aboutsummaryrefslogtreecommitdiff
path: root/engines/sci/engine/kpathing.cpp
blob: 3f0af0b53845d8ca63d2979c4e16d8b7d5d9caee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * $URL$
 * $Id$
 *
 */

#include "sci/sci.h"
#include "sci/engine/state.h"
#include "sci/engine/kernel.h"
#include "sci/gfx/gfx_widgets.h"
#include "sci/gfx/gfx_state_internal.h"	// required for GfxPort, GfxContainer

#include "common/list.h"

namespace Sci {

#define POLY_LAST_POINT 0x7777
#define POLY_POINT_SIZE 4
//#define DEBUG_AVOIDPATH	//enable for avoidpath debugging

static void POLY_GET_POINT(const byte *p, int i, Common::Point &pt) {
	pt.x = (int16)READ_LE_UINT16((p) + (i) * POLY_POINT_SIZE);
	pt.y = (int16)READ_LE_UINT16((p) + (i) * POLY_POINT_SIZE + 2);
}

static void POLY_SET_POINT(byte *p, int i, const Common::Point &pt) {
	WRITE_LE_UINT16((p) + (i) * POLY_POINT_SIZE, pt.x);
	WRITE_LE_UINT16((p) + (i) * POLY_POINT_SIZE + 2, pt.y);
}

static void POLY_GET_POINT_REG_T(const reg_t *p, int i, Common::Point &pt) {
	pt.x = KP_SINT((p)[(i) * 2]);
	pt.y = KP_SINT((p)[(i) * 2 + 1]);
}

// SCI-defined polygon types
enum {
	POLY_TOTAL_ACCESS = 0,
	POLY_NEAREST_ACCESS = 1,
	POLY_BARRED_ACCESS = 2,
	POLY_CONTAINED_ACCESS = 3
};

// Polygon containment types
enum {
	CONT_OUTSIDE = 0,
	CONT_ON_EDGE = 1,
	CONT_INSIDE = 2
};

#define HUGE_DISTANCE 0xFFFFFFFF

#define VERTEX_HAS_EDGES(V) ((V) != CLIST_NEXT(V))

// Error codes
enum {
	PF_OK = 0,
	PF_ERROR = -1,
	PF_FATAL = -2
};

// Floating point struct
struct FloatPoint {
	FloatPoint() : x(0), y(0) {}
	FloatPoint(float x_, float y_) : x(x_), y(y_) {}

	Common::Point toPoint() {
		return Common::Point((int16)(x + 0.5), (int16)(y + 0.5));
	}

	float x, y;
};

struct Vertex {
	// Location
	Common::Point v;

	// Vertex circular list entry
	Vertex *_next;	// next element
	Vertex *_prev;	// previous element

	// Distance from starting vertex
	uint32 dist;

	// Previous vertex in shortest path
	Vertex *path_prev;

public:
	Vertex(const Common::Point &p) : v(p) {
		dist = HUGE_DISTANCE;
		path_prev = NULL;
	}
};

typedef Common::List<Vertex *> VertexList;

/* Circular list definitions. */

#define CLIST_FOREACH(var, head)					\
	for ((var) = (head)->first();					\
		(var);							\
		(var) = ((var)->_next == (head)->first() ?	\
		    NULL : (var)->_next))

/* Circular list access methods. */
#define CLIST_NEXT(elm)		((elm)->_next)
#define CLIST_PREV(elm)		((elm)->_prev)

class CircularVertexList {
public:
	Vertex *_head;

public:
	CircularVertexList() : _head(0) {}

	Vertex *first() const {
		return _head;
	}

	void insertHead(Vertex *elm) {
		if (_head == NULL) {
			elm->_next = elm->_prev = elm;
		} else {
			elm->_next = _head;
			elm->_prev = _head->_prev;
			_head->_prev = elm;
			elm->_prev->_next = elm;
		}
		_head = elm;
	}

	static void insertAfter(Vertex *listelm, Vertex *elm) {
		elm->_prev = listelm;
		elm->_next = listelm->_next;
		listelm->_next->_prev = elm;
		listelm->_next = elm;
	}

	void remove(Vertex *elm) {
		if (elm->_next == elm) {
			_head = NULL;
		} else {
			if (_head == elm)
				_head = elm->_next;
			elm->_prev->_next = elm->_next;
			elm->_next->_prev = elm->_prev;
		}
	}

	bool empty() const {
		return _head == NULL;
	}

	uint size() const {
		int n = 0;
		Vertex *v;
		CLIST_FOREACH(v, this)
			++n;
		return n;
	}

	/**
	 * Reverse the order of the elements in this circular list.
	 */
	void reverse() {
		if (!_head)
			return;

		Vertex *elm = _head;
		do {
			SWAP(elm->_prev, elm->_next);
			elm = elm->_next;
		} while (elm != _head);
	}
};

struct Polygon {
	// SCI polygon type
	int type;

	// Circular list of vertices
	CircularVertexList vertices;

public:
	Polygon(int t) : type(t) {
	}

	~Polygon() {
		while (!vertices.empty()) {
			Vertex *vertex = vertices.first();
			vertices.remove(vertex);
			delete vertex;
		}
	}
};

typedef Common::List<Polygon *> PolygonList;

// Pathfinding state
struct PathfindingState {
	// List of all polygons
	PolygonList polygons;

	// Start and end points for pathfinding
	Vertex *vertex_start, *vertex_end;

	// Array of all vertices, used for sorting
	Vertex **vertex_index;

	// Total number of vertices
	int vertices;

	// Point to prepend and append to final path
	Common::Point *_prependPoint;
	Common::Point *_appendPoint;

	PathfindingState() {
		vertex_start = NULL;
		vertex_end = NULL;
		vertex_index = NULL;
		_prependPoint = NULL;
		_appendPoint = NULL;
		vertices = 0;
	}

	~PathfindingState() {
		free(vertex_index);

		delete _prependPoint;
		delete _appendPoint;

		for (PolygonList::iterator it = polygons.begin(); it != polygons.end(); ++it) {
			delete *it;
		}
	}
};


static Vertex *s_vertex_cur;	// FIXME: Avoid non-const global vars

// FIXME: Temporary hack to deal with points in reg_ts
static bool polygon_is_reg_t(const byte *list, int size) {
	// Check the first three reg_ts
	for (int i = 0; i < (size < 3 ? size : 3); i++)
		if ((((reg_t *) list) + i)->segment)
			// Non-zero segment, cannot be reg_ts
			return false;

	// First three segments were zero, assume reg_ts
	return true;
}

static Common::Point read_point(const byte *list, int is_reg_t, int offset) {
	Common::Point point;

	if (!is_reg_t) {
		POLY_GET_POINT(list, offset, point);
	} else {
		POLY_GET_POINT_REG_T((reg_t *)list, offset, point);
	}

	return point;
}

/**
 * Checks whether two polygons are equal
 */
static bool polygons_equal(EngineState *s, reg_t p1, reg_t p2) {
	// Check for same type
	if (KP_UINT(GET_SEL32(p1, type)) != KP_UINT(GET_SEL32(p2, type)))
		return false;

	int size = KP_UINT(GET_SEL32(p1, size));

