1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#ifndef SCI_ENGINE_SEGMENT_H
#define SCI_ENGINE_SEGMENT_H
#include "common/serializer.h"
#include "common/str.h"
#include "sci/engine/object.h"
#include "sci/engine/vm.h"
#include "sci/engine/vm_types.h" // for reg_t
#include "sci/util.h"
#ifdef ENABLE_SCI32
#include "sci/graphics/palette32.h"
#endif
namespace Sci {
struct SegmentRef {
bool isRaw; ///< true if data is raw, false if it is a reg_t sequence
union {
byte *raw;
reg_t *reg;
};
int maxSize; ///< number of available bytes
// FIXME: Perhaps a generic 'offset' is more appropriate here
bool skipByte; ///< true if referencing the 2nd data byte of *reg, false otherwise
// TODO: Add this?
//reg_t pointer; // Original pointer
// TODO: Add this?
//SegmentType type;
SegmentRef() : isRaw(true), raw(0), maxSize(0), skipByte(false) {}
bool isValid() const { return (isRaw ? raw != 0 : reg != 0); }
};
enum SegmentType {
SEG_TYPE_INVALID = 0,
SEG_TYPE_SCRIPT = 1,
SEG_TYPE_CLONES = 2,
SEG_TYPE_LOCALS = 3,
SEG_TYPE_STACK = 4,
// 5 used to be system strings, now obsolete
SEG_TYPE_LISTS = 6,
SEG_TYPE_NODES = 7,
SEG_TYPE_HUNK = 8,
SEG_TYPE_DYNMEM = 9,
// 10 used to be string fragments, now obsolete
#ifdef ENABLE_SCI32
SEG_TYPE_ARRAY = 11,
// 12 used to be string, now obsolete
SEG_TYPE_BITMAP = 13,
#endif
SEG_TYPE_MAX // For sanity checking
};
struct SegmentObj : public Common::Serializable {
SegmentType _type;
public:
static SegmentObj *createSegmentObj(SegmentType type);
public:
SegmentObj(SegmentType type) : _type(type) {}
virtual ~SegmentObj() {}
inline SegmentType getType() const { return _type; }
/**
* Check whether the given offset into this memory object is valid,
* i.e., suitable for passing to dereference.
*/
virtual bool isValidOffset(uint32 offset) const = 0;
/**
* Dereferences a raw memory pointer.
* @param reg reference to dereference
* @return the data block referenced
*/
virtual SegmentRef dereference(reg_t pointer);
/**
* Finds the canonic address associated with sub_reg.
* Used by the garbage collector.
*
* For each valid address a, there exists a canonic address c(a) such that c(a) = c(c(a)).
* This address "governs" a in the sense that deallocating c(a) will deallocate a.
*
* @param sub_addr base address whose canonic address is to be found
*/
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const { return sub_addr; }
/**
* Deallocates all memory associated with the specified address.
* Used by the garbage collector.
* @param sub_addr address (within the given segment) to deallocate
*/
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) {}
/**
* Iterates over and reports all addresses within the segment.
* Used by the garbage collector.
* @return a list of addresses within the segment
*/
virtual Common::Array<reg_t> listAllDeallocatable(SegmentId segId) const {
return Common::Array<reg_t>();
}
/**
* Iterates over all references reachable from the specified object.
* Used by the garbage collector.
