDPATH_DYNMEM_STRING, &output);

		if (p->keep_start)
			POLY_SET_POINT(oref, 0, p->start);
		else
			POLY_SET_POINT(oref, 0, p->vertex_start->v);

		POLY_SET_POINT(oref, 1, p->vertex_start->v);
		POLY_SET_POINT(oref, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

		return output;
	}

	while (vertex) {
		// Compute path length
		path_len++;
		vertex = vertex->path_prev;
	}

	oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * (path_len + 1 + p->keep_start + p->keep_end), AVOIDPATH_DYNMEM_STRING, &output);

	// Sentinel
	POLY_SET_POINT(oref, path_len + p->keep_start + p->keep_end, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

	// Add original start and end points if needed
	if (p->keep_end)
		POLY_SET_POINT(oref, path_len + p->keep_start, p->end);
	if (p->keep_start)
		POLY_SET_POINT(oref, 0, p->start);

	i = path_len + p->keep_start - 1;

	if (unreachable) {
		// Return straight trajectory from start to end
		POLY_SET_POINT(oref, i - 1, p->vertex_start->v);
		POLY_SET_POINT(oref, i, p->vertex_end->v);
		return output;
	}

	vertex = p->vertex_end;
	while (vertex) {
		POLY_SET_POINT(oref, i, vertex->v);
		vertex = vertex->path_prev;
		i--;
	}

	if (s->debug_mode & (1 << SCIkAVOIDPATH_NR)) {
		sciprintf("[avoidpath] Returning path:");
		for (i = 0; i < path_len + p->keep_start + p->keep_end; i++) {
			Common::Point pt;
			POLY_GET_POINT(oref, i, pt);
			sciprintf(" (%i, %i)", pt.x, pt.y);
		}
		sciprintf("\n");
	}

	return output;
}

reg_t kAvoidPath(EngineState *s, int funct_nr, int argc, reg_t *argv) {
	Common::Point start = Common::Point(SKPV(0), SKPV(1));

	if (s->debug_mode & (1 << SCIkAVOIDPATH_NR)) {
		gfxw_port_t *port = s->picture_port;

		if (!port->decorations) {
			port->decorations = gfxw_new_list(gfx_rect(0, 0, 320, 200), 0);
			port->decorations->set_visual(GFXW(port->decorations), port->visual);
		} else {
			port->decorations->free_contents(port->decorations);
		}
	}

	switch (argc) {

	case 3 : {
		reg_t retval;
		Polygon *polygon = convert_polygon(s, argv[2]);

		if (polygon->type == POLY_CONTAINED_ACCESS) {
			sciprintf("[avoidpath] Warning: containment test performed on contained access polygon\n");

			// Semantics unknown, assume barred access semantics
			polygon->type = POLY_BARRED_ACCESS;
		}

		retval = make_reg(0, contained(start, polygon) != CONT_OUTSIDE);
		delete polygon;
		return retval;
	}
	case 6 :
	case 7 : {
		Common::Point end = Common::Point(SKPV(2), SKPV(3));
		reg_t poly_list = argv[4];
		//int poly_list_size = UKPV(5);
		int opt = UKPV_OR_ALT(6, 1);
		reg_t output;
		PathfindingState *p;

		if (s->debug_mode & (1 << SCIkAVOIDPATH_NR)) {
			sciprintf("[avoidpath] Pathfinding input:\n");
			draw_point(s, start, 1);
			draw_point(s, end, 0);

			if (poly_list.segment) {
				print_input(s, poly_list, start, end, opt);
				draw_input(s, poly_list, start, end, opt);
			}
		}

		p = convert_polygon_set(s, poly_list, start, end, opt);

		if (intersecting_polygons(p)) {
			sciprintf("[avoidpath] Error: input set contains (self-)intersecting polygons\n");
			delete p;
			p = NULL;
		}

		if (!p) {
			byte *oref;
			sciprintf("[avoidpath] Error: pathfinding failed for following input:\n");
			print_input(s, poly_list, start, end, opt);
			sciprintf("[avoidpath] Returning direct path from start point to end point\n");
			oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * 3,
			                                   AVOIDPATH_DYNMEM_STRING, &output);

			POLY_SET_POINT(oref, 0, start);
			POLY_SET_POINT(oref, 1, end);
			POLY_SET_POINT(oref, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

			return output;
		}

		visibility_graph(p);
		dijkstra(p);

		output = output_path(p, s);
		delete p;

		// Memory is freed by explicit calls to Memory
		return output;
	}

	default:
		warning("Unknown AvoidPath subfunction %d",
		         argc);
		return NULL_REG;
		break;
	}
}

} // End of namespace Sci