	// Check for same number of points
	if (size != KP_UINT(GET_SEL32(p2, size)))
		return false;

	const byte *p1_points = kernel_dereference_bulk_pointer(s, GET_SEL32(p1, points), size * POLY_POINT_SIZE);
	const byte *p2_points = kernel_dereference_bulk_pointer(s, GET_SEL32(p2, points), size * POLY_POINT_SIZE);
	bool p1_is_reg_t = polygon_is_reg_t(p1_points, size);
	bool p2_is_reg_t = polygon_is_reg_t(p2_points, size);

	// Check for the same points
	for (int i = 0; i < size; i++) {
		if (read_point(p1_points, p1_is_reg_t, i) != read_point(p2_points, p2_is_reg_t, i))
			return false;
	}

	return true;
}

#ifdef DEBUG_AVOIDPATH

static void draw_line(EngineState *s, Common::Point p1, Common::Point p2, int type) {
	// Colors for polygon debugging.
	// Green: Total access
	// Red : Barred access
	// Blue: Near-point access
	// Yellow: Contained access
	int poly_colors[][3] = {{0, 255, 0}, {0, 0, 255}, {255, 0, 0}, {255, 255, 0}};
	gfx_color_t col;
	GfxList *decorations = s->picture_port->_decorations;
	GfxPrimitive *line;

	col.visual = PaletteEntry(poly_colors[type][0], poly_colors[type][1], poly_colors[type][2]);
	col.alpha = 0;
	col.priority = -1;
	col.control = 0;
	col.mask = GFX_MASK_VISUAL | GFX_MASK_PRIORITY;

	p1.y += 10;
	p2.y += 10;

	line = gfxw_new_line(p1, p2, col, GFX_LINE_MODE_CORRECT, GFX_LINE_STYLE_NORMAL);
	decorations->add((GfxContainer *)decorations, (GfxWidget *)line);
}

static void draw_point(EngineState *s, Common::Point p, int start) {
	// Colors for starting and end point
	// Green: End point
	// Blue: Starting point
	int point_colors[][3] = {{0, 255, 0}, {0, 0, 255}};
	gfx_color_t col;
	GfxList *decorations = s->picture_port->_decorations;
	GfxBox *box;

	col.visual = PaletteEntry(point_colors[start][0], point_colors[start][1], point_colors[start][2]);
	col.alpha = 0;
	col.priority = -1;
	col.control = 0;
	col.mask = GFX_MASK_VISUAL | GFX_MASK_PRIORITY;

	box = gfxw_new_box(s->gfx_state, gfx_rect(p.x - 1, p.y - 1 + 10, 3, 3), col, col, GFX_BOX_SHADE_FLAT);
	decorations->add((GfxContainer *)decorations, (GfxWidget *)box);
}

static void draw_polygon(EngineState *s, reg_t polygon) {
	reg_t points = GET_SEL32(polygon, points);
	int size = KP_UINT(GET_SEL32(polygon, size));
	int type = KP_UINT(GET_SEL32(polygon, type));
	Common::Point first, prev;
	const byte *list = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE);
	int is_reg_t = polygon_is_reg_t(list, size);
	int i;

	prev = first = read_point(list, is_reg_t, 0);

	for (i = 1; i < size; i++) {
		Common::Point point = read_point(list, is_reg_t, i);
		draw_line(s, prev, point, type);
		prev = point;
	}

	draw_line(s, prev, first, type % 3);
}

static void draw_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) {
	List *list;
	Node *node;

	draw_point(s, start, 1);
	draw_point(s, end, 0);

	if (!poly_list.segment)
		return;

	list = lookup_list(s, poly_list);

	if (!list) {
		warning("[avoidpath] Could not obtain polygon list");
		return;
	}

	node = lookup_node(s, list->first);

	while (node) {
		draw_polygon(s, node->value);
		node = lookup_node(s, node->succ);
	}
}

#endif	// DEBUG_AVOIDPATH

static void print_polygon(EngineState *s, reg_t polygon) {
	reg_t points = GET_SEL32(polygon, points);
	int size = KP_UINT(GET_SEL32(polygon, size));
	int type = KP_UINT(GET_SEL32(polygon, type));
	int i;
	const byte *point_array = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE);
	int is_reg_t = polygon_is_reg_t(point_array, size);
	Common::Point point;

	sciprintf("%i:", type);

	for (i = 0; i < size; i++) {
		point = read_point(point_array, is_reg_t, i);
		sciprintf(" (%i, %i)", point.x, point.y);
	}

	point = read_point(point_array, is_reg_t, 0);
	sciprintf(" (%i, %i);\n", point.x, point.y);
}

static void print_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) {
	List *list;
	Node *node;

	sciprintf("Start point: (%i, %i)\n", start.x, start.y);
	sciprintf("End point: (%i, %i)\n", end.x, end.y);
	sciprintf("Optimization level: %i\n", opt);

	if (!poly_list.segment)
		return;

	list = lookup_list(s, poly_list);

	if (!list) {
		warning("[avoidpath] Could not obtain polygon list");
		return;
	}

	sciprintf("Polygons:\n");
	node = lookup_node(s, list->first);

	while (node) {
		print_polygon(s, node->value);
		node = lookup_node(s, node->succ);
	}
}

static int area(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	// Computes the area of a triangle
	// Parameters: (const Common::Point &) a, b, c: The points of the triangle
	// Returns   : (int) The area multiplied by two
	return (b.x - a.x) * (a.y - c.y) - (c.x - a.x) * (a.y - b.y);
}

static bool left(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	// Determines whether or not a point is to the left of a directed line
	// Parameters: (const Common::Point &) a, b: The directed line (a, b)
	//             (const Common::Point &) c: The query point
	// Returns   : (int) true if c is to the left of (a, b), false otherwise
	return area(a, b, c) > 0;
}

static bool left_on(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	// Determines whether or not a point is to the left of or collinear with a
	// directed line
	// Parameters: (const Common::Point &) a, b: The directed line (a, b)
	//             (const Common::Point &) c: The query point
	// Returns   : (int) true if c is to the left of or collinear with (a, b), false
	//                   otherwise
	return area(a, b, c) >= 0;
}

static bool collinear(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	// Determines whether or not three points are collinear
	// Parameters: (const Common::Point &) a, b, c: The three points
	// Returns   : (int) true if a, b, and c are collinear, false otherwise
	return area(a, b, c) == 0;
}

static bool between(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	// Determines whether or not a point lies on a line segment
	// Parameters: (const Common::Point &) a, b: The line segment (a, b)
	//             (const Common::Point &) c: The query point
	// Returns   : (int) true if c lies on (a, b), false otherwise
	if (!collinear(a, b, c))
		return false;