* @param object object (within the current segment) to analyze
* @return a list of outgoing references within the object
*
* @note This function may also choose to report numbers (segment 0) as adresses
*/
virtual Common::Array<reg_t> listAllOutgoingReferences(reg_t object) const {
return Common::Array<reg_t>();
}
};
struct LocalVariables : public SegmentObj {
int script_id; /**< Script ID this local variable block belongs to */
Common::Array<reg_t> _locals;
public:
LocalVariables(): SegmentObj(SEG_TYPE_LOCALS), script_id(0) { }
virtual bool isValidOffset(uint32 offset) const {
return offset < _locals.size() * 2;
}
virtual SegmentRef dereference(reg_t pointer);
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const;
virtual Common::Array<reg_t> listAllOutgoingReferences(reg_t object) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
/** Data stack */
struct DataStack : SegmentObj {
uint _capacity; /**< Number of stack entries */
reg_t *_entries;
public:
DataStack() : SegmentObj(SEG_TYPE_STACK), _capacity(0), _entries(NULL) { }
~DataStack() {
free(_entries);
_entries = NULL;
}
virtual bool isValidOffset(uint32 offset) const {
return offset < _capacity * 2;
}
virtual SegmentRef dereference(reg_t pointer);
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t addr) const {
return make_reg(addr.getSegment(), 0);
}
virtual Common::Array<reg_t> listAllOutgoingReferences(reg_t object) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
enum {
CLONE_USED = -1,
CLONE_NONE = -1
};
typedef Object Clone;
struct Node {
reg_t pred; /**< Predecessor node */
reg_t succ; /**< Successor node */
reg_t key;
reg_t value;
}; /* List nodes */
struct List {
reg_t first;
reg_t last;
#ifdef ENABLE_SCI32
/**
* The next node for each level of recursion during iteration over this list
* by kListEachElementDo.
*/
reg_t nextNodes[10];
/**
* The current level of recursion of kListEachElementDo for this list.
*/
int numRecursions;
List() : numRecursions(0) {}
#endif
};
struct Hunk {
void *mem;
uint32 size;
const char *type;
};
template<typename T>
struct SegmentObjTable : public SegmentObj {
typedef T value_type;
struct Entry {
T *data;
int next_free; /* Only used for free entries */
};
enum { HEAPENTRY_INVALID = -1 };
int first_free; /**< Beginning of a singly linked list for entries */
int entries_used; /**< Statistical information */
typedef Common::Array<Entry> ArrayType;
ArrayType _table;
public:
SegmentObjTable(SegmentType type) : SegmentObj(type) {
initTable();
}
~SegmentObjTable() {
for (uint i = 0; i < _table.size(); i++) {
if (isValidEntry(i)) {
freeEntry(i);
}
}
}
void initTable() {
entries_used = 0;
first_free = HEAPENTRY_INVALID;
_table.clear();
}
int allocEntry() {
entries_used++;
if (first_free != HEAPENTRY_INVALID) {
int oldff = first_free;
first_free = _table[oldff].next_free;
_table[oldff].next_free = oldff;
assert(_table[oldff].data == nullptr);
_table[oldff].data = new T;
return oldff;
} else {
uint newIdx = _table.size();
_table.push_back(Entry());
_table.back().data = new T;
_table[newIdx].next_free = newIdx; // Tag as 'valid'
return newIdx;
}
}
virtual bool isValidOffset(uint32 offset) const {
return isValidEntry(offset);
}
bool isValidEntry(int idx) const {
return idx >= 0 && (uint)idx < _table.size() && _table[idx].next_free == idx;
}
virtual void freeEntry(int idx) {
if (idx < 0 || (uint)idx >= _table.size())
::error("Table::freeEntry: Attempt to release invalid table index %d", idx);
_table[idx].next_free = first_free;
delete _table[idx].data;
_table[idx].data = nullptr;
first_free = idx;
entries_used--;
}
virtual Common::Array<reg_t> listAllDeallocatable(SegmentId segId) const {
Common::Array<reg_t> tmp;
for (uint i = 0; i < _table.size(); i++)
if (isValidEntry(i))
tmp.push_back(make_reg(segId, i));
return tmp;
}
uint size() const { return _table.size(); }
