aboutsummaryrefslogtreecommitdiff
path: root/engines/sci/engine/kpathing.cpp
blob: 67d814b86f7bd5307f722b5c5009d9a60ce4cb84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 */

#include "sci/sci.h"
#include "sci/engine/state.h"
#include "sci/engine/selector.h"
#include "sci/engine/kernel.h"
#include "sci/graphics/paint16.h"
#include "sci/graphics/palette.h"
#include "sci/graphics/screen.h"

#include "common/debug-channels.h"
#include "common/list.h"
#include "common/system.h"
#include "common/math.h"

//#define DEBUG_MERGEPOLY

namespace Sci {

// TODO: Code cleanup

#define AVOIDPATH_DYNMEM_STRING "AvoidPath polyline"

#define POLY_LAST_POINT 0x7777
#define POLY_POINT_SIZE 4

// SCI-defined polygon types
enum {
	POLY_TOTAL_ACCESS = 0,
	POLY_NEAREST_ACCESS = 1,
	POLY_BARRED_ACCESS = 2,
	POLY_CONTAINED_ACCESS = 3
};

// Polygon containment types
enum {
	CONT_OUTSIDE = 0,
	CONT_ON_EDGE = 1,
	CONT_INSIDE = 2
};

#define HUGE_DISTANCE 0xFFFFFFFF

#define VERTEX_HAS_EDGES(V) ((V) != CLIST_NEXT(V))

// Error codes
enum {
	PF_OK = 0,
	PF_ERROR = -1,
	PF_FATAL = -2
};

// Floating point struct
struct FloatPoint {
	FloatPoint() : x(0), y(0) {}
	FloatPoint(float x_, float y_) : x(x_), y(y_) {}
	FloatPoint(Common::Point p) : x(p.x), y(p.y) {}

	Common::Point toPoint() {
		return Common::Point((int16)(x + 0.5), (int16)(y + 0.5));
	}

	float operator*(const FloatPoint &p) const {
		return x*p.x + y*p.y;
	}
	FloatPoint operator*(float l) const {
		return FloatPoint(l*x, l*y);
	}
	FloatPoint operator-(const FloatPoint &p) const {
		return FloatPoint(x-p.x, y-p.y);
	}
	float norm() const {
		return x*x+y*y;
	}

	float x, y;
};

struct Vertex {
	// Location
	Common::Point v;

	// Vertex circular list entry
	Vertex *_next;	// next element
	Vertex *_prev;	// previous element

	// A* cost variables
	uint32 costF;
	uint32 costG;

	// Previous vertex in shortest path
	Vertex *path_prev;

public:
	Vertex(const Common::Point &p) : v(p) {
		costG = HUGE_DISTANCE;
		path_prev = NULL;
	}
};

class VertexList: public Common::List<Vertex *> {
public:
	bool contains(Vertex *v) {
		for (iterator it = begin(); it != end(); ++it) {
			if (v == *it)
				return true;
		}
		return false;
	}
};

/* Circular list definitions. */

#define CLIST_FOREACH(var, head)					\
	for ((var) = (head)->first();					\
		(var);							\
		(var) = ((var)->_next == (head)->first() ?	\
		    NULL : (var)->_next))

/* Circular list access methods. */
#define CLIST_NEXT(elm)		((elm)->_next)
#define CLIST_PREV(elm)		((elm)->_prev)

class CircularVertexList {
public:
	Vertex *_head;

public:
	CircularVertexList() : _head(0) {}

	Vertex *first() const {
		return _head;
	}

	void insertAtEnd(Vertex *elm) {
		if (_head == NULL) {
			elm->_next = elm->_prev = elm;
			_head = elm;
		} else {
			elm->_next = _head;
			elm->_prev = _head->_prev;
			_head->_prev = elm;
			elm->_prev->_next = elm;
		}
	}

	void insertHead(Vertex *elm) {
		insertAtEnd(elm);
		_head = elm;
	}

	static void insertAfter(Vertex *listelm, Vertex *elm) {
		elm->_prev = listelm;
		elm->_next = listelm->_next;
		listelm->_next->_prev = elm;
		listelm->_next = elm;
	}

	void remove(Vertex *elm) {
		if (elm->_next == elm) {
			_head = NULL;
		} else {
			if (_head == elm)
				_head = elm->_next;
			elm->_prev->_next = elm->_next;
			elm->_next->_prev = elm->_prev;
		}
	}

	bool empty() const {
		return _head == NULL;
	}

	uint size() const {
		int n = 0;
		Vertex *v;
		CLIST_FOREACH(v, this)
			++n;
		return n;
	}

	/**
	 * Reverse the order of the elements in this circular list.
	 */
	void reverse() {
		if (!_head)
			return;

		Vertex *elm = _head;
		do {
			SWAP(elm->_prev, elm->_next);
			elm = elm->_next;
		} while (elm != _head);
	}
};

struct Polygon {
	// SCI polygon type
	int type;

	// Circular list of vertices
	CircularVertexList vertices;

public:
	Polygon(int t) : type(t) {
	}

	~Polygon() {
		while (!vertices.empty()) {
			Vertex *vertex = vertices.first();
			vertices.remove(vertex);
			delete vertex;
		}
	}
};

typedef Common::List<Polygon *> PolygonList;

// Pathfinding state
struct PathfindingState {
	// List of all polygons
	PolygonList polygons;

	// Start and end points for pathfinding
	Vertex *vertex_start, *vertex_end;

	// Array of all vertices, used for sorting
	Vertex **vertex_index;

	// Total number of vertices
	int vertices;

	// Point to prepend and append to final path
	Common::Point *_prependPoint;
	Common::Point *_appendPoint;

	// Screen size
	int _width, _height;

	PathfindingState(int width, int height) : _width(width), _height(height) {
		vertex_start = NULL;
		vertex_end = NULL;
		vertex_index = NULL;
		_prependPoint = NULL;
		_appendPoint = NULL;
		vertices = 0;
	}

	~PathfindingState() {
		free(vertex_index);

		delete _prependPoint;
		delete _appendPoint;

		for (PolygonList::iterator it = polygons.begin(); it != polygons.end(); ++it) {
			delete *it;
		}
	}

	bool pointOnScreenBorder(const Common::Point &p);
	bool edgeOnScreenBorder(const Common::Point &p, const Common::Point &q);
	int findNearPoint(const Common::Point &p, Polygon *polygon, Common::Point *ret);
};

static Common::Point readPoint(SegmentRef list_r, int offset) {
	Common::Point point;

	if (list_r.isRaw) {	// dynmem blocks are raw
		point.x = (int16)READ_SCIENDIAN_UINT16(list_r.raw + offset * POLY_POINT_SIZE);
		point.y = (int16)READ_SCIENDIAN_UINT16(list_r.raw + offset * POLY_POINT_SIZE + 2);
	} else {
		point.x = list_r.reg[offset * 2].toUint16();
		point.y = list_r.reg[offset * 2 + 1].toUint16();
	}
	return point;
}

static void writePoint(SegmentRef ref, int offset, const Common::Point &point) {
	if (ref.isRaw) {	// dynmem blocks are raw
		WRITE_SCIENDIAN_UINT16(ref.raw + offset * POLY_POINT_SIZE, point.x);
		WRITE_SCIENDIAN_UINT16(ref.raw + offset * POLY_POINT_SIZE + 2, point.y);
	} else {
		ref.reg[offset * 2] = make_reg(0, point.x);
		ref.reg[offset * 2 + 1] = make_reg(0, point.y);
	}
}

static void draw_line(EngineState *s, Common::Point p1, Common::Point p2, int type, int width, int height) {
	// Colors for polygon debugging.
	// Green: Total access
	// Blue: Near-point access
	// Red : Barred access
	// Yellow: Contained access
	int poly_colors[4] = {
		g_sci->_gfxPalette->kernelFindColor(0, 255, 0),	// green
		g_sci->_gfxPalette->kernelFindColor(0, 0, 255),	// blue
		g_sci->_gfxPalette->kernelFindColor(255, 0, 0),	// red
		g_sci->_gfxPalette->kernelFindColor(255, 255, 0)	// yellow
	};

	// Clip
	// FIXME: Do proper line clipping
	p1.x = CLIP<int16>(p1.x, 0, width - 1);
	p1.y = CLIP<int16>(p1.y, 0, height - 1);
	p2.x = CLIP<int16>(p2.x, 0, width - 1);
	p2.y = CLIP<int16>(p2.y, 0, height - 1);

	assert(type >= 0 && type <= 3);
	g_sci->_gfxPaint->kernelGraphDrawLine(p1, p2, poly_colors[type], 255, 255);
}

static void draw_point(EngineState *s, Common::Point p, int start, int width, int height) {
	// Colors for starting and end point
	// Green: End point
	// Blue: Starting point
	int point_colors[2] = {
		g_sci->_gfxPalette->kernelFindColor(0, 255, 0),	// green
		g_sci->_gfxPalette->kernelFindColor(0, 0, 255)		// blue
	};

	Common::Rect rect = Common::Rect(p.x - 1, p.y - 1, p.x - 1 + 3, p.y - 1 + 3);

	// Clip
	rect.top = CLIP<int16>(rect.top, 0, height - 1);
	rect.bottom = CLIP<int16>(rect.bottom, 0, height - 1);
	rect.left = CLIP<int16>(rect.left, 0, width - 1);
	rect.right = CLIP<int16>(rect.right, 0, width - 1);

	assert(start >= 0 && start <= 1);
	if (g_sci->_gfxPaint16)
		g_sci->_gfxPaint16->kernelGraphFrameBox(rect, point_colors[start]);
}

static void draw_polygon(EngineState *s, reg_t polygon, int width, int height) {
	SegManager *segMan = s->_segMan;
	reg_t points = readSelector(segMan, polygon, SELECTOR(points));