	// Assumes a != b.
	if (a.x != b.x)
		return ((a.x <= c.x) && (c.x <= b.x)) || ((a.x >= c.x) && (c.x >= b.x));
	else
		return ((a.y <= c.y) && (c.y <= b.y)) || ((a.y >= c.y) && (c.y >= b.y));
}

static bool intersect_proper(const Common::Point &a, const Common::Point &b, const Common::Point &c, const Common::Point &d) {
	// Determines whether or not two line segments properly intersect
	// Parameters: (const Common::Point &) a, b: The line segment (a, b)
	//             (const Common::Point &) c, d: The line segment (c, d)
	// Returns   : (int) true if (a, b) properly intersects (c, d), false otherwise
	int ab = (left(a, b, c) && left(b, a, d)) || (left(a, b, d) && left(b, a, c));
	int cd = (left(c, d, a) && left(d, c, b)) || (left(c, d, b) && left(d, c, a));

	return ab && cd;
}

static bool intersect(const Common::Point &a, const Common::Point &b, const Common::Point &c, const Common::Point &d) {
	// Determines whether or not two line segments intersect
	// Parameters: (const Common::Point &) a, b: The line segment (a, b)
	//             (const Common::Point &) c, d: The line segment (c, d)
	// Returns   : (int) true if (a, b) intersects (c, d), false otherwise
	if (intersect_proper(a, b, c, d))
		return true;

	return between(a, b, c) || between(a, b, d) || between(c, d, a) || between(c, d, b);
}

static int contained(const Common::Point &p, Polygon *polygon) {
	// Polygon containment test
	// Parameters: (const Common::Point &) p: The point
	//             (Polygon *) polygon: The polygon
	// Returns   : (int) CONT_INSIDE if p is strictly contained in polygon,
	//                   CONT_ON_EDGE if p lies on an edge of polygon,
	//                   CONT_OUTSIDE otherwise
	// Number of ray crossing left and right
	int lcross = 0, rcross = 0;
	Vertex *vertex;

	// Iterate over edges
	CLIST_FOREACH(vertex, &polygon->vertices) {
		const Common::Point &v1 = vertex->v;
		const Common::Point &v2 = CLIST_NEXT(vertex)->v;

		// Flags for ray straddling left and right
		int rstrad, lstrad;

		// Check if p is a vertex
		if (p == v1)
			return CONT_ON_EDGE;

		// Check if edge straddles the ray
		rstrad = (v1.y < p.y) != (v2.y < p.y);
		lstrad = (v1.y > p.y) != (v2.y > p.y);

		if (lstrad || rstrad) {
			// Compute intersection point x / xq
			int x = v2.x * v1.y - v1.x * v2.y + (v1.x - v2.x) * p.y;
			int xq = v1.y - v2.y;

			// Multiply by -1 if xq is negative (for comparison that follows)
			if (xq < 0) {
				x = -x;
				xq = -xq;
			}

			// Avoid floats by multiplying instead of dividing
			if (rstrad && (x > xq * p.x))
				rcross++;
			else if (lstrad && (x < xq * p.x))
				lcross++;
		}
	}

	// If we counted an odd number of total crossings the point is on an edge
	if ((lcross + rcross) % 2 == 1)
		return CONT_ON_EDGE;

	// If there are an odd number of crossings to one side the point is contained in the polygon
	if (rcross % 2 == 1) {
		// Invert result for contained access polygons.
		if (polygon->type == POLY_CONTAINED_ACCESS)
			return CONT_OUTSIDE;
		return CONT_INSIDE;
	}

	// Point is outside polygon. Invert result for contained access polygons
	if (polygon->type == POLY_CONTAINED_ACCESS)
		return CONT_INSIDE;

	return CONT_OUTSIDE;
}

static int polygon_area(Polygon *polygon) {
	// Computes polygon area
	// Parameters: (Polygon *) polygon: The polygon
	// Returns   : (int) The area multiplied by two
	Vertex *first = polygon->vertices.first();
	Vertex *v;
	int size = 0;

	v = CLIST_NEXT(first);

	while (CLIST_NEXT(v) != first) {
		size += area(first->v, v->v, CLIST_NEXT(v)->v);
		v = CLIST_NEXT(v);
	}

	return size;
}

static void fix_vertex_order(Polygon *polygon) {
	// Fixes the vertex order of a polygon if incorrect. Contained access
	// polygons should have their vertices ordered clockwise, all other types
	// anti-clockwise
	// Parameters: (Polygon *) polygon: The polygon
	int area = polygon_area(polygon);

	// When the polygon area is positive the vertices are ordered
	// anti-clockwise. When the area is negative the vertices are ordered
	// clockwise
	if (((area > 0) && (polygon->type == POLY_CONTAINED_ACCESS))
	        || ((area < 0) && (polygon->type != POLY_CONTAINED_ACCESS))) {

		polygon->vertices.reverse();
	}
}

static int vertex_compare(const void *a, const void *b) {
	// Compares two vertices by angle (first) and distance (second) in relation
	// to s_vertex_cur. The angle is relative to the horizontal line extending
	// right from s_vertex_cur, and increases clockwise
	// Parameters: (const void *) a, b: The vertices
	// Returns   : (int) -1 if a is smaller than b, 1 if a is larger than b, and
	//                   0 if a and b are equal
	const Common::Point &p0 = s_vertex_cur->v;
	const Common::Point &p1 = (*(Vertex **) a)->v;
	const Common::Point &p2 = (*(Vertex **) b)->v;

	if (p1 == p2)
		return 0;

	// Points above p0 have larger angle than points below p0
	if ((p1.y < p0.y) && (p2.y >= p0.y))
		return 1;

	if ((p2.y < p0.y) && (p1.y >= p0.y))
		return -1;

	// Handle case where all points have the same y coordinate
	if ((p0.y == p1.y) && (p0.y == p2.y)) {
		// Points left of p0 have larger angle than points right of p0
		if ((p1.x < p0.x) && (p2.x >= p0.x))
			return 1;
		if ((p1.x >= p0.x) && (p2.x < p0.x))
			return -1;
	}

	if (collinear(p0, p1, p2)) {
		// At this point collinear points must have the same angle,
		// so compare distance to p0
		if (abs(p1.x - p0.x) < abs(p2.x - p0.x))
			return -1;
		if (abs(p1.y - p0.y) < abs(p2.y - p0.y))
			return -1;

		return 1;
	}

	// If p2 is left of the directed line (p0, p1) then p1 has greater angle
	if (left(p0, p1, p2))
		return 1;

	return -1;
}

static void clockwise(const Vertex *vertex_cur, const Vertex *v, const Common::Point *&p1, const Common::Point *&p2) {
	// Orders the points of an edge clockwise around vertex_cur. If all three
	// points are collinear the original order is used
	// Parameters: (const Vertex *) v: The first vertex of the edge
	// Returns   : (void)
	//             (const Common::Point *&) p1: The first point in clockwise order
	//             (const Common::Point *&) p2: The second point in clockwise order
	Vertex *w = CLIST_NEXT(v);

	if (left_on(vertex_cur->v, w->v, v->v)) {
		p1 = &v->v;
		p2 = &w->v;
	} else {
		p1 = &w->v;
		p2 = &v->v;
	}
}