T &at(uint index) { return *_table[index].data; }
const T &at(uint index) const { return *_table[index].data; }
T &operator[](uint index) { return at(index); }
const T &operator[](uint index) const { return at(index); }
};
/* CloneTable */
struct CloneTable : public SegmentObjTable<Clone> {
CloneTable() : SegmentObjTable<Clone>(SEG_TYPE_CLONES) {}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr);
virtual Common::Array<reg_t> listAllOutgoingReferences(reg_t object) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
/* NodeTable */
struct NodeTable : public SegmentObjTable<Node> {
NodeTable() : SegmentObjTable<Node>(SEG_TYPE_NODES) {}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) {
freeEntry(sub_addr.getOffset());
}
virtual Common::Array<reg_t> listAllOutgoingReferences(reg_t object) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
/* ListTable */
struct ListTable : public SegmentObjTable<List> {
ListTable() : SegmentObjTable<List>(SEG_TYPE_LISTS) {}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) {
freeEntry(sub_addr.getOffset());
}
virtual Common::Array<reg_t> listAllOutgoingReferences(reg_t object) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
/* HunkTable */
struct HunkTable : public SegmentObjTable<Hunk> {
HunkTable() : SegmentObjTable<Hunk>(SEG_TYPE_HUNK) {}
virtual ~HunkTable() {
for (uint i = 0; i < _table.size(); i++) {
if (isValidEntry(i))
freeEntryContents(i);
}
}
void freeEntryContents(int idx) {
free(at(idx).mem);
at(idx).mem = 0;
}
virtual void freeEntry(int idx) {
freeEntryContents(idx);
SegmentObjTable<Hunk>::freeEntry(idx);
}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) {
freeEntry(sub_addr.getOffset());
}
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
// Free-style memory
struct DynMem : public SegmentObj {
uint _size;
Common::String _description;
byte *_buf;
public:
DynMem() : SegmentObj(SEG_TYPE_DYNMEM), _size(0), _buf(0) {}
~DynMem() {
free(_buf);
_buf = NULL;
}
virtual bool isValidOffset(uint32 offset) const {
return offset < _size;
}
virtual SegmentRef dereference(reg_t pointer);
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t addr) const {
return make_reg(addr.getSegment(), 0);
}
virtual Common::Array<reg_t> listAllDeallocatable(SegmentId segId) const {
const reg_t r = make_reg(segId, 0);
return Common::Array<reg_t>(&r, 1);
}
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
#ifdef ENABLE_SCI32
#pragma mark -
#pragma mark Arrays
enum SciArrayType {
kArrayTypeInt16 = 0,
kArrayTypeID = 1,
kArrayTypeByte = 2,
kArrayTypeString = 3,
// Type 4 was for 32-bit integers; never used
kArrayTypeInvalid = 5
};
enum SciArrayTrim {
kArrayTrimRight = 1, ///< Trim whitespace after the last non-whitespace character
kArrayTrimCenter = 2, ///< Trim whitespace between non-whitespace characters
kArrayTrimLeft = 4 ///< Trim whitespace before the first non-whitespace character
};
class SciArray : public Common::Serializable {
public:
SciArray() :
_type(kArrayTypeInvalid),
_size(0),
_data(nullptr) {}
SciArray(const SciArray &array) {
_type = array._type;
_size = array._size;
_elementSize = array._elementSize;
_data = malloc(_elementSize * _size);
assert(_data);
memcpy(_data, array._data, _elementSize * _size);
}
SciArray &operator=(const SciArray &array) {
if (this == &array)
return *this;
free(_data);
_type = array._type;
_size = array._size;
_elementSize = array._elementSize;
_data = malloc(_elementSize * _size);
assert(_data);
memcpy(_data, array._data, _elementSize * _size);
return *this;
}
virtual ~SciArray() {
free(_data);
_size = 0;
_type = kArrayTypeInvalid;
}
void saveLoadWithSerializer(Common::Serializer &s);
/**
* Returns the type of this array.
*/
SciArrayType getType() const {
return _type;
}
/**
* Sets the type of this array. The type of the array may only be set once.