#ifdef ENABLE_SCI32
	if (segMan->isHeapObject(points))
		points = readSelector(segMan, points, SELECTOR(data));
#endif

	int size = readSelectorValue(segMan, polygon, SELECTOR(size));
	int type = readSelectorValue(segMan, polygon, SELECTOR(type));
	Common::Point first, prev;
	int i;

	SegmentRef pointList = segMan->dereference(points);
	if (!pointList.isValid() || pointList.skipByte) {
		warning("draw_polygon: Polygon data pointer is invalid, skipping polygon");
		return;
	}

	prev = first = readPoint(pointList, 0);

	for (i = 1; i < size; i++) {
		Common::Point point = readPoint(pointList, i);
		draw_line(s, prev, point, type, width, height);
		prev = point;
	}

	draw_line(s, prev, first, type % 3, width, height);
}

static void draw_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt, int width, int height) {
	List *list;
	Node *node;

	draw_point(s, start, 1, width, height);
	draw_point(s, end, 0, width, height);

	if (!poly_list.getSegment())
		return;

	list = s->_segMan->lookupList(poly_list);

	if (!list) {
		warning("[avoidpath] Could not obtain polygon list");
		return;
	}

	node = s->_segMan->lookupNode(list->first);

	while (node) {
		draw_polygon(s, node->value, width, height);
		node = s->_segMan->lookupNode(node->succ);
	}
}

static void print_polygon(SegManager *segMan, reg_t polygon) {
	reg_t points = readSelector(segMan, polygon, SELECTOR(points));

#ifdef ENABLE_SCI32
	if (segMan->isHeapObject(points))
		points = readSelector(segMan, points, SELECTOR(data));
#endif

	int size = readSelectorValue(segMan, polygon, SELECTOR(size));
	int type = readSelectorValue(segMan, polygon, SELECTOR(type));
	int i;
	Common::Point point;

	debugN(-1, "%i:", type);

	SegmentRef pointList = segMan->dereference(points);
	if (!pointList.isValid() || pointList.skipByte) {
		warning("print_polygon: Polygon data pointer is invalid, skipping polygon");
		return;
	}

	for (i = 0; i < size; i++) {
		point = readPoint(pointList, i);
		debugN(-1, " (%i, %i)", point.x, point.y);
	}

	point = readPoint(pointList, 0);
	debug(" (%i, %i);", point.x, point.y);
}

static void print_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) {
	List *list;
	Node *node;

	debug("Start point: (%i, %i)", start.x, start.y);
	debug("End point: (%i, %i)", end.x, end.y);
	debug("Optimization level: %i", opt);

	if (!poly_list.getSegment())
		return;

	list = s->_segMan->lookupList(poly_list);

	if (!list) {
		warning("[avoidpath] Could not obtain polygon list");
		return;
	}

	debug("Polygons:");
	node = s->_segMan->lookupNode(list->first);

	while (node) {
		print_polygon(s->_segMan, node->value);
		node = s->_segMan->lookupNode(node->succ);
	}
}

/**
 * Computes the area of a triangle
 * Parameters: (const Common::Point &) a, b, c: The points of the triangle
 * Returns   : (int) The area multiplied by two
 */
static int area(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	return (b.x - a.x) * (a.y - c.y) - (c.x - a.x) * (a.y - b.y);
}

/**
 * Determines whether or not a point is to the left of a directed line
 * Parameters: (const Common::Point &) a, b: The directed line (a, b)
 *             (const Common::Point &) c: The query point
 * Returns   : (int) true if c is to the left of (a, b), false otherwise
 */
static bool left(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	return area(a, b, c) > 0;
}

/**
 * Determines whether or not three points are collinear
 * Parameters: (const Common::Point &) a, b, c: The three points
 * Returns   : (int) true if a, b, and c are collinear, false otherwise
 */
static bool collinear(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	return area(a, b, c) == 0;
}

/**
 * Determines whether or not a point lies on a line segment
 * Parameters: (const Common::Point &) a, b: The line segment (a, b)
 *             (const Common::Point &) c: The query point
 * Returns   : (int) true if c lies on (a, b), false otherwise
 */
static bool between(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
	if (!collinear(a, b, c))
		return false;

	// Assumes a != b.
	if (a.x != b.x)
		return ((a.x <= c.x) && (c.x <= b.x)) || ((a.x >= c.x) && (c.x >= b.x));
	else
		return ((a.y <= c.y) && (c.y <= b.y)) || ((a.y >= c.y) && (c.y >= b.y));
}

/**
 * Determines whether or not two line segments properly intersect
 * Parameters: (const Common::Point &) a, b: The line segment (a, b)
 *             (const Common::Point &) c, d: The line segment (c, d)
 * Returns   : (int) true if (a, b) properly intersects (c, d), false otherwise
 */
static bool intersect_proper(const Common::Point &a, const Common::Point &b, const Common::Point &c, const Common::Point &d) {
	int ab = (left(a, b, c) && left(b, a, d)) || (left(a, b, d) && left(b, a, c));
	int cd = (left(c, d, a) && left(d, c, b)) || (left(c, d, b) && left(d, c, a));

	return ab && cd;
}

/**
 * Polygon containment test
 * Parameters: (const Common::Point &) p: The point
 *             (Polygon *) polygon: The polygon
 * Returns   : (int) CONT_INSIDE if p is strictly contained in polygon,
 *                   CONT_ON_EDGE if p lies on an edge of polygon,
 *                   CONT_OUTSIDE otherwise
 * Number of ray crossing left and right
 */
static int contained(const Common::Point &p, Polygon *polygon) {
	int lcross = 0, rcross = 0;
	Vertex *vertex;

	// Iterate over edges
	CLIST_FOREACH(vertex, &polygon->vertices) {
		const Common::Point &v1 = vertex->v;
		const Common::Point &v2 = CLIST_NEXT(vertex)->v;

		// Flags for ray straddling left and right
		int rstrad, lstrad;

		// Check if p is a vertex
		if (p == v1)
			return CONT_ON_EDGE;

		// Check if edge straddles the ray
		rstrad = (v1.y < p.y) != (v2.y < p.y);
		lstrad = (v1.y > p.y) != (v2.y > p.y);

		if (lstrad || rstrad) {
			// Compute intersection point x / xq
			int x = v2.x * v1.y - v1.x * v2.y + (v1.x - v2.x) * p.y;
			int xq = v1.y - v2.y;

			// Multiply by -1 if xq is negative (for comparison that follows)
			if (xq < 0) {
				x = -x;
				xq = -xq;
			}

			// Avoid floats by multiplying instead of dividing
			if (rstrad && (x > xq * p.x))
				rcross++;
			else if (lstrad && (x < xq * p.x))
				lcross++;
		}
	}

	// If we counted an odd number of total crossings the point is on an edge
	if ((lcross + rcross) % 2 == 1)
		return CONT_ON_EDGE;

	// If there are an odd number of crossings to one side the point is contained in the polygon
	if (rcross % 2 == 1) {
		// Invert result for contained access polygons.
		if (polygon->type == POLY_CONTAINED_ACCESS)
			return CONT_OUTSIDE;
		return CONT_INSIDE;
	}

	// Point is outside polygon. Invert result for contained access polygons
	if (polygon->type == POLY_CONTAINED_ACCESS)
		return CONT_INSIDE;

	return CONT_OUTSIDE;
}

/**
 * Computes polygon area
 * Parameters: (Polygon *) polygon: The polygon
 * Returns   : (int) The area multiplied by two
 */
static int polygon_area(Polygon *polygon) {
	Vertex *first = polygon->vertices.first();
	Vertex *v;
	int size = 0;

	v = CLIST_NEXT(first);

	while (CLIST_NEXT(v) != first) {
		size += area(first->v, v->v, CLIST_NEXT(v)->v);
		v = CLIST_NEXT(v);
	}

	return size;
}

/**
 * Fixes the vertex order of a polygon if incorrect. Contained access
 * polygons should have their vertices ordered clockwise, all other types
 * anti-clockwise
 * Parameters: (Polygon *) polygon: The polygon
 */
static void fix_vertex_order(Polygon *polygon) {
	int area = polygon_area(polygon);

	// When the polygon area is positive the vertices are ordered
	// anti-clockwise. When the area is negative the vertices are ordered
	// clockwise
	if (((area > 0) && (polygon->type == POLY_CONTAINED_ACCESS))
	        || ((area < 0) && (polygon->type != POLY_CONTAINED_ACCESS))) {

		polygon->vertices.reverse();
	}
}

/**
 * Determines whether or not a line from a point to a vertex intersects the
 * interior of the polygon, locally at that vertex
 * Parameters: (Common::Point) p: The point
 *             (Vertex *) vertex: The vertex
 * Returns   : (int) 1 if the line (p, vertex->v) intersects the interior of
 *                   the polygon, locally at the vertex. 0 otherwise
 */
static int inside(const Common::Point &p, Vertex *vertex) {
	// Check that it's not a single-vertex polygon
	if (VERTEX_HAS_EDGES(vertex)) {
		const Common::Point &prev = CLIST_PREV(vertex)->v;
		const Common::Point &next = CLIST_NEXT(vertex)->v;
		const Common::Point &cur = vertex->v;

		if (left(prev, cur, next)) {
			// Convex vertex, line (p, cur) intersects the inside
			// if p is located left of both edges
			if (left(cur, next, p) && left(prev, cur, p))
				return 1;
		} else {
			// Non-convex vertex, line (p, cur) intersects the
			// inside if p is located left of either edge
			if (left(cur, next, p) || left(prev, cur, p))
				return 1;
		}
	}

	return 0;
}

/**
 * Returns a list of all vertices that are visible from a particular vertex.
 * @param s				the pathfinding state
 * @param vertex_cur	the vertex
 * @return list of vertices that are visible from vert
 */
static VertexList *visible_vertices(PathfindingState *s, Vertex *vertex_cur) {
	VertexList *visVerts = new VertexList();

	for (int i = 0; i < s->vertices; i++) {
		Vertex *vertex = s->vertex_index[i];