/**
 * Compares two edges that are intersected by the sweeping line by distance from vertex_cur
 * @param a				the first edge
 * @param b				the second edge
 * @return true if a is closer to vertex_cur than b, false otherwise
 */
static bool edgeIsCloser(const Vertex *vertex_cur, const Vertex *a, const Vertex *b) {
	const Common::Point *v1, *v2, *w1, *w2;

	// Check for comparison of the same edge
	if (a == b)
		return false;

	// We can assume that the sweeping line intersects both edges and
	// that the edges do not properly intersect

	// Order vertices clockwise so we know vertex_cur is to the right of
	// directed edges (v1, v2) and (w1, w2)
	clockwise(vertex_cur, a, v1, v2);
	clockwise(vertex_cur, b, w1, w2);

	// At this point we know that one edge must lie entirely to one side
	// of the other, as the edges are not collinear and cannot intersect
	// other than possibly sharing a vertex.

	return ((left_on(*v1, *v2, *w1) && left_on(*v1, *v2, *w2)) || (left_on(*w2, *w1, *v1) && left_on(*w2, *w1, *v2)));
}

static int inside(const Common::Point &p, Vertex *vertex) {
	// Determines whether or not a line from a point to a vertex intersects the
	// interior of the polygon, locally at that vertex
	// Parameters: (Common::Point) p: The point
	//             (Vertex *) vertex: The vertex
	// Returns   : (int) 1 if the line (p, vertex->v) intersects the interior of
	//                   the polygon, locally at the vertex. 0 otherwise
	// Check that it's not a single-vertex polygon
	if (VERTEX_HAS_EDGES(vertex)) {
		const Common::Point &prev = CLIST_PREV(vertex)->v;
		const Common::Point &next = CLIST_NEXT(vertex)->v;
		const Common::Point &cur = vertex->v;

		if (left(prev, cur, next)) {
			// Convex vertex, line (p, cur) intersects the inside
			// if p is located left of both edges
			if (left(cur, next, p) && left(prev, cur, p))
				return 1;
		} else {
			// Non-convex vertex, line (p, cur) intersects the
			// inside if p is located left of either edge
			if (left(cur, next, p) || left(prev, cur, p))
				return 1;
		}
	}

	return 0;
}

/**
 * Determines whether or not a vertex is visible from vertex_cur.
 * @param vertex_cur	the base vertex
 * @param vertex		the vertex
 * @param vertex_prev	the previous vertex in the sort order, or NULL
 * @param visible		true if vertex_prev is visible, false otherwise
 * @param intersected	the list of edges intersected by the sweeping line
 * @return true if vertex is visible from vertex_cur, false otherwise
 */
static bool visible(Vertex *vertex_cur, Vertex *vertex, Vertex *vertex_prev, bool visible, const VertexList &intersected) {
	const Common::Point &p = vertex_cur->v;
	const Common::Point &w = vertex->v;

	// Check if sweeping line intersects the interior of the polygon
	// locally at vertex
	if (inside(p, vertex))
		return false;

	// If vertex_prev is on the sweeping line, then vertex is invisible
	// if vertex_prev is invisible
	if (vertex_prev && !visible && between(p, w, vertex_prev->v))
		return false;

	if (intersected.empty()) {
		// No intersected edges
		return true;
	}

	// Look for the intersected edge that is closest to vertex_cur
	VertexList::const_iterator it = intersected.begin();
	const Vertex *edge = *it++;

	for (; it != intersected.end(); ++it) {
		if (edgeIsCloser(vertex_cur, *it, edge))
			edge = *it;
	}

	const Common::Point *p1, *p2;

	// Check for intersection with sweeping line before vertex
	clockwise(vertex_cur, edge, p1, p2);
	if (left(*p2, *p1, p) && left(*p1, *p2, w))
		return false;

	return true;
}

/**
 * Returns a list of all vertices that are visible from a particular vertex.
 * @param s				the pathfinding state
 * @param vertex_cur	the vertex
 * @return list of vertices that are visible from vert
 */
static VertexList *visible_vertices(PathfindingState *s, Vertex *vertex_cur) {
	// List of edges intersected by the sweeping line
	VertexList intersected;
	VertexList *visVerts = new VertexList();
	const Common::Point &p = vertex_cur->v;

	// Sort vertices by angle (first) and distance (second)
	s_vertex_cur = vertex_cur;
	qsort(s->vertex_index, s->vertices, sizeof(Vertex *), vertex_compare);

	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		Polygon *polygon = *it;
		Vertex *vertex;
		vertex = polygon->vertices.first();

		// Check that there is more than one vertex.
		if (VERTEX_HAS_EDGES(vertex)) {
			CLIST_FOREACH(vertex, &polygon->vertices) {
				const Common::Point *high, *low;

				// Add edges that intersect the initial position of the sweeping line
				clockwise(vertex_cur, vertex, high, low);

				if ((high->y < p.y) && (low->y >= p.y) && (*low != p))
					intersected.push_front(vertex);
			}
		}
	}

	int is_visible = 1;

	// The first vertex will be s_vertex_cur, so we skip it
	for (int i = 1; i < s->vertices; i++) {
		Vertex *v1;

		// Compute visibility of vertex_index[i]
		is_visible = visible(s_vertex_cur, s->vertex_index[i], s->vertex_index[i - 1], is_visible, intersected);

		// Update visibility matrix
		if (is_visible)
			visVerts->push_front(s->vertex_index[i]);

		// Delete anti-clockwise edges from list
		v1 = CLIST_PREV(s->vertex_index[i]);
		if (left(p, s->vertex_index[i]->v, v1->v))
			intersected.remove(v1);

		v1 = CLIST_NEXT(s->vertex_index[i]);
		if (left(p, s->vertex_index[i]->v, v1->v))
			intersected.remove(s->vertex_index[i]);

		// Add clockwise edges of collinear vertices when sweeping line moves
		if ((i < s->vertices - 1) && !collinear(p, s->vertex_index[i]->v, s->vertex_index[i + 1]->v)) {
			int j;
			for (j = i; (j >= 1) && collinear(p, s->vertex_index[i]->v, s->vertex_index[j]->v); j--) {
				v1 = CLIST_PREV(s->vertex_index[j]);
				if (left(s->vertex_index[j]->v, p, v1->v))
					intersected.push_front(v1);

				v1 = CLIST_NEXT(s->vertex_index[j]);
				if (left(s->vertex_index[j]->v, p, v1->v))
					intersected.push_front(s->vertex_index[j]);
			}
		}
	}

	return visVerts;
}

#if 0
static bool point_on_screen_border(const Common::Point &p) {
	// Determines if a point lies on the screen border
	// Parameters: (const Common::Point &) p: The point
	// Returns   : (int) true if p lies on the screen border, false otherwise
	// FIXME get dimensions from somewhere?
	return (p.x == 0) || (p.x == 319) || (p.y == 0) || (p.y == 189);
}
#endif

static bool edge_on_screen_border(const Common::Point &p, const Common::Point &q) {
	// Determines if an edge lies on the screen border
	// Parameters: (const Common::Point &) p, q: The edge (p, q)
	// Returns   : (int) true if (p, q) lies on the screen border, false otherwise
	// FIXME get dimensions from somewhere?
	return ((p.x == 0 && q.x == 0) || (p.x == 319 && q.x == 319) || (p.y == 0 && q.y == 0) || (p.y == 189 && q.y == 189));
}

static int find_free_point(FloatPoint f, Polygon *polygon, Common::Point *ret) {
	// Searches for a nearby point that is not contained in a polygon
	// Parameters: (FloatPoint) f: The pointf to search nearby
	//             (Polygon *) polygon: The polygon
	// Returns   : (int) PF_OK on success, PF_FATAL otherwise
	//             (Common::Point) *ret: The non-contained point on success
	Common::Point p;