*/
void setType(const SciArrayType type) {
assert(_type == kArrayTypeInvalid);
switch(type) {
case kArrayTypeInt16:
case kArrayTypeID:
_elementSize = sizeof(reg_t);
break;
case kArrayTypeString:
_elementSize = sizeof(char);
break;
case kArrayTypeByte:
_elementSize = sizeof(byte);
break;
default:
error("Invalid array type %d", type);
}
_type = type;
}
/**
* Returns the size of the array, in elements.
*/
uint16 size() const {
return _size;
}
/**
* Returns the maximum number of bytes that can be stored in the array.
*/
uint16 byteSize() const {
uint16 size = _size;
if (_type == kArrayTypeID || _type == kArrayTypeInt16) {
size *= sizeof(uint16);
}
return size;
}
/**
* Ensures the array is large enough to store at least the given number of
* values given in `newSize`. If `force` is true, the array will be resized
* to store exactly `newSize` values. New values are initialized to zero.
*/
void resize(uint16 newSize, const bool force = false) {
if (force || newSize > _size) {
_data = realloc(_data, _elementSize * newSize);
if (newSize > _size) {
memset((byte *)_data + _elementSize * _size, 0, (newSize - _size) * _elementSize);
}
_size = newSize;
}
}
/**
* Returns a pointer to the array's raw data storage.
*/
void *getRawData() { return _data; }
const void *getRawData() const { return _data; }
/**
* Gets the value at the given index as a reg_t.
*/
reg_t getAsID(const uint16 index) {
if (getSciVersion() >= SCI_VERSION_3) {
// SCI3 resizes arrays automatically when out-of-bounds indices are
// passed, but it has an off-by-one error, always passing the index
// instead of `index + 1` on a read. This happens to work in SSCI
// only because the resize method there actually allocates memory
// for `index + 25` elements when growing the array, and it always
// grows the array on its first resize because it decides whether to
// grow based on byte size including an extra array header.
resize(index + 1);
} else {
assert(index < _size);
}
switch(_type) {
case kArrayTypeInt16:
case kArrayTypeID:
return ((reg_t *)_data)[index];
case kArrayTypeByte:
case kArrayTypeString: {
int16 value;
if (getSciVersion() < SCI_VERSION_2_1_MIDDLE) {
value = ((int8 *)_data)[index];
} else {
value = ((uint8 *)_data)[index];
}
return make_reg(0, value);
}
default:
error("Invalid array type %d", _type);
}
}
/**
* Sets the value at the given index from a reg_t.
*/
void setFromID(const uint16 index, const reg_t value) {
if (getSciVersion() >= SCI_VERSION_3) {
// This code is different from SSCI; see getAsID for an explanation
resize(index + 1);
} else {
assert(index < _size);
}
switch(_type) {
case kArrayTypeInt16:
case kArrayTypeID:
((reg_t *)_data)[index] = value;
break;
case kArrayTypeByte:
case kArrayTypeString:
((byte *)_data)[index] = value.toSint16();
break;
default:
error("Invalid array type %d", _type);
}
}
/**
* Gets the value at the given index as an int16.
*/
int16 getAsInt16(const uint16 index) {
assert(_type == kArrayTypeInt16);
if (getSciVersion() >= SCI_VERSION_3) {
// This code is different from SSCI; see getAsID for an explanation
resize(index + 1);
} else {
assert(index < _size);
}
const reg_t value = ((reg_t *)_data)[index];
assert(value.isNumber());
return value.toSint16();
}
/**
* Sets the value at the given index from an int16.
*/
void setFromInt16(const uint16 index, const int16 value) {
assert(_type == kArrayTypeInt16);
if (getSciVersion() >= SCI_VERSION_3) {
// This code is different from SSCI; see getAsID for an explanation
resize(index + 1);
} else {
assert(index < _size);
}
((reg_t *)_data)[index] = make_reg(0, value);
}
/**
* Returns a reference to the byte at the given index. Only valid for
* string and byte arrays.