		// Make sure we don't intersect a polygon locally at the vertices
		if ((vertex == vertex_cur) || (inside(vertex->v, vertex_cur)) || (inside(vertex_cur->v, vertex)))
			continue;

		// Check for intersecting edges
		int j;
		for (j = 0; j < s->vertices; j++) {
			Vertex *edge = s->vertex_index[j];
			if (VERTEX_HAS_EDGES(edge)) {
				if (between(vertex_cur->v, vertex->v, edge->v)) {
					// If we hit a vertex, make sure we can pass through it without intersecting its polygon
					if ((inside(vertex_cur->v, edge)) || (inside(vertex->v, edge)))
						break;

					// This edge won't properly intersect, so we continue
					continue;
				}

				if (intersect_proper(vertex_cur->v, vertex->v, edge->v, CLIST_NEXT(edge)->v))
					break;
			}
		}

		if (j == s->vertices)
			visVerts->push_front(vertex);
	}

	return visVerts;
}

/**
 * Determines if a point lies on the screen border
 * Parameters: (const Common::Point &) p: The point
 * Returns   : (int) true if p lies on the screen border, false otherwise
 */
bool PathfindingState::pointOnScreenBorder(const Common::Point &p) {
	return (p.x == 0) || (p.x == _width - 1) || (p.y == 0) || (p.y == _height - 1);
}

/**
 * Determines if an edge lies on the screen border
 * Parameters: (const Common::Point &) p, q: The edge (p, q)
 * Returns   : (int) true if (p, q) lies on the screen border, false otherwise
 */
bool PathfindingState::edgeOnScreenBorder(const Common::Point &p, const Common::Point &q) {
	return ((p.x == 0 && q.x == 0) || (p.y == 0 && q.y == 0)
			|| ((p.x == _width - 1) && (q.x == _width - 1))
			|| ((p.y == _height - 1) && (q.y == _height - 1)));
}

/**
 * Searches for a nearby point that is not contained in a polygon
 * Parameters: (FloatPoint) f: The pointf to search nearby
 *             (Polygon *) polygon: The polygon
 * Returns   : (int) PF_OK on success, PF_FATAL otherwise
 *             (Common::Point) *ret: The non-contained point on success
 */
static int find_free_point(FloatPoint f, Polygon *polygon, Common::Point *ret) {
	Common::Point p;

	// Try nearest point first
	p = Common::Point((int)floor(f.x + 0.5), (int)floor(f.y + 0.5));

	if (contained(p, polygon) != CONT_INSIDE) {
		*ret = p;
		return PF_OK;
	}

	p = Common::Point((int)floor(f.x), (int)floor(f.y));

	// Try (x, y), (x + 1, y), (x , y + 1) and (x + 1, y + 1)
	if (contained(p, polygon) == CONT_INSIDE) {
		p.x++;
		if (contained(p, polygon) == CONT_INSIDE) {
			p.y++;
			if (contained(p, polygon) == CONT_INSIDE) {
				p.x--;
				if (contained(p, polygon) == CONT_INSIDE)
					return PF_FATAL;
			}
		}
	}

	*ret = p;
	return PF_OK;
}

/**
 * Computes the near point of a point contained in a polygon
 * Parameters: (const Common::Point &) p: The point
 *             (Polygon *) polygon: The polygon
 * Returns   : (int) PF_OK on success, PF_FATAL otherwise
 *             (Common::Point) *ret: The near point of p in polygon on success
 */
int PathfindingState::findNearPoint(const Common::Point &p, Polygon *polygon, Common::Point *ret) {
	Vertex *vertex;
	FloatPoint near_p;
	uint32 dist = HUGE_DISTANCE;

	CLIST_FOREACH(vertex, &polygon->vertices) {
		const Common::Point &p1 = vertex->v;
		const Common::Point &p2 = CLIST_NEXT(vertex)->v;
		float u;
		FloatPoint new_point;
		uint32 new_dist;

		// Ignore edges on the screen border, except for contained access polygons
		if ((polygon->type != POLY_CONTAINED_ACCESS) && (edgeOnScreenBorder(p1, p2)))
			continue;

		// Compute near point
		u = ((p.x - p1.x) * (p2.x - p1.x) + (p.y - p1.y) * (p2.y - p1.y)) / (float)p1.sqrDist(p2);

		// Clip to edge
		if (u < 0.0f)
			u = 0.0f;
		if (u > 1.0f)
			u = 1.0f;

		new_point.x = p1.x + u * (p2.x - p1.x);
		new_point.y = p1.y + u * (p2.y - p1.y);

		new_dist = p.sqrDist(new_point.toPoint());

		if (new_dist < dist) {
			near_p = new_point;
			dist = new_dist;
		}
	}

	// Find point not contained in polygon
	return find_free_point(near_p, polygon, ret);
}

/**
 * Computes the intersection point of a line segment and an edge (not
 * including the vertices themselves)
 * Parameters: (const Common::Point &) a, b: The line segment (a, b)
 *             (Vertex *) vertex: The first vertex of the edge
 * Returns   : (int) PF_OK on success, PF_ERROR otherwise
 *             (FloatPoint) *ret: The intersection point
 */
static int intersection(const Common::Point &a, const Common::Point &b, const Vertex *vertex, FloatPoint *ret) {
	// Parameters of parametric equations
	float s, t;
	// Numerator and denominator of equations
	float num, denom;
	const Common::Point &c = vertex->v;
	const Common::Point &d = CLIST_NEXT(vertex)->v;

	denom = a.x * (float)(d.y - c.y) + b.x * (float)(c.y - d.y) +
	        d.x * (float)(b.y - a.y) + c.x * (float)(a.y - b.y);

	if (denom == 0.0)
		// Segments are parallel, no intersection
		return PF_ERROR;

	num = a.x * (float)(d.y - c.y) + c.x * (float)(a.y - d.y) + d.x * (float)(c.y - a.y);

	s = num / denom;

	num = -(a.x * (float)(c.y - b.y) + b.x * (float)(a.y - c.y) + c.x * (float)(b.y - a.y));

	t = num / denom;

	if ((0.0 <= s) && (s <= 1.0) && (0.0 < t) && (t < 1.0)) {
		// Intersection found
		ret->x = a.x + s * (b.x - a.x);
		ret->y = a.y + s * (b.y - a.y);
		return PF_OK;
	}

	return PF_ERROR;
}

/**
 * Computes the nearest intersection point of a line segment and the polygon
 * set. Intersection points that are reached from the inside of a polygon
 * are ignored as are improper intersections which do not obstruct
 * visibility
 * Parameters: (PathfindingState *) s: The pathfinding state
 *             (const Common::Point &) p, q: The line segment (p, q)
 * Returns   : (int) PF_OK on success, PF_ERROR when no intersections were
 *                   found, PF_FATAL otherwise
 *             (Common::Point) *ret: On success, the closest intersection point
 */
static int nearest_intersection(PathfindingState *s, const Common::Point &p, const Common::Point &q, Common::Point *ret) {
	Polygon *polygon = 0;
	FloatPoint isec;
	Polygon *ipolygon = 0;
	uint32 dist = HUGE_DISTANCE;

	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			uint32 new_dist;
			FloatPoint new_isec;

			// Check for intersection with vertex
			if (between(p, q, vertex->v)) {
				// Skip this vertex if we hit it from the
				// inside of the polygon
				if (inside(q, vertex)) {
					new_isec.x = vertex->v.x;
					new_isec.y = vertex->v.y;
				} else
					continue;
			} else {
				// Check for intersection with edges

				// Skip this edge if we hit it from the
				// inside of the polygon
				if (!left(vertex->v, CLIST_NEXT(vertex)->v, q))
					continue;

				if (intersection(p, q, vertex, &new_isec) != PF_OK)
					continue;
			}

			new_dist = p.sqrDist(new_isec.toPoint());
			if (new_dist < dist) {
				ipolygon = polygon;
				isec = new_isec;
				dist = new_dist;
			}
		}
	}

	if (dist == HUGE_DISTANCE)
		return PF_ERROR;

	// Find point not contained in polygon
	return find_free_point(isec, ipolygon, ret);
}

/**
 * Checks whether a point is nearby a contained-access polygon (distance 1 pixel)
 * @param point			the point
 * @param polygon		the contained-access polygon
 * @return true when point is nearby polygon, false otherwise
 */
static bool nearbyPolygon(const Common::Point &point, Polygon *polygon) {
	assert(polygon->type == POLY_CONTAINED_ACCESS);

	return ((contained(Common::Point(point.x, point.y + 1), polygon) != CONT_INSIDE)
			|| (contained(Common::Point(point.x, point.y - 1), polygon) != CONT_INSIDE)
			|| (contained(Common::Point(point.x + 1, point.y), polygon) != CONT_INSIDE)
			|| (contained(Common::Point(point.x - 1, point.y), polygon) != CONT_INSIDE));
}

/**
 * Checks that the start point is in a valid position, and takes appropriate action if it's not.
 * @param s				the pathfinding state
 * @param start			the start point
 * @return a valid start point on success, NULL otherwise
 */
static Common::Point *fixup_start_point(PathfindingState *s, const Common::Point &start) {
	PolygonList::iterator it = s->polygons.begin();
	Common::Point *new_start = new Common::Point(start);

	while (it != s->polygons.end()) {
		int cont = contained(start, *it);
		int type = (*it)->type;

		switch (type) {
		case POLY_TOTAL_ACCESS:
			// Remove totally accessible polygons that contain the start point
			if (cont != CONT_OUTSIDE) {
				delete *it;
				it = s->polygons.erase(it);
				continue;
			}
			break;
		case POLY_CONTAINED_ACCESS:
			// Remove contained access polygons that do not contain
			// the start point (containment test is inverted here).
			// SSCI appears to be using a small margin of error here,
			// so we do the same.
			if ((cont == CONT_INSIDE) && !nearbyPolygon(start, *it)) {
				delete *it;
				it = s->polygons.erase(it);
				continue;
			}
			// Fall through
		case POLY_BARRED_ACCESS:
		case POLY_NEAREST_ACCESS:
			if (cont != CONT_OUTSIDE) {
				if (s->_prependPoint != NULL) {
					// We shouldn't get here twice.
					// We need to break in this case, otherwise we'll end in an infinite
					// loop.
					warning("AvoidPath: start point is contained in multiple polygons");
					break;
				}

				if (s->findNearPoint(start, (*it), new_start) != PF_OK) {
					delete new_start;
					return NULL;
				}

				if ((type == POLY_BARRED_ACCESS) || (type == POLY_CONTAINED_ACCESS))
					debugC(kDebugLevelAvoidPath, "AvoidPath: start position at unreachable location");