	// Try nearest point first
	p = Common::Point((int)floor(f.x + 0.5), (int)floor(f.y + 0.5));

	if (contained(p, polygon) != CONT_INSIDE) {
		*ret = p;
		return PF_OK;
	}

	p = Common::Point((int)floor(f.x), (int)floor(f.y));

	// Try (x, y), (x + 1, y), (x , y + 1) and (x + 1, y + 1)
	if (contained(p, polygon) == CONT_INSIDE) {
		p.x++;
		if (contained(p, polygon) == CONT_INSIDE) {
			p.y++;
			if (contained(p, polygon) == CONT_INSIDE) {
				p.x--;
				if (contained(p, polygon) == CONT_INSIDE)
					return PF_FATAL;
			}
		}
	}

	*ret = p;
	return PF_OK;
}

static int near_point(const Common::Point &p, Polygon *polygon, Common::Point *ret) {
	// Computes the near point of a point contained in a polygon
	// Parameters: (const Common::Point &) p: The point
	//             (Polygon *) polygon: The polygon
	// Returns   : (int) PF_OK on success, PF_FATAL otherwise
	//             (Common::Point) *ret: The near point of p in polygon on success
	Vertex *vertex;
	FloatPoint near_p;
	uint32 dist = HUGE_DISTANCE;

	CLIST_FOREACH(vertex, &polygon->vertices) {
		const Common::Point &p1 = vertex->v;
		const Common::Point &p2 = CLIST_NEXT(vertex)->v;
		float u;
		FloatPoint new_point;
		uint32 new_dist;

		// Ignore edges on the screen border, except for contained access polygons
		if ((polygon->type != POLY_CONTAINED_ACCESS) && (edge_on_screen_border(p1, p2)))
			continue;

		// Compute near point
		u = ((p.x - p1.x) * (p2.x - p1.x) + (p.y - p1.y) * (p2.y - p1.y)) / (float)p1.sqrDist(p2);

		// Clip to edge
		if (u < 0.0f)
			u = 0.0f;
		if (u > 1.0f)
			u = 1.0f;

		new_point.x = p1.x + u * (p2.x - p1.x);
		new_point.y = p1.y + u * (p2.y - p1.y);

		new_dist = p.sqrDist(new_point.toPoint());

		if (new_dist < dist) {
			near_p = new_point;
			dist = new_dist;
		}
	}

	// Find point not contained in polygon
	return find_free_point(near_p, polygon, ret);
}

static int intersection(const Common::Point &a, const Common::Point &b, Vertex *vertex, FloatPoint *ret) {
	// Computes the intersection point of a line segment and an edge (not
	// including the vertices themselves)
	// Parameters: (const Common::Point &) a, b: The line segment (a, b)
	//             (Vertex *) vertex: The first vertex of the edge
	// Returns   : (int) FP_OK on success, PF_ERROR otherwise
	//             (FloatPoint) *ret: The intersection point
	// Parameters of parametric equations
	float s, t;
	// Numerator and denominator of equations
	float num, denom;
	const Common::Point &c = vertex->v;
	const Common::Point &d = CLIST_NEXT(vertex)->v;

	denom = a.x * (float)(d.y - c.y) + b.x * (float)(c.y - d.y) +
	        d.x * (float)(b.y - a.y) + c.x * (float)(a.y - b.y);

	if (denom == 0.0)
		// Segments are parallel, no intersection
		return PF_ERROR;

	num = a.x * (float)(d.y - c.y) + c.x * (float)(a.y - d.y) + d.x * (float)(c.y - a.y);

	s = num / denom;

	num = -(a.x * (float)(c.y - b.y) + b.x * (float)(a.y - c.y) + c.x * (float)(b.y - a.y));

	t = num / denom;

	if ((0.0 <= s) && (s <= 1.0) && (0.0 < t) && (t < 1.0)) {
		// Intersection found
		ret->x = a.x + s * (b.x - a.x);
		ret->y = a.y + s * (b.y - a.y);
		return PF_OK;
	}

	return PF_ERROR;
}

static int nearest_intersection(PathfindingState *s, const Common::Point &p, const Common::Point &q, Common::Point *ret) {
	// Computes the nearest intersection point of a line segment and the polygon
	// set. Intersection points that are reached from the inside of a polygon
	// are ignored as are improper intersections which do not obstruct
	// visibility
	// Parameters: (PathfindingState *) s: The pathfinding state
	//             (const Common::Point &) p, q: The line segment (p, q)
	// Returns   : (int) PF_OK on success, PF_ERROR when no intersections were
	//                   found, PF_FATAL otherwise
	//             (Common::Point) *ret: On success, the closest intersection point
	Polygon *polygon = 0;
	FloatPoint isec;
	Polygon *ipolygon = 0;
	uint32 dist = HUGE_DISTANCE;

	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			uint32 new_dist;
			FloatPoint new_isec;

			// Check for intersection with vertex
			if (between(p, q, vertex->v)) {
				// Skip this vertex if we hit it from the
				// inside of the polygon
				if (inside(q, vertex)) {
					new_isec.x = vertex->v.x;
					new_isec.y = vertex->v.y;
				} else
					continue;
			} else {
				// Check for intersection with edges

				// Skip this edge if we hit it from the
				// inside of the polygon
				if (!left(vertex->v, CLIST_NEXT(vertex)->v, q))
					continue;

				if (intersection(p, q, vertex, &new_isec) != PF_OK)
					continue;
			}

			new_dist = p.sqrDist(new_isec.toPoint());
			if (new_dist < dist) {
				ipolygon = polygon;
				isec = new_isec;
				dist = new_dist;
			}
		}
	}

	if (dist == HUGE_DISTANCE)
		return PF_ERROR;

	// Find point not contained in polygon
	return find_free_point(isec, ipolygon, ret);
}