*/
byte &byteAt(const uint16 index) {
assert(_type == kArrayTypeString || _type == kArrayTypeByte);
if (getSciVersion() >= SCI_VERSION_3) {
// This code is different from SSCI; see getAsID for an explanation
resize(index + 1);
} else {
assert(index < _size);
}
return ((byte *)_data)[index];
}
/**
* Returns a reference to the char at the given index. Only valid for
* string and byte arrays.
*/
char &charAt(const uint16 index) {
assert(_type == kArrayTypeString || _type == kArrayTypeByte);
if (getSciVersion() >= SCI_VERSION_3) {
// This code is different from SSCI; see getAsID for an explanation
resize(index + 1);
} else {
assert(index < _size);
}
return ((char *)_data)[index];
}
/**
* Returns a reference to the reg_t at the given index. Only valid for ID
* and int16 arrays.
*/
reg_t &IDAt(const uint16 index) {
assert(_type == kArrayTypeID || _type == kArrayTypeInt16);
if (getSciVersion() >= SCI_VERSION_3) {
// This code is different from SSCI; see getAsID for an explanation
resize(index + 1);
} else {
assert(index < _size);
}
return ((reg_t *)_data)[index];
}
/**
* Reads values from the given reg_t pointer and sets them in the array,
* growing the array if needed to store all values.
*/
void setElements(const uint16 index, uint16 count, const reg_t *values) {
resize(index + count);
switch (_type) {
case kArrayTypeInt16:
case kArrayTypeID: {
const reg_t *source = values;
reg_t *target = (reg_t *)_data + index;
while (count--) {
*target++ = *source++;
}
break;
}
case kArrayTypeByte:
case kArrayTypeString: {
const reg_t *source = values;
byte *target = (byte *)_data + index;
while (count--) {
if (!source->isNumber()) {
error("Non-number %04x:%04x sent to byte or string array", PRINT_REG(*source));
}
*target++ = source->getOffset();
++source;
}
break;
}
default:
error("Attempted write to SciArray with invalid type %d", _type);
}
}
/**
* Fills the array with the given value. Existing values will be
* overwritten. The array will be grown if needed to store all values.
*/
void fill(const uint16 index, uint16 count, const reg_t value) {
if (count == 65535 /* -1 */) {
count = size() - index;
}
if (!count) {
return;
}
resize(index + count);
switch (_type) {
case kArrayTypeInt16:
case kArrayTypeID: {
reg_t *target = (reg_t *)_data + index;
while (count--) {
*target++ = value;
}
break;
}
case kArrayTypeByte:
case kArrayTypeString: {
byte *target = (byte *)_data + index;
const byte fillValue = value.getOffset();
while (count--) {
*target++ = fillValue;
}
break;
}
case kArrayTypeInvalid:
error("Attempted write to uninitialized SciArray");
}
}
/**
* Copies values from the source array. Both arrays will be grown if needed
* to prevent out-of-bounds reads/writes.
*/
void copy(SciArray &source, const uint16 sourceIndex, const uint16 targetIndex, int16 count) {
if (count == -1) {
count = source.size() - sourceIndex;
}
if (count < 1) {
return;
}
resize(targetIndex + count);
source.resize(sourceIndex + count);
assert(source._elementSize == _elementSize);
const byte *sourceData = (byte *)source._data + sourceIndex * source._elementSize;
byte *targetData = (byte *)_data + targetIndex * _elementSize;
memmove(targetData, sourceData, count * _elementSize);
}
void byteCopy(const SciArray &source, const uint16 sourceOffset, const uint16 targetOffset, const uint16 count) {
error("SciArray::byteCopy not implemented");
}
/**
* Removes whitespace from string data held in this array.