				// The original start position is in an invalid location, so we
				// use the moved point and add the original one to the final path
				// later on.
				if (start != *new_start)
					s->_prependPoint = new Common::Point(start);
			}
		}

		++it;
	}

	return new_start;
}

/**
 * Checks that the end point is in a valid position, and takes appropriate action if it's not.
 * @param s				the pathfinding state
 * @param end			the end point
 * @return a valid end point on success, NULL otherwise
 */
static Common::Point *fixup_end_point(PathfindingState *s, const Common::Point &end) {
	PolygonList::iterator it = s->polygons.begin();
	Common::Point *new_end = new Common::Point(end);

	while (it != s->polygons.end()) {
		int cont = contained(end, *it);
		int type = (*it)->type;

		switch (type) {
		case POLY_TOTAL_ACCESS:
			// Remove totally accessible polygons that contain the end point
			if (cont != CONT_OUTSIDE) {
				delete *it;
				it = s->polygons.erase(it);
				continue;
			}
			break;
		case POLY_CONTAINED_ACCESS:
		case POLY_BARRED_ACCESS:
		case POLY_NEAREST_ACCESS:
			if (cont != CONT_OUTSIDE) {
				if (s->_appendPoint != NULL) {
					// We shouldn't get here twice.
					// Happens in LB2CD, inside the speakeasy when walking from the
					// speakeasy (room 310) into the bathroom (room 320), after having
					// consulted the notebook (bug #3036299).
					// We need to break in this case, otherwise we'll end in an infinite
					// loop.
					warning("AvoidPath: end point is contained in multiple polygons");
					break;
				}

				// The original end position is in an invalid location, so we move the point
				if (s->findNearPoint(end, (*it), new_end) != PF_OK) {
					delete new_end;
					return NULL;
				}

				// For near-point access polygons we need to add the original end point
				// to the path after pathfinding.
				if ((type == POLY_NEAREST_ACCESS) && (end != *new_end))
					s->_appendPoint = new Common::Point(end);
			}
		}

		++it;
	}

	return new_end;
}

/**
 * Merges a point into the polygon set. A new vertex is allocated for this
 * point, unless a matching vertex already exists. If the point is on an
 * already existing edge that edge is split up into two edges connected by
 * the new vertex
 * Parameters: (PathfindingState *) s: The pathfinding state
 *             (const Common::Point &) v: The point to merge
 * Returns   : (Vertex *) The vertex corresponding to v
 */
static Vertex *merge_point(PathfindingState *s, const Common::Point &v) {
	Vertex *vertex;
	Vertex *v_new;
	Polygon *polygon;

	// Check for already existing vertex
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		CLIST_FOREACH(vertex, &polygon->vertices) {
			if (vertex->v == v)
				return vertex;
		}
	}

	v_new = new Vertex(v);

	// Check for point being on an edge
	for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
		polygon = *it;
		// Skip single-vertex polygons
		if (VERTEX_HAS_EDGES(polygon->vertices.first())) {
			CLIST_FOREACH(vertex, &polygon->vertices) {
				Vertex *next = CLIST_NEXT(vertex);

				if (between(vertex->v, next->v, v)) {
					// Split edge by adding vertex
					polygon->vertices.insertAfter(vertex, v_new);
					return v_new;
				}
			}
		}
	}

	// Add point as single-vertex polygon
	polygon = new Polygon(POLY_BARRED_ACCESS);
	polygon->vertices.insertHead(v_new);
	s->polygons.push_front(polygon);

	return v_new;
}

/**
 * Converts an SCI polygon into a Polygon
 * Parameters: (EngineState *) s: The game state
 *             (reg_t) polygon: The SCI polygon to convert
 * Returns   : (Polygon *) The converted polygon, or NULL on error
 */
static Polygon *convert_polygon(EngineState *s, reg_t polygon) {
	SegManager *segMan = s->_segMan;
	int i;
	reg_t points = readSelector(segMan, polygon, SELECTOR(points));
	int size = readSelectorValue(segMan, polygon, SELECTOR(size));

#ifdef ENABLE_SCI32
	// SCI32 stores the actual points in the data property of points (in a new array)
	if (segMan->isHeapObject(points))
		points = readSelector(segMan, points, SELECTOR(data));
#endif

	if (size == 0) {
		// If the polygon has no vertices, we skip it
		return NULL;
	}

	SegmentRef pointList = segMan->dereference(points);
	// Check if the target polygon is still valid. It may have been released
	// in the meantime (e.g. in LSL6, room 700, when using the elevator).
	// Refer to bug #3034501.
	if (!pointList.isValid() || pointList.skipByte) {
		warning("convert_polygon: Polygon data pointer is invalid, skipping polygon");
		return NULL;
	}

	// Make sure that we have enough points
	if (pointList.maxSize < size * POLY_POINT_SIZE) {
		warning("convert_polygon: Not enough memory allocated for polygon points. "
				"Expected %d, got %d. Skipping polygon",
				size * POLY_POINT_SIZE, pointList.maxSize);
		return NULL;
	}

	int skip = 0;

	// WORKAROUND: broken polygon in lsl1sci, room 350, after opening elevator
	// Polygon has 17 points but size is set to 19
	if ((size == 19) && g_sci->getGameId() == GID_LSL1) {
		if ((s->currentRoomNumber() == 350)
		&& (readPoint(pointList, 18) == Common::Point(108, 137))) {
			debug(1, "Applying fix for broken polygon in lsl1sci, room 350");
			size = 17;
		}
	}

	Polygon *poly = new Polygon(readSelectorValue(segMan, polygon, SELECTOR(type)));

	for (i = skip; i < size; i++) {
		Vertex *vertex = new Vertex(readPoint(pointList, i));
		poly->vertices.insertHead(vertex);
	}

	fix_vertex_order(poly);

	return poly;
}

/**
 * Changes the polygon list for optimization level 0 (used for keyboard
 * support). Totally accessible polygons are removed and near-point
 * accessible polygons are changed into totally accessible polygons.
 * Parameters: (PathfindingState *) s: The pathfinding state
 */
static void change_polygons_opt_0(PathfindingState *s) {

	PolygonList::iterator it = s->polygons.begin();
	while (it != s->polygons.end()) {
		Polygon *polygon = *it;
		assert(polygon);

		if (polygon->type == POLY_TOTAL_ACCESS) {
			delete polygon;
			it = s->polygons.erase(it);
		} else {
			if (polygon->type == POLY_NEAREST_ACCESS)
				polygon->type = POLY_TOTAL_ACCESS;
			++it;
		}
	}
}

/**
 * Converts the SCI input data for pathfinding
 * Parameters: (EngineState *) s: The game state
 *             (reg_t) poly_list: Polygon list
 *             (Common::Point) start: The start point
 *             (Common::Point) end: The end point
 *             (int) opt: Optimization level (0, 1 or 2)
 * Returns   : (PathfindingState *) On success a newly allocated pathfinding state,
 *                            NULL otherwise
 */
static PathfindingState *convert_polygon_set(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int width, int height, int opt) {
	SegManager *segMan = s->_segMan;
	Polygon *polygon;
	int count = 0;
	PathfindingState *pf_s = new PathfindingState(width, height);

	// Convert all polygons
	if (poly_list.getSegment()) {
		List *list = s->_segMan->lookupList(poly_list);
		Node *node = s->_segMan->lookupNode(list->first);

		while (node) {
			// The node value might be null, in which case there's no polygon to parse.
			// Happens in LB2 floppy - refer to bug #3041232
			polygon = !node->value.isNull() ? convert_polygon(s, node->value) : NULL;

			if (polygon) {
				pf_s->polygons.push_back(polygon);
				count += readSelectorValue(segMan, node->value, SELECTOR(size));
			}

			node = s->_segMan->lookupNode(node->succ);
		}
	}

	if (opt == 0)
		change_polygons_opt_0(pf_s);

	Common::Point *new_start = fixup_start_point(pf_s, start);

	if (!new_start) {
		warning("AvoidPath: Couldn't fixup start position for pathfinding");
		delete pf_s;
		return NULL;
	}

	Common::Point *new_end = fixup_end_point(pf_s, end);

	if (!new_end) {
		warning("AvoidPath: Couldn't fixup end position for pathfinding");
		delete new_start;
		delete pf_s;
		return NULL;
	}

	if (opt == 0) {
		// Keyboard support. Only the first edge of the path we compute
		// here matches the path returned by SSCI. This is assumed to be
		// sufficient as all known use cases only use the first two
		// vertices of the returned path.
		// Pharkas uses this mode for a secondary polygon set containing
		// rectangular polygons used to block an actor's path.