/**
 * Checks that the start point is in a valid position, and takes appropriate action if it's not.
 * @param s				the pathfinding state
 * @param start			the start point
 * @return a valid start point on success, NULL otherwise
 */
static Common::Point *fixup_start_point(PathfindingState *s, const Common::Point &start) {
	PolygonList::iterator it = s->polygons.begin();
	Common::Point *new_start = new Common::Point(start);

	while (it != s->polygons.end()) {
		int cont = contained(start, *it);
		int type = (*it)->type;

		switch (type) {
		case POLY_TOTAL_ACCESS:
			// Remove totally accessible polygons that contain the start point
			if (cont != CONT_OUTSIDE) {
				delete *it;
				it = s->polygons.erase(it);
				continue;
			}
			break;
		case POLY_CONTAINED_ACCESS:
			// Remove contained access polygons that do not contain
			// the start point (containment test is inverted here).
			if (cont == CONT_INSIDE) {
				delete *it;
				it = s->polygons.erase(it);
				continue;
			}
			break;
		case POLY_BARRED_ACCESS:
		case POLY_NEAREST_ACCESS:
			if (cont == CONT_INSIDE) {
				if (s->_prependPoint != NULL) {
					// We shouldn't get here twice
					warning("AvoidPath: start point is contained in multiple polygons");
					continue;
				}

				if (near_point(start, (*it), new_start) != PF_OK) {
					delete new_start;
					return NULL;
				}

				if (type == POLY_BARRED_ACCESS)
					warning("AvoidPath: start position at unreachable location");

				// The original start position is in an invalid location, so we
				// use the moved point and add the original one to the final path
				// later on.
				s->_prependPoint = new Common::Point(start);
			}
		}

		++it;
	}

	return new_start;
}

/**
 * Checks that the end point is in a valid position, and takes appropriate action if it's not.
 * @param s				the pathfinding state
 * @param end			the end point
 * @return a valid end point on success, NULL otherwise
 */
static Common::Point *fixup_end_point(PathfindingState *s, const Common::Point &end) {
	PolygonList::iterator it = s->polygons.begin();
	Common::Point *new_end = new Common::Point(end);

	while (it != s->polygons.end()) {
		int cont = contained(end, *it);
		int type = (*it)->type;

		switch (type) {
		case POLY_TOTAL_ACCESS:
			// Remove totally accessible polygons that contain the end point
			if (cont != CONT_OUTSIDE) {
				delete *it;
				it = s->polygons.erase(it);
				continue;
			}
			break;
		case POLY_CONTAINED_ACCESS:
		case POLY_BARRED_ACCESS:
		case POLY_NEAREST_ACCESS:
			if (cont != CONT_OUTSIDE) {
				if (s->_appendPoint != NULL) {
					// We shouldn't get here twice
					warning("AvoidPath: end point is contained in multiple polygons");
					continue;
				}

				// The original end position is in an invalid location, so we move the point
				if (near_point(end, (*it), new_end) != PF_OK) {
					delete new_end;
					return NULL;
				}

				// For near-point access polygons we need to add the original end point
				// to the path after pathfinding.
				if (type == POLY_NEAREST_ACCESS)
					s->_appendPoint = new Common::Point(end);
			}
		}

		++it;
	}

	return new_end;
}

static Vertex *merge_point(PathfindingState *s, const Common::Point &v) {
	// Merges a point into the polygon set. A new vertex is allocated for this
	// point, unless a matching vertex already exists. If the point is on an
	// already existing edge that edge is split up into two edges connected by
	// the new vertex
	// Parameters: (PathfindingState *) s: The pathfinding state
	//             (const Common::Point &) v: The point to merge
	// Returns   : (Vertex *) The vertex corresponding to v
	Vertex *vertex;
	Vertex *v_new;
	Polygon *polygon;

	// Check for already existing vertex
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		CLIST_FOREACH(vertex, &polygon->vertices) {
			if (vertex->v == v)
				return vertex;
		}
	}

	v_new = new Vertex(v);

	// Check for point being on an edge
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		// Skip single-vertex polygons
		if (VERTEX_HAS_EDGES(polygon->vertices.first())) {
			CLIST_FOREACH(vertex, &polygon->vertices) {
				Vertex *next = CLIST_NEXT(vertex);

				if (between(vertex->v, next->v, v)) {
					// Split edge by adding vertex
					polygon->vertices.insertAfter(vertex, v_new);
					return v_new;
				}
			}
		}
	}

	// Add point as single-vertex polygon
	polygon = new Polygon(POLY_BARRED_ACCESS);
	polygon->vertices.insertHead(v_new);
	s->polygons.push_front(polygon);

	return v_new;
}

static Polygon *convert_polygon(EngineState *s, reg_t polygon) {
	// Converts an SCI polygon into a Polygon
	// Parameters: (EngineState *) s: The game state
	//             (reg_t) polygon: The SCI polygon to convert
	// Returns   : (Polygon *) The converted polygon
	int i;
	reg_t points = GET_SEL32(polygon, points);
	int size = KP_UINT(GET_SEL32(polygon, size));
	const byte *list = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE);
	Polygon *poly = new Polygon(KP_UINT(GET_SEL32(polygon, type)));
	int is_reg_t = polygon_is_reg_t(list, size);

	// WORKAROUND: broken polygon in LSL1VGA, room 350, after opening elevator
	// Polygon has 17 points but size is set to 19
	if ((size == 19) && (s->_gameName == "LSL1")) {
		if ((s->currentRoomNumber() == 350)
		&& (read_point(list, is_reg_t, 18) == Common::Point(108, 137))) {
			debug(1, "Applying fix for broken polygon in LSL1VGA, room 350");
			size = 17;
		}
	}

	// WORKAROUND: self-intersecting polygons in ECO, rooms 221, 280 and 300
	if ((size == 11) && (s->_gameName == "eco")) {
		if ((s->currentRoomNumber() == 300)
		&& (read_point(list, is_reg_t, 10) == Common::Point(221, 0))) {
			debug(1, "Applying fix for self-intersecting polygon in ECO, room 300");
			size = 10;
		}
	}
	if ((size == 12) && (s->_gameName == "eco")) {
		if ((s->currentRoomNumber() == 280)
		&& (read_point(list, is_reg_t, 11) == Common::Point(238, 189))) {
			debug(1, "Applying fix for self-intersecting polygon in ECO, room 280");
			size = 10;
		}
	}
	if ((size == 16) && (s->_gameName == "eco")) {
		if ((s->currentRoomNumber() == 221)
		&& (read_point(list, is_reg_t, 1) == Common::Point(419, 175))) {
			debug(1, "Applying fix for self-intersecting polygon in ECO, room 221");
			// Swap the first two points
			poly->vertices.insertHead(new Vertex(read_point(list, is_reg_t, 1)));
			poly->vertices.insertHead(new Vertex(read_point(list, is_reg_t, 0)));
			size = 14;
			assert(!is_reg_t);
			list += 2 * POLY_POINT_SIZE;
		}
	}

	for (i = 0; i < size; i++) {
		Vertex *vertex = new Vertex(read_point(list, is_reg_t, i));
		poly->vertices.insertHead(vertex);
	}

	fix_vertex_order(poly);

	return poly;
}

// WORKAROUND: intersecting polygons in Longbow, room 210.
static void fixLongbowRoom210(PathfindingState *s, const Common::Point &start, const Common::Point &end) {
	Polygon *barred = NULL;
	Polygon *total = NULL;