*/
void trim(const int8 flags, const char showChar) {
enum {
kWhitespaceBoundary = 32,
kAsciiBoundary = 128
};
byte *data = (byte *)_data;
byte *end = data + _size;
byte *source;
byte *target;
if (flags & kArrayTrimLeft) {
target = data;
source = data;
while (source < end && *source != '\0' && *source != showChar && *source <= kWhitespaceBoundary) {
++source;
}
memmove(target, source, Common::strnlen((char *)source, _size - 1) + 1);
}
if (flags & kArrayTrimRight) {
source = data + Common::strnlen((char *)data, _size) - 1;
while (source > data && *source != showChar && *source <= kWhitespaceBoundary) {
*source = '\0';
--source;
}
}
if (flags & kArrayTrimCenter) {
target = data;
while (target < end && *target != '\0' && *target <= kWhitespaceBoundary && *target != showChar) {
++target;
}
if (*target != '\0') {
while (target < end && *target != '\0' && (*target > kWhitespaceBoundary || *target == showChar)) {
++target;
}
if (*target != '\0') {
source = target;
while (*source != '\0') {
while (source < end && *source != '\0' && *source <= kWhitespaceBoundary && *source != showChar) {
++source;
}
while (source < end && *source != '\0' && (*source > kWhitespaceBoundary || *source == showChar)) {
*target++ = *source++;
}
}
--source;
while (source >= data && source > target && (*source <= kWhitespaceBoundary || *source >= kAsciiBoundary) && *source != showChar) {
--source;
}
++source;
memmove(target, source, Common::strnlen((char *)source, _size - 1) + 1);
}
}
}
}
/**
* Copies the string data held by this array into a new Common::String.
*/
Common::String toString() const {
assert(_type == kArrayTypeString);
return Common::String((char *)_data);
}
/**
* Copies the string from the given Common::String into this array.
*/
void fromString(const Common::String &string) {
// At least LSL6hires uses a byte-type array to hold string data
assert(_type == kArrayTypeString || _type == kArrayTypeByte);
resize(string.size() + 1, true);
Common::strlcpy((char *)_data, string.c_str(), string.size() + 1);
}
Common::String toDebugString() const {
const char *type;
switch(_type) {
case kArrayTypeID:
type = "reg_t";
break;
case kArrayTypeByte:
type = "byte";
break;
case kArrayTypeInt16:
type = "int16";
break;
case kArrayTypeString:
type = "string";
break;
case kArrayTypeInvalid:
type = "invalid";
break;
}
return Common::String::format("type %s; %u entries", type, size());
}
protected:
void *_data;
SciArrayType _type;
uint16 _size;
uint8 _elementSize;
};
struct ArrayTable : public SegmentObjTable<SciArray> {
ArrayTable() : SegmentObjTable<SciArray>(SEG_TYPE_ARRAY) {}
virtual Common::Array<reg_t> listAllOutgoingReferences(reg_t object) const;
void saveLoadWithSerializer(Common::Serializer &ser);
SegmentRef dereference(reg_t pointer);
};
#pragma mark -
#pragma mark Bitmaps
enum {
kDefaultSkipColor = 250
};
#define BITMAP_PROPERTY(size, property, offset)\
inline uint##size get##property() const {\
return READ_SCI11ENDIAN_UINT##size(_data + (offset));\
}\
inline void set##property(uint##size value) {\
WRITE_SCI11ENDIAN_UINT##size(_data + (offset), (value));\
}
struct BitmapTable;
/**
* A convenience class for creating and modifying in-memory
* bitmaps.
*/
class SciBitmap : public Common::Serializable {
byte *_data;
int _dataSize;
Buffer _buffer;
bool _gc;
public:
enum BitmapFlags {
kBitmapRemap = 2
};
/**
* Gets the size of the bitmap header for the current
* engine version.
*/
static inline uint16 getBitmapHeaderSize() {
// TODO: These values are accurate for each engine, but there may be no reason
// to not simply just always use size 40, since SCI2.1mid does not seem to
// actually store any data above byte 40, and SCI2 did not allow bitmaps with
// scaling resolutions