		// If we have a prepended point, we do nothing here as the
		// actor is in barred territory and should be moved outside of
		// it ASAP. This matches the behavior of SSCI.
		if (!pf_s->_prependPoint) {
			// Actor position is OK, find nearest obstacle.
			int err = nearest_intersection(pf_s, start, *new_end, new_start);

			if (err == PF_FATAL) {
				warning("AvoidPath: error finding nearest intersection");
				delete new_start;
				delete new_end;
				delete pf_s;
				return NULL;
			}

			if (err == PF_OK)
				pf_s->_prependPoint = new Common::Point(start);
		}
	} else {
		// WORKAROUND LSL5 room 660. Priority glitch due to us choosing a different path
		// than SSCI. Happens when Patti walks to the control room.
		if (g_sci->getGameId() == GID_LSL5 && (s->currentRoomNumber() == 660) && (Common::Point(67, 131) == *new_start) && (Common::Point(229, 101) == *new_end)) {
			debug(1, "[avoidpath] Applying fix for priority problem in LSL5, room 660");
			pf_s->_prependPoint = new_start;
			new_start = new Common::Point(77, 107);
		}
	}

	// Merge start and end points into polygon set
	pf_s->vertex_start = merge_point(pf_s, *new_start);
	pf_s->vertex_end = merge_point(pf_s, *new_end);

	delete new_start;
	delete new_end;

	// Allocate and build vertex index
	pf_s->vertex_index = (Vertex**)malloc(sizeof(Vertex *) * (count + 2));

	count = 0;

	for (PolygonList::iterator it = pf_s->polygons.begin(); it != pf_s->polygons.end(); ++it) {
		polygon = *it;
		Vertex *vertex;

		CLIST_FOREACH(vertex, &polygon->vertices) {
			pf_s->vertex_index[count++] = vertex;
		}
	}

	pf_s->vertices = count;

	return pf_s;
}

/**
 * Computes a shortest path from vertex_start to vertex_end. The caller can
 * construct the resulting path by following the path_prev links from
 * vertex_end back to vertex_start. If no path exists vertex_end->path_prev
 * will be NULL
 * Parameters: (PathfindingState *) s: The pathfinding state
 */
static void AStar(PathfindingState *s) {
	// Vertices of which the shortest path is known
	VertexList closedSet;

	// The remaining vertices
	VertexList openSet;

	openSet.push_front(s->vertex_start);
	s->vertex_start->costG = 0;
	s->vertex_start->costF = (uint32)sqrt((float)s->vertex_start->v.sqrDist(s->vertex_end->v));

	while (!openSet.empty()) {
		// Find vertex in open set with lowest F cost
		VertexList::iterator vertex_min_it = openSet.end();
		Vertex *vertex_min = 0;
		uint32 min = HUGE_DISTANCE;

		for (VertexList::iterator it = openSet.begin(); it != openSet.end(); ++it) {
			Vertex *vertex = *it;
			if (vertex->costF < min) {
				vertex_min_it = it;
				vertex_min = *vertex_min_it;
				min = vertex->costF;
			}
		}

		assert(vertex_min != 0);	// the vertex cost should never be bigger than HUGE_DISTANCE

		// Check if we are done
		if (vertex_min == s->vertex_end)
			break;

		// Move vertex from set open to set closed
		closedSet.push_front(vertex_min);
		openSet.erase(vertex_min_it);

		VertexList *visVerts = visible_vertices(s, vertex_min);

		for (VertexList::iterator it = visVerts->begin(); it != visVerts->end(); ++it) {
			uint32 new_dist;
			Vertex *vertex = *it;

			if (closedSet.contains(vertex))
				continue;

			if (!openSet.contains(vertex))
				openSet.push_front(vertex);

			new_dist = vertex_min->costG + (uint32)sqrt((float)vertex_min->v.sqrDist(vertex->v));

			// When travelling to a vertex on the screen edge, we
			// add a penalty score to make this path less appealing.
			// NOTE: If an obstacle has only one vertex on a screen edge,
			// later SSCI pathfinders will treat that vertex like any
			// other, while we apply a penalty to paths traversing it.
			// This difference might lead to problems, but none are
			// known at the time of writing.

			// WORKAROUND: This check fails in QFG1VGA, room 81 (bug report #3568452).
			// However, it is needed in other SCI1.1 games, such as LB2. Therefore, we
			// add this workaround for that scene in QFG1VGA, until our algorithm matches
			// better what SSCI is doing. With this workaround, QFG1VGA no longer freezes
			// in that scene.
			bool qfg1VgaWorkaround = (g_sci->getGameId() == GID_QFG1VGA &&
									  g_sci->getEngineState()->currentRoomNumber() == 81);

			if (s->pointOnScreenBorder(vertex->v) && !qfg1VgaWorkaround)
				new_dist += 10000;

			if (new_dist < vertex->costG) {
				vertex->costG = new_dist;
				vertex->costF = vertex->costG + (uint32)sqrt((float)vertex->v.sqrDist(s->vertex_end->v));
				vertex->path_prev = vertex_min;
			}
		}

		delete visVerts;
	}

	if (openSet.empty())
		debugC(kDebugLevelAvoidPath, "AvoidPath: End point (%i, %i) is unreachable", s->vertex_end->v.x, s->vertex_end->v.y);
}

static reg_t allocateOutputArray(SegManager *segMan, int size) {
	reg_t addr;

#ifdef ENABLE_SCI32
	if (getSciVersion() >= SCI_VERSION_2) {
		SciArray<reg_t> *array = segMan->allocateArray(&addr);
		assert(array);
		array->setType(0);
		array->setSize(size * 2);
		return addr;
	}
#endif

	segMan->allocDynmem(POLY_POINT_SIZE * size, AVOIDPATH_DYNMEM_STRING, &addr);
	return addr;
}

/**
 * Stores the final path in newly allocated dynmem
 * Parameters: (PathfindingState *) p: The pathfinding state
 *             (EngineState *) s: The game state
 * Returns   : (reg_t) Pointer to dynmem containing path
 */
static reg_t output_path(PathfindingState *p, EngineState *s) {
	int path_len = 0;
	reg_t output;
	Vertex *vertex = p->vertex_end;
	int unreachable = vertex->path_prev == NULL;

	if (!unreachable) {
		while (vertex) {
			// Compute path length
			path_len++;
			vertex = vertex->path_prev;
		}
	}

	// Allocate memory for path, plus 3 extra for appended point, prepended point and sentinel
	output = allocateOutputArray(s->_segMan, path_len + 3);
	SegmentRef arrayRef = s->_segMan->dereference(output);
	assert(arrayRef.isValid() && !arrayRef.skipByte);

	if (unreachable) {
		// If pathfinding failed we only return the path up to vertex_start

		if (p->_prependPoint)
			writePoint(arrayRef, 0, *p->_prependPoint);
		else
			writePoint(arrayRef, 0, p->vertex_start->v);

		writePoint(arrayRef, 1, p->vertex_start->v);
		writePoint(arrayRef, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

		return output;
	}

	int offset = 0;

	if (p->_prependPoint)
		writePoint(arrayRef, offset++, *p->_prependPoint);

	vertex = p->vertex_end;
	for (int i = path_len - 1; i >= 0; i--) {
		writePoint(arrayRef, offset + i, vertex->v);
		vertex = vertex->path_prev;
	}
	offset += path_len;

	if (p->_appendPoint)
		writePoint(arrayRef, offset++, *p->_appendPoint);

	// Sentinel
	writePoint(arrayRef, offset, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

	if (DebugMan.isDebugChannelEnabled(kDebugLevelAvoidPath)) {
		debug("\nReturning path:");

		SegmentRef outputList = s->_segMan->dereference(output);
		if (!outputList.isValid() || outputList.skipByte) {
			warning("output_path: Polygon data pointer is invalid, skipping polygon");
			return output;
		}

		for (int i = 0; i < offset; i++) {
			Common::Point pt = readPoint(outputList, i);
			debugN(-1, " (%i, %i)", pt.x, pt.y);
		}
		debug(";\n");
	}

	return output;
}

reg_t kAvoidPath(EngineState *s, int argc, reg_t *argv) {
	Common::Point start = Common::Point(argv[0].toSint16(), argv[1].toSint16());

	switch (argc) {

	case 3 : {
		reg_t retval;
		Polygon *polygon = convert_polygon(s, argv[2]);

		if (!polygon)
			return NULL_REG;

		// Override polygon type to prevent inverted result for contained access polygons
		polygon->type = POLY_BARRED_ACCESS;

		retval = make_reg(0, contained(start, polygon) != CONT_OUTSIDE);
		delete polygon;
		return retval;
	}
	case 6 :
	case 7 :
	case 8 : {
		Common::Point end = Common::Point(argv[2].toSint16(), argv[3].toSint16());
		reg_t poly_list, output;
		int width, height, opt = 1;

		if (getSciVersion() >= SCI_VERSION_2) {
			if (argc < 7)
				error("[avoidpath] Not enough arguments");

			poly_list = (!argv[4].isNull() ? readSelector(s->_segMan, argv[4], SELECTOR(elements)) : NULL_REG);
			width = argv[5].toUint16();
			height = argv[6].toUint16();
			if (argc > 7)
				opt = argv[7].toUint16();
		} else {
			// SCI1.1 and older games always ran with an internal resolution of 320x200
			poly_list = argv[4];
			width = 320;
			height = 190;
			if (argc > 6)
				opt = argv[6].toUint16();
		}

		if (DebugMan.isDebugChannelEnabled(kDebugLevelAvoidPath)) {
			debug("[avoidpath] Pathfinding input:");
			draw_point(s, start, 1, width, height);
			draw_point(s, end, 0, width, height);

			if (poly_list.getSegment()) {
				print_input(s, poly_list, start, end, opt);
				draw_input(s, poly_list, start, end, opt, width, height);
			}

			// Update the whole screen
			g_sci->_gfxScreen->copyToScreen();
			g_system->updateScreen();
			if (!g_sci->_gfxPaint16)
				g_system->delayMillis(2500);
		}