	// Find the intersecting polygons
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		Polygon *polygon = *it;
		assert(polygon);

		if ((polygon->type == POLY_BARRED_ACCESS) && (polygon->vertices.size() == 11)
		&& (polygon->vertices.first()->v == Common::Point(319, 161)))
			barred = polygon;
		else if ((polygon->type == POLY_TOTAL_ACCESS) && (polygon->vertices.size() == 8)
		&& (polygon->vertices.first()->v == Common::Point(313, 58)))
			total = polygon;
	}

	if (!barred || !total)
		return;

	debug(1, "[avoidpath] Applying fix for intersecting polygons in Longbow, room 210");

	// If the start or end point is contained in the total access polygon, removing that
	// polygon is sufficient. Otherwise we merge the total and barred access polygons.
	bool both_outside = (contained(start, total) == CONT_OUTSIDE) && (contained(end, total) == CONT_OUTSIDE);

	s->polygons.remove(total);
	delete total;

	if (both_outside) {
		int points[28] = {
			224, 159, 223, 162 ,194, 173 ,107, 173, 74, 162, 67, 156, 2, 58,
			63, 160, 0, 160, 0, 0, 319, 0, 319, 161, 228, 161, 313, 58
		};

		s->polygons.remove(barred);
		delete barred;

		barred = new Polygon(POLY_BARRED_ACCESS);

		for (int i = 0; i < 14; i++) {
			Vertex *vertex = new Vertex(Common::Point(points[i * 2], points[i * 2 + 1]));
			barred->vertices.insertHead(vertex);
		}

		s->polygons.push_front(barred);
	}
}

static void change_polygons_opt_0(PathfindingState *s) {
	// Changes the polygon list for optimization level 0 (used for keyboard
	// support). Totally accessible polygons are removed and near-point
	// accessible polygons are changed into totally accessible polygons.
	// Parameters: (PathfindingState *) s: The pathfinding state

	PolygonList::iterator it = s->polygons.begin();
	while (it != s->polygons.end()) {
		Polygon *polygon = *it;
		assert(polygon);

		if (polygon->type == POLY_TOTAL_ACCESS) {
			delete polygon;
			it = s->polygons.erase(it);
		} else {
			if (polygon->type == POLY_NEAREST_ACCESS)
				polygon->type = POLY_TOTAL_ACCESS;
			++it;
		}
	}
}

static PathfindingState *convert_polygon_set(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) {
	// Converts the SCI input data for pathfinding
	// Parameters: (EngineState *) s: The game state
	//             (reg_t) poly_list: Polygon list
	//             (Common::Point) start: The start point
	//             (Common::Point) end: The end point
	//             (int) opt: Optimization level (0, 1 or 2)
	// Returns   : (PathfindingState *) On success a newly allocated pathfinding state,
	//                            NULL otherwise
	Polygon *polygon;
	int err;
	int count = 0;
	PathfindingState *pf_s = new PathfindingState();

	// Convert all polygons
	if (poly_list.segment) {
		List *list = lookup_list(s, poly_list);
		Node *node = lookup_node(s, list->first);

		while (node) {
			Node *dup = lookup_node(s, list->first);

			// Workaround for game bugs that put a polygon in the list more than once
			while (dup != node) {
				if (polygons_equal(s, node->value, dup->value)) {
					warning("[avoidpath] Ignoring duplicate polygon");
					break;
				}
				dup = lookup_node(s, dup->succ);
			}

			if (dup == node) {
				// Polygon is not a duplicate, so convert it
				polygon = convert_polygon(s, node->value);
				pf_s->polygons.push_back(polygon);
				count += KP_UINT(GET_SEL32(node->value, size));
			}

			node = lookup_node(s, node->succ);
		}
	}

	if (opt == 0) {
		Common::Point intersection;

		// Keyboard support
		// FIXME: We don't need to dijkstra for keyboard support as we currently do
		change_polygons_opt_0(pf_s);

		// Find nearest intersection
		err = nearest_intersection(pf_s, start, end, &intersection);

		if (err == PF_FATAL) {
			warning("AvoidPath: fatal error finding nearest intersecton");
			delete pf_s;
			return NULL;
		}

		if (err == PF_OK) {
			// Intersection was found, prepend original start position after pathfinding
			pf_s->_prependPoint = new Common::Point(start);
			// Merge new start point into polygon set
			pf_s->vertex_start = merge_point(pf_s, intersection);
		} else {
			// Otherwise we proceed with the original start point
			pf_s->vertex_start = merge_point(pf_s, start);
		}
		// Merge end point into polygon set
		pf_s->vertex_end = merge_point(pf_s, end);
	} else {
		Common::Point *new_start = fixup_start_point(pf_s, start);

		if (!new_start) {
			warning("AvoidPath: Couldn't fixup start position for pathfinding");
			delete pf_s;
			return NULL;
		}

		Common::Point *new_end = fixup_end_point(pf_s, end);

		if (!new_end) {
			warning("AvoidPath: Couldn't fixup end position for pathfinding");
			delete pf_s;
			return NULL;
		}

		if (s->_gameName == "Longbow" && s->currentRoomNumber() == 210)
				fixLongbowRoom210(pf_s, *new_start, *new_end);

		// Merge start and end points into polygon set
		pf_s->vertex_start = merge_point(pf_s, *new_start);
		pf_s->vertex_end = merge_point(pf_s, *new_end);

		delete new_start;
		delete new_end;
	}

	// Allocate and build vertex index
	pf_s->vertex_index = (Vertex**)malloc(sizeof(Vertex *) * (count + 2));

	count = 0;

	for (PolygonList::iterator it = pf_s->polygons.begin(); it != pf_s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			pf_s->vertex_index[count++] = vertex;
		}
	}

	pf_s->vertices = count;

	return pf_s;
}

static int intersecting_polygons(PathfindingState *s) {
	// Detects (self-)intersecting polygons
	// Parameters: (PathfindingState *) s: The pathfinding state
	// Returns   : (int) 1 if s contains (self-)intersecting polygons, 0 otherwise
	int i, j;

	for (i = 0; i < s->vertices; i++) {
		Vertex *v1 = s->vertex_index[i];
		if (!VERTEX_HAS_EDGES(v1))
			continue;
		for (j = i + 1; j < s->vertices; j++) {
			Vertex *v2 = s->vertex_index[j];
			if (!VERTEX_HAS_EDGES(v2))
				continue;