		PathfindingState *p = convert_polygon_set(s, poly_list, start, end, width, height, opt);

		if (!p) {
			warning("[avoidpath] Error: pathfinding failed for following input:\n");
			print_input(s, poly_list, start, end, opt);
			warning("[avoidpath] Returning direct path from start point to end point\n");
			output = allocateOutputArray(s->_segMan, 3);
			SegmentRef arrayRef = s->_segMan->dereference(output);
			assert(arrayRef.isValid() && !arrayRef.skipByte);

			writePoint(arrayRef, 0, start);
			writePoint(arrayRef, 1, end);
			writePoint(arrayRef, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

			return output;
		}

		// Apply Dijkstra
		AStar(p);

		output = output_path(p, s);
		delete p;

		// Memory is freed by explicit calls to Memory
		return output;
	}

	default:
		warning("Unknown AvoidPath subfunction %d", argc);
		return NULL_REG;
	}
}

static bool PointInRect(const Common::Point &point, int16 rectX1, int16 rectY1, int16 rectX2, int16 rectY2) {
	int16 top = MIN<int16>(rectY1, rectY2);
	int16 left = MIN<int16>(rectX1, rectX2);
	int16 bottom = MAX<int16>(rectY1, rectY2) + 1;
	int16 right = MAX<int16>(rectX1, rectX2) + 1;

	Common::Rect rect = Common::Rect(left, top, right, bottom);
	// Add a one pixel margin of error
	rect.grow(1);

	return rect.contains(point);
}

reg_t kIntersections(EngineState *s, int argc, reg_t *argv) {
	// This function computes intersection points for the "freeway pathing" in MUMG CD.
	int32 qSourceX = argv[0].toSint16();
	int32 qSourceY = argv[1].toSint16();
	int32 qDestX = argv[2].toSint16();
	int32 qDestY = argv[3].toSint16();
	uint16 startIndex = argv[5].toUint16();
	uint16 endIndex = argv[6].toUint16();
	uint16 stepSize = argv[7].toUint16();
	bool backtrack = argv[9].toUint16();

	const int32 kVertical = 0x7fffffff;

	uint16 curIndex = startIndex;
	reg_t *inpBuf = s->_segMan->derefRegPtr(argv[4], endIndex + 2);

	if (!inpBuf) {
		warning("Intersections: input buffer invalid");
		return NULL_REG;
	}

	reg_t *outBuf = s->_segMan->derefRegPtr(argv[8], (endIndex - startIndex + 2) / stepSize * 3);

	if (!outBuf) {
		warning("Intersections: output buffer invalid");
		return NULL_REG;
	}

	// Slope and y-intercept of the query line in centipixels
	int32 qIntercept;
	int32 qSlope;

	if (qSourceX != qDestX) {
		// Compute slope of the line and round to nearest centipixel
		qSlope = (1000 * (qSourceY - qDestY)) / (qSourceX - qDestX);

		if (qSlope >= 0)
			qSlope += 5;
		else
			qSlope -= 5;

		qSlope /= 10;

		// Compute y-intercept in centipixels
		qIntercept = (100 * qDestY) - (qSlope * qDestX);

		if (backtrack) {
			// If backtrack is set we extend the line from dest to source
			// until we hit a screen edge and place the source point there

			// First we try to place the source point on the left or right
			// screen edge
			if (qSourceX >= qDestX)
				qSourceX = 319;
			else
				qSourceX = 0;

			// Compute the y-coordinate
			qSourceY = ((qSlope * qSourceX) + qIntercept) / 100;

			// If the y-coordinate is off-screen, the point we want is on the
			// top or bottom edge of the screen instead
			if (qSourceY < 0 || qSourceY > 189) {
				if (qSourceY < 0)
					qSourceY = 0;
				else if (qSourceY > 189)
					qSourceY = 189;

				// Compute the x-coordinate
				qSourceX = (((((qSourceY * 100) - qIntercept) * 10) / qSlope) + 5) / 10;
			}
		}
	} else {
		// The query line is vertical
		qIntercept = qSlope = kVertical;

		if (backtrack) {
			// If backtrack is set, extend to screen edge
			if (qSourceY >= qDestY)
				qSourceY = 189;
			else
				qSourceY = 0;
		}
	}

	int32 pSourceX = inpBuf[curIndex].toSint16();
	int32 pSourceY = inpBuf[curIndex + 1].toSint16();

	// If it's a polygon, we include the first point again at the end
	int16 doneIndex;
	if (pSourceX & (1 << 13))
		doneIndex = startIndex;
	else
		doneIndex = endIndex;

	pSourceX &= 0x1ff;

	debugCN(kDebugLevelAvoidPath, "%s: (%i, %i)[%i]",
		(doneIndex == startIndex ? "Polygon" : "Polyline"), pSourceX, pSourceY, curIndex);

	curIndex += stepSize;
	uint16 outCount = 0;

	while (1) {
		int32 pDestX = inpBuf[curIndex].toSint16() & 0x1ff;
		int32 pDestY = inpBuf[curIndex + 1].toSint16();

		if (DebugMan.isDebugChannelEnabled(kDebugLevelAvoidPath)) {
			draw_line(s, Common::Point(pSourceX, pSourceY),
				Common::Point(pDestX, pDestY), 2, 320, 190);
			debugN(-1, " (%i, %i)[%i]", pDestX, pDestY, curIndex);
		}

		// Slope and y-intercept of the polygon edge in centipixels
		int32 pIntercept;
		int32 pSlope;

		if (pSourceX != pDestX) {
			// Compute slope and y-intercept (as above)
			pSlope = ((pDestY - pSourceY) * 1000) / (pDestX - pSourceX);

			if (pSlope >= 0)
				pSlope += 5;
			else
				pSlope -= 5;

			pSlope /= 10;

			pIntercept = (pDestY * 100) - (pSlope * pDestX);
		} else {
			// Polygon edge is vertical
			pSlope = pIntercept = kVertical;
		}

		bool foundIntersection = true;
		int32 intersectionX = 0;
		int32 intersectionY = 0;

		if (qSlope == pSlope) {
			// If the lines overlap, we test the source and destination points
			// against the poly segment
			if ((pIntercept == qIntercept) && (PointInRect(Common::Point(pSourceX, pSourceY), qSourceX, qSourceY, qDestX, qDestY))) {
				intersectionX = pSourceX * 100;
				intersectionY = pSourceY * 100;
			} else if ((pIntercept == qIntercept) && PointInRect(Common::Point(qDestX, qDestY), pSourceX, pSourceY, pDestX, pDestY)) {
				intersectionX = qDestX * 100;
				intersectionY = qDestY * 100;
			} else {
				// Lines are parallel or segments don't overlap, no intersection
				foundIntersection = false;
			}
		} else {
			// Lines are not parallel
			if (qSlope == kVertical) {
				// Query segment is vertical, polygon segment is not vertical
				intersectionX = qSourceX * 100;
				intersectionY = pSlope * qSourceX + pIntercept;
			} else if (pSlope == kVertical) {
				// Polygon segment is vertical, query segment is not vertical
				intersectionX = pDestX * 100;
				intersectionY = qSlope * pDestX + qIntercept;
			} else {
				// Neither line is vertical
				intersectionX = ((pIntercept - qIntercept) * 100) / (qSlope - pSlope);
				intersectionY = ((intersectionX * pSlope) + (pIntercept * 100)) / 100;
			}
		}

		if (foundIntersection) {
			// Round back to pixels
			intersectionX = (intersectionX + 50) / 100;
			intersectionY = (intersectionY + 50) / 100;

			// If intersection point lies on both the query line segment and the poly
			// line segment, add it to the output
			if (((PointInRect(Common::Point(intersectionX, intersectionY), pSourceX, pSourceY, pDestX, pDestY))
				&& PointInRect(Common::Point(intersectionX, intersectionY), qSourceX, qSourceY, qDestX, qDestY))) {
				outBuf[outCount * 3] = make_reg(0, intersectionX);
				outBuf[outCount * 3 + 1] = make_reg(0, intersectionY);
				outBuf[outCount * 3 + 2] = make_reg(0, curIndex);
				outCount++;
			}
		}

		if (curIndex == doneIndex) {
			// End of polyline/polygon reached
			if (DebugMan.isDebugChannelEnabled(kDebugLevelAvoidPath)) {
				debug(";");
				debugN(-1, "Found %i intersections", outCount);

				if (outCount) {
					debugN(-1, ":");
					for (int i = 0; i < outCount; i++) {
						Common::Point p = Common::Point(outBuf[i * 3].toSint16(), outBuf[i * 3 + 1].toSint16());
						draw_point(s, p, 0, 320, 190);
						debugN(-1, " (%i, %i)[%i]", p.x, p.y, outBuf[i * 3 + 2].toSint16());
					}
				}

				debug(";");

				g_sci->_gfxScreen->copyToScreen();
				g_system->updateScreen();
			}

			return make_reg(0, outCount);
		}

		if (curIndex != endIndex) {
			// Go to next point in polyline/polygon
			curIndex += stepSize;
		} else {
			// Wrap-around for polygon case
			curIndex = startIndex;
		}

		// Current destination point is source for the next line segment
		pSourceX = pDestX;
		pSourceY = pDestY;
	}
}

// ==========================================================================
// kMergePoly utility functions

// Compute square of the distance of p to the segment a-b.
static float pointSegDistance(const Common::Point &a, const Common::Point &b,
                              const Common::Point &p) {
	FloatPoint ba(b-a);
	FloatPoint pa(p-a);
	FloatPoint bp(b-p);

	// Check if the projection of p on the line a-b lies between a and b
	if (ba*pa >= 0.0f && ba*bp >= 0.0f) {
		// If yes, return the (squared) distance of p to the line a-b:
		// translate a to origin, project p and subtract
		float linedist = (ba*((ba*pa)/(ba*ba)) - pa).norm();

		return linedist;
	} else {
		// If no, return the (squared) distance to either a or b, whichever
		// is closest.

		// distance to a:
		float adist = pa.norm();
		// distance to b:
		float bdist = FloatPoint(p-b).norm();

		return MIN(adist, bdist);
	}
}

// find intersection between edges of two polygons.
// endpoints count, except v2->_next
static bool segSegIntersect(const Vertex *v1, const Vertex *v2, Common::Point &intp) {
	const Common::Point &a = v1->v;
	const Common::Point &b = v1->_next->v;
	const Common::Point &c = v2->v;
	const Common::Point &d = v2->_next->v;

	// First handle the endpoint cases manually

	if (collinear(a, b, c) && collinear(a, b, d))
		return false;

	if (collinear(a, b, c)) {
		// a, b, c collinear
		// return true/c if c is between a and b
		intp = c;
		if (a.x != b.x) {
			if ((a.x <= c.x && c.x <= b.x) || (b.x <= c.x && c.x <= a.x))
				return true;
		} else {
			if ((a.y <= c.y && c.y <= b.y) || (b.y <= c.y && c.y <= a.y))
				return true;
		}
	}

	if (collinear(a, b, d)) {
		intp = d;
		// a, b, d collinear
		// return false/d if d is between a and b
		if (a.x != b.x) {
			if ((a.x <= d.x && d.x <= b.x) || (b.x <= d.x && d.x <= a.x))
				return false;
		} else {
			if ((a.y <= d.y && d.y <= b.y) || (b.y <= d.y && d.y <= a.y))
				return false;
		}
	}

	int len_dc = c.sqrDist(d);

	if (!len_dc) error("zero length edge in polygon");

	if (pointSegDistance(c, d, a) <= 2.0f) {
		intp = a;
		return true;
	}

	if (pointSegDistance(c, d, b) <= 2.0f) {
		intp = b;
		return true;
	}

	// If not an endpoint, call the generic intersection function

	FloatPoint p;
	if (intersection(a, b, v2, &p) == PF_OK) {
		intp = p.toPoint();
		return true;
	} else {
		return false;
	}
}

// For intersecting polygon segments, determine if
// * the v2 edge enters polygon 1 at this intersection: positive return value
// * the v2 edge and the v1 edges are parallel: zero return value
// * the v2 edge exits polygon 1 at this intersection: negative return value
static int intersectDir(const Vertex *v1, const Vertex *v2) {
	Common::Point p1 = v1->_next->v - v1->v;
	Common::Point p2 = v2->_next->v - v2->v;
	return (p1.x*p2.y - p2.x*p1.y);
}

// Direction of edge in degrees from pos. x-axis, between -180 and 180
static int edgeDir(const Vertex *v) {
	Common::Point p = v->_next->v - v->v;
	int deg = (int)Common::rad2deg((float)atan2((double)p.y, (double)p.x));
	if (deg < -180) deg += 360;
	if (deg > 180) deg -= 360;
	return deg;
}

// For points p1, p2 on the polygon segment v, determine if
// * p1 lies before p2: negative return value
// * p1 and p2 are the same: zero return value
// * p1 lies after p2: positive return value
static int liesBefore(const Vertex *v, const Common::Point &p1, const Common::Point &p2) {
	return v->v.sqrDist(p1) - v->v.sqrDist(p2);
}

// Structure describing an "extension" to the work polygon following edges
// of the polygon being merged.

// The patch begins on the point intersection1, being the intersection
// of the edges starting at indexw1/vertexw1 on the work polygon, and at
// indexp1/vertexp1 on the polygon being merged.
// It ends with the point intersection2, being the analogous intersection.
struct Patch {
	unsigned int indexw1;
	unsigned int indexp1;
	const Vertex *vertexw1;
	const Vertex *vertexp1;
	Common::Point intersection1;

	unsigned int indexw2;
	unsigned int indexp2;
	const Vertex *vertexw2;
	const Vertex *vertexp2;
	Common::Point intersection2;

	bool disabled; // If true, this Patch was made superfluous by another Patch
};


// Check if the given vertex on the work polygon is bypassed by this patch.
static bool isVertexCovered(const Patch &p, unsigned int wi) {

	//         /             v       (outside)
	//  ---w1--1----p----w2--2----
	//         ^             \       (inside)
	if (wi > p.indexw1 && wi <= p.indexw2)
		return true;

	//         v             /       (outside)
	//  ---w2--2----p----w1--1----
	//         \             ^       (inside)
	if (p.indexw1 > p.indexw2 && (wi <= p.indexw2 || wi > p.indexw1))
		return true;

	//         v  /                  (outside)
	//  ---w1--2--1-------p-----
	//     w2  \  ^                  (inside)
	if (p.indexw1 == p.indexw2 && liesBefore(p.vertexw1, p.intersection1, p.intersection2) > 0)
		return true; // This patch actually covers _all_ vertices on work

	return false;
}

// Check if patch p1 makes patch p2 superfluous.
static bool isPatchCovered(const Patch &p1, const Patch &p2) {

	// Same exit and entry points
	if (p1.intersection1 == p2.intersection1 && p1.intersection2 == p2.intersection2)
		return true;

	//           /         *         v       (outside)
	//  ---p1w1--1----p2w1-1---p1w2--2----
	//           ^         *         \       (inside)
	if (p1.indexw1 < p2.indexw1 && p2.indexw1 < p1.indexw2)
		return true;
	if (p1.indexw1 > p1.indexw2 && (p2.indexw1 > p1.indexw1 || p2.indexw1 < p1.indexw2))
		return true;


	//            /         *          v       (outside)
	//  ---p1w1--11----p2w2-2---p1w2--12----
	//            ^         *          \       (inside)
	if (p1.indexw1 < p2.indexw2 && p2.indexw2 < p1.indexw2)
		return true;
	if (p1.indexw1 > p1.indexw2 && (p2.indexw2 > p1.indexw1 || p2.indexw2 < p1.indexw2))
		return true;

	// Opposite of two above situations
	if (p2.indexw1 < p1.indexw1 && p1.indexw1 < p2.indexw2)
		return false;
	if (p2.indexw1 > p2.indexw2 && (p1.indexw1 > p2.indexw1 || p1.indexw1 < p2.indexw2))
		return false;

	if (p2.indexw1 < p1.indexw2 && p1.indexw2 < p2.indexw2)
		return false;
	if (p2.indexw1 > p2.indexw2 && (p1.indexw2 > p2.indexw1 || p1.indexw2 < p2.indexw2))
		return false;


	// The above checks covered the cases where one patch covers the other and
	// the intersections of the patches are on different edges.

	// So, if we passed the above checks, we have to check the order of
	// intersections on edges.


	if (p1.indexw1 != p1.indexw2) {

		//            /    *              v       (outside)
		//  ---p1w1--11---21--------p1w2--2----
		//     p2w1   ^    *              \       (inside)
		if (p1.indexw1 == p2.indexw1)
			return (liesBefore(p1.vertexw1, p1.intersection1, p2.intersection1) < 0);

		//            /                *    v       (outside)
		//  ---p1w1--11---------p1w2--21---12----
		//            ^         p2w1   *    \       (inside)
		if (p1.indexw2 == p2.indexw1)
			return (liesBefore(p1.vertexw2, p1.intersection2, p2.intersection1) > 0);

		// If neither of the above, then the intervals of the polygon
		// covered by patch1 and patch2 are disjoint
		return false;
	}

	// p1w1 == p1w2
	// Also, p1w1/p1w2 isn't strictly between p2


	//            v   /             *      (outside)
	//  ---p1w1--12--11-------p2w1-21----
	//     p1w2   \   ^             *      (inside)

	//            v   /   /               (outside)
	//  ---p1w1--12--21--11---------
	//     p1w2   \   ^   ^               (inside)
	//     p2w1
	if (liesBefore(p1.vertexw1, p1.intersection1, p1.intersection2) > 0)
		return (p1.indexw1 != p2.indexw1);

	// CHECKME: This is meaningless if p2w1 != p2w2 ??
	if (liesBefore(p2.vertexw1, p2.intersection1, p2.intersection2) > 0)
		return false;

	// CHECKME: This is meaningless if p1w1 != p2w1 ??
	if (liesBefore(p2.vertexw1, p2.intersection1, p1.intersection1) <= 0)
		return false;

	// CHECKME: This is meaningless if p1w2 != p2w1 ??
	if (liesBefore(p2.vertexw1, p2.intersection1, p1.intersection2) >= 0)
		return false;

	return true;
}

// Merge a single polygon into the work polygon.
// If there is an intersection between work and polygon, this function
// returns true, and replaces the vertex list of work by an extended version,
// that covers polygon.
//
// NOTE: The strategy used matches qfg1new closely, and is a bit error-prone.
// A more robust strategy would be inserting all intersection points directly
// into both vertex lists as a first pass. This would make finding the merged
// polygon a much more straightforward edge-walk, and avoid cases where SSCI's
// algorithm mixes up the order of multiple intersections on a single edge.
bool mergeSinglePolygon(Polygon &work, const Polygon &polygon) {
#ifdef DEBUG_MERGEPOLY
	const Vertex *vertex;
	debugN("work:");
	CLIST_FOREACH(vertex, &(work.vertices)) {
		debugN(" (%d,%d) ", vertex->v.x, vertex->v.y);
	}
	debugN("\n");
	debugN("poly:");
	CLIST_FOREACH(vertex, &(polygon.vertices)) {
		debugN(" (%d,%d) ", vertex->v.x, vertex->v.y);
	}
	debugN("\n");
#endif
	uint workSize = work.vertices.size();
	uint polygonSize = polygon.vertices.size();

	int patchCount = 0;
	Patch patchList[8];

	const Vertex *workv = work.vertices._head;
	const Vertex *polyv = polygon.vertices._head;
	for (uint wi = 0; wi < workSize; ++wi, workv = workv->_next) {
		for (uint pi = 0; pi < polygonSize; ++pi, polyv = polyv->_next) {
			Common::Point intersection1;
			Common::Point intersection2;

			bool intersects = segSegIntersect(workv, polyv, intersection1);
			if (!intersects)
				continue;

#ifdef DEBUG_MERGEPOLY
			debug("mergePoly: intersection at work %d, poly %d", wi, pi);
#endif

			if (intersectDir(workv, polyv) >= 0)
				continue;

#ifdef DEBUG_MERGEPOLY
			debug("mergePoly: intersection in right direction");
#endif

			int angle = 0;
			int baseAngle = edgeDir(workv);

			// We now found the point where an edge of 'polygon' left 'work'.
			// Now find the re-entry point.