			// Skip neighbouring edges
			if ((CLIST_NEXT(v1) == v2) || CLIST_PREV(v1) == v2)
				continue;

			if (intersect(v1->v, CLIST_NEXT(v1)->v,
			              v2->v, CLIST_NEXT(v2)->v))
				return 1;
		}
	}

	return 0;
}

static void dijkstra(PathfindingState *s) {
	// Computes a shortest path from vertex_start to vertex_end. The caller can
	// construct the resulting path by following the path_prev links from
	// vertex_end back to vertex_start. If no path exists vertex_end->path_prev
	// will be NULL
	// Parameters: (PathfindingState *) s: The pathfinding state
	Polygon *polygon;

	// Vertices of which the shortest path is known
	VertexList done;

	// The remaining vertices
	VertexList remain;

	// Start out with all vertices in set remain
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			remain.push_front(vertex);
		}
	}

	s->vertex_start->dist = 0;

	// Loop until we find vertex_end
	while (1) {
		// Find vertex at shortest distance from set done
		VertexList::iterator vertex_min_it = remain.end();
		Vertex *vertex_min = 0;
		uint32 min = HUGE_DISTANCE;
		for (VertexList::iterator it = remain.begin(); it != remain.end(); ++it) {
			Vertex *vertex = *it;
			if (vertex->dist < min) {
				vertex_min_it = it;
				vertex_min = *vertex_min_it;
				min = vertex->dist;
			}
		}

		if (min == HUGE_DISTANCE) {
			sciprintf("[avoidpath] Warning: end point (%i, %i) is unreachable\n", s->vertex_end->v.x, s->vertex_end->v.y);
			return;
		}

		// If vertex_end is at shortest distance we can stop
		if (vertex_min == s->vertex_end)
			return;

		// Move vertex from set remain to set done
		done.push_front(vertex_min);
		remain.erase(vertex_min_it);

		VertexList *visVerts = visible_vertices(s, vertex_min);

		for (VertexList::iterator it = visVerts->begin(); it != visVerts->end(); ++it) {
			uint32 new_dist;
			Vertex *vertex = *it;

			// Early pathfinding-enabled games exclude edges on screen borders.
// FIXME: Enable this selectively for those games that need it.
#if 0
			// Avoid plotting path along screen edge
			if ((vertex != s->vertex_end) && point_on_screen_border(vertex->v))
				continue;
#endif
			new_dist = vertex_min->dist + (uint32)sqrt((float)vertex_min->v.sqrDist(vertex->v));
			if (new_dist < vertex->dist) {
				vertex->dist = new_dist;
				vertex->path_prev = vertex_min;
			}
		}

		delete visVerts;
	}
}

static reg_t output_path(PathfindingState *p, EngineState *s) {
	// Stores the final path in newly allocated dynmem
	// Parameters: (PathfindingState *) p: The pathfinding state
	//             (EngineState *) s: The game state
	// Returns   : (reg_t) Pointer to dynmem containing path
	int path_len = 0;
	byte *oref;
	reg_t output;
	Vertex *vertex = p->vertex_end;
	int unreachable = vertex->path_prev == NULL;

	if (unreachable) {
		// If pathfinding failed we only return the path up to vertex_start
		oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * 3, AVOIDPATH_DYNMEM_STRING, &output);

		if (p->_prependPoint)
			POLY_SET_POINT(oref, 0, *p->_prependPoint);
		else
			POLY_SET_POINT(oref, 0, p->vertex_start->v);

		POLY_SET_POINT(oref, 1, p->vertex_start->v);
		POLY_SET_POINT(oref, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

		return output;
	}

	while (vertex) {
		// Compute path length
		path_len++;
		vertex = vertex->path_prev;
	}

	// Allocate memory for path, plus 3 extra for appended point, prepended point and sentinel
	oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * (path_len + 3), AVOIDPATH_DYNMEM_STRING, &output);

	int offset = 0;

	if (p->_prependPoint)
		POLY_SET_POINT(oref, offset++, *p->_prependPoint);

	vertex = p->vertex_end;
	for (int i = path_len - 1; i >= 0; i--) {
		POLY_SET_POINT(oref, offset + i, vertex->v);
		vertex = vertex->path_prev;
	}
	offset += path_len;

	if (p->_appendPoint)
		POLY_SET_POINT(oref, offset++, *p->_appendPoint);

	// Sentinel
	POLY_SET_POINT(oref, offset, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

#ifdef DEBUG_AVOIDPATH
	sciprintf("[avoidpath] Returning path:");
	for (int i = 0; i < offset; i++) {
		Common::Point pt;
		POLY_GET_POINT(oref, i, pt);
		sciprintf(" (%i, %i)", pt.x, pt.y);
	}
	sciprintf("\n");
#endif

	return output;
}

reg_t kAvoidPath(EngineState *s, int funct_nr, int argc, reg_t *argv) {
	Common::Point start = Common::Point(SKPV(0), SKPV(1));

#ifdef DEBUG_AVOIDPATH
	GfxPort *port = s->picture_port;

	if (!port->_decorations) {
		port->_decorations = gfxw_new_list(gfx_rect(0, 0, 320, 200), 0);
		port->_decorations->setVisual(port->_visual);
	} else {
		port->_decorations->free_contents(port->_decorations);
	}
#endif

	switch (argc) {

	case 3 : {
		reg_t retval;
		Polygon *polygon = convert_polygon(s, argv[2]);
		// Override polygon type to prevent inverted result for contained access polygons
		polygon->type = POLY_BARRED_ACCESS;

		retval = make_reg(0, contained(start, polygon) != CONT_OUTSIDE);
		delete polygon;
		return retval;
	}
	case 6 :
	case 7 : {
		Common::Point end = Common::Point(SKPV(2), SKPV(3));
		reg_t poly_list = argv[4];
		//int poly_list_size = UKPV(5);
		int opt = UKPV_OR_ALT(6, 1);
		reg_t output;
		PathfindingState *p;

#ifdef DEBUG_AVOIDPATH
		sciprintf("[avoidpath] Pathfinding input:\n");
		draw_point(s, start, 1);
		draw_point(s, end, 0);

		if (poly_list.segment) {
			print_input(s, poly_list, start, end, opt);
			draw_input(s, poly_list, start, end, opt);
		}
#endif

		p = convert_polygon_set(s, poly_list, start, end, opt);

		if (p && intersecting_polygons(p)) {
			sciprintf("[avoidpath] Error: input set contains (self-)intersecting polygons\n");
			delete p;
			p = NULL;
		}

		if (!p) {
			byte *oref;
			sciprintf("[avoidpath] Error: pathfinding failed for following input:\n");
			print_input(s, poly_list, start, end, opt);
			sciprintf("[avoidpath] Returning direct path from start point to end point\n");
			oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * 3,
			                                   AVOIDPATH_DYNMEM_STRING, &output);

			POLY_SET_POINT(oref, 0, start);
			POLY_SET_POINT(oref, 1, end);
			POLY_SET_POINT(oref, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

			return output;
		}

		dijkstra(p);

		output = output_path(p, s);
		delete p;

		// Memory is freed by explicit calls to Memory
		return output;
	}

	default:
		warning("Unknown AvoidPath subfunction %d",
		         argc);
		return NULL_REG;
		break;
	}
}

} // End of namespace Sci