			// NOTE: The order in which this searches does not always work
			// properly if the correct patch would only use a single partial
			// edge of poly. Because it starts at polyv->_next, it will skip
			// the correct re-entry and proceed to the next.

			const Vertex *workv2;
			const Vertex *polyv2 = polyv->_next;

			intersects = false;

			uint pi2, wi2;
			for (pi2 = 0; pi2 < polygonSize; ++pi2, polyv2 = polyv2->_next) {

				int newAngle = edgeDir(polyv2);

				int relAngle = newAngle - baseAngle;
				if (relAngle > 180) relAngle -= 360;
				if (relAngle < -180) relAngle += 360;

				angle += relAngle;
				baseAngle = newAngle;

				workv2 = workv;
				for (wi2 = 0; wi2 < workSize; ++wi2, workv2 = workv2->_next) {
					intersects = segSegIntersect(workv2, polyv2, intersection2);
					if (!intersects)
						continue;
#ifdef DEBUG_MERGEPOLY
					debug("mergePoly: re-entry intersection at work %d, poly %d", (wi + wi2) % workSize, (pi + 1 + pi2) % polygonSize);
#endif

					if (intersectDir(workv2, polyv2) > 0) {
#ifdef DEBUG_MERGEPOLY
						debug("mergePoly: re-entry intersection in right direction, angle = %d", angle);
#endif
						break; // found re-entry point
					}

				}

				if (intersects)
					break;

			}

			if (!intersects || angle < 0)
				continue;


			if (patchCount >= 8)
				error("kMergePoly: Too many patches");

			// convert relative to absolute vertex indices
			pi2 = (pi + 1 + pi2) % polygonSize;
			wi2 = (wi + wi2) % workSize;

			Patch &newPatch = patchList[patchCount];
			newPatch.indexw1 = wi;
			newPatch.vertexw1 = workv;
			newPatch.indexp1 = pi;
			newPatch.vertexp1 = polyv;
			newPatch.intersection1 = intersection1;

			newPatch.indexw2 = wi2;
			newPatch.vertexw2 = workv2;
			newPatch.indexp2 = pi2;
			newPatch.vertexp2 = polyv2;
			newPatch.intersection2 = intersection2;
			newPatch.disabled = false;

#ifdef DEBUG_MERGEPOLY
			debug("mergePoly: adding patch at work %d, poly %d", wi, pi);
#endif

			if (patchCount == 0) {
				patchCount++;
				continue;
			}

			bool necessary = true;
			for (int i = 0; i < patchCount; ++i) {
				if (isPatchCovered(patchList[i], newPatch)) {
					necessary = false;
					break;
				}
			}

			if (!necessary)
				continue;

			patchCount++;

			if (patchCount > 1) {
				// check if this patch makes other patches superfluous
				for (int i = 0; i < patchCount-1; ++i)
					if (isPatchCovered(newPatch, patchList[i]))
						patchList[i].disabled = true;
			}
		}
	}


	if (patchCount == 0)
		return false; // nothing changed


	// Determine merged work by doing a walk over the edges
	// of work, crossing over to polygon when encountering a patch.

	Polygon output(0);

	workv = work.vertices._head;
	for (uint wi = 0; wi < workSize; ++wi, workv = workv->_next) {

		bool covered = false;
		for (int p = 0; p < patchCount; ++p) {
			if (patchList[p].disabled) continue;
			if (isVertexCovered(patchList[p], wi)) {
				covered = true;
				break;
			}
		}

		if (!covered) {
			// Add vertex to output
			output.vertices.insertAtEnd(new Vertex(workv->v));
		}


		// CHECKME: Why is this the correct order in which to process
		// the patches? (What if two of them start on this line segment
		// in the opposite order?)

		for (int p = 0; p < patchCount; ++p) {

			const Patch &patch = patchList[p];
			if (patch.disabled) continue;
			if (patch.indexw1 != wi) continue;
			if (patch.intersection1 != workv->v) {
				// Add intersection point to output
				output.vertices.insertAtEnd(new Vertex(patch.intersection1));
			}

			// Add vertices from polygon between vertexp1 (excl) and vertexp2 (incl)
			for (polyv = patch.vertexp1->_next; polyv != patch.vertexp2; polyv = polyv->_next)
				output.vertices.insertAtEnd(new Vertex(polyv->v));

			output.vertices.insertAtEnd(new Vertex(patch.vertexp2->v));

			if (patch.intersection2 != patch.vertexp2->v) {
				// Add intersection point to output
				output.vertices.insertAtEnd(new Vertex(patch.intersection2));
			}

			// TODO: We could continue after the re-entry point here?
		}
	}
	// Remove last vertex if it's the same as the first vertex
	if (output.vertices._head->v == output.vertices._head->_prev->v)
		output.vertices.remove(output.vertices._head->_prev);


	// Slight hack: swap vertex lists of output and work polygons.
	SWAP(output.vertices._head, work.vertices._head);

	return true;
}


/**
 * This is a quite rare kernel function. An example of when it's called
 * is in QFG1VGA, after killing any monster.
 *
 * It takes a polygon, and extends it to also cover any polygons from the
 * input list with which it intersects. Any of those polygons so covered
 * from the input list are marked by adding 0x10 to their type field.
 */
reg_t kMergePoly(EngineState *s, int argc, reg_t *argv) {
	// 3 parameters: raw polygon data, polygon list, list size
	reg_t polygonData = argv[0];
	List *list = s->_segMan->lookupList(argv[1]);

	// The size of the "work" point list SSCI uses. We use a dynamic one instead
	//reg_t listSize = argv[2];

	SegmentRef pointList = s->_segMan->dereference(polygonData);
	if (!pointList.isValid() || pointList.skipByte) {
		warning("kMergePoly: Polygon data pointer is invalid");
		return make_reg(0, 0);
	}

	Node *node;

#ifdef DEBUG_MERGEPOLY
	node = s->_segMan->lookupNode(list->first);
	while (node) {
		draw_polygon(s, node->value, 320, 190);
		node = s->_segMan->lookupNode(node->succ);
	}
	Common::Point prev, first;
	prev = first = readPoint(pointList, 0);
	for (int i = 1; readPoint(pointList, i).x != 0x7777; i++) {
		Common::Point point = readPoint(pointList, i);
		draw_line(s, prev, point, 1, 320, 190);
		prev = point;
	}
	draw_line(s, prev, first, 1, 320, 190);
	// Update the whole screen
	g_sci->_gfxScreen->copyToScreen();
	g_system->updateScreen();
	g_system->delayMillis(1000);
#endif

	// The work polygon which we're going to merge with the polygons in list
	Polygon work(0);

	for (int i = 0; true; ++i) {
		Common::Point p = readPoint(pointList, i);
		if (p.x == POLY_LAST_POINT)
			break;

		Vertex *vertex = new Vertex(p);
		work.vertices.insertAtEnd(vertex);
	}

	// TODO: Check behaviour for single-vertex polygons
	node = s->_segMan->lookupNode(list->first);
	while (node) {
		Polygon *polygon = convert_polygon(s, node->value);

		if (polygon) {
			// CHECKME: Confirm vertex order that convert_polygon and
			// fix_vertex_order output. For now, we re-reverse the order since
			// convert_polygon reads the vertices reversed, and fix up head.
			polygon->vertices.reverse();
			polygon->vertices._head = polygon->vertices._head->_next;

			// Merge this polygon into the work polygon if there is an
			// intersection.
			bool intersected = mergeSinglePolygon(work, *polygon);

			// If so, flag it
			if (intersected) {
				writeSelectorValue(s->_segMan, node->value,
				                   SELECTOR(type), polygon->type + 0x10);
#ifdef DEBUG_MERGEPOLY
				debugN("Merged polygon: ");
				// Iterate over edges
				Vertex *vertex;
				CLIST_FOREACH(vertex, &(work.vertices)) {
					debugN(" (%d,%d) ", vertex->v.x, vertex->v.y);
				}
				debugN("\n");
#endif
			}

			delete polygon;
		}

		node = s->_segMan->lookupNode(node->succ);
	}


	// Allocate output array
	reg_t output = allocateOutputArray(s->_segMan, work.vertices.size()+1);
	SegmentRef arrayRef = s->_segMan->dereference(output);

	// Copy work.vertices into arrayRef
	Vertex *vertex;
	unsigned int n = 0;
	CLIST_FOREACH(vertex, &work.vertices) {
		if (vertex == work.vertices._head || vertex->v != vertex->_prev->v)
			writePoint(arrayRef, n++, vertex->v);
	}

	writePoint(arrayRef, n, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));

#ifdef DEBUG_MERGEPOLY
	prev = first = readPoint(arrayRef, 0);
	for (int i = 1; readPoint(arrayRef, i).x != 0x7777; i++) {
		Common::Point point = readPoint(arrayRef, i);
		draw_line(s, prev, point, 3, 320, 190);
		prev = point;
	}

	draw_line(s, prev, first, 3, 320, 190);

	// Update the whole screen
	g_sci->_gfxScreen->copyToScreen();
	g_system->updateScreen();
	if (!g_sci->_gfxPaint16)
		g_system->delayMillis(1000);

	debug("kMergePoly done");
#endif

	return output;
}

#ifdef ENABLE_SCI32

reg_t kInPolygon(EngineState *s, int argc, reg_t *argv) {
	// kAvoidPath already implements this
	return kAvoidPath(s, argc, argv);
}

#endif

} // End of namespace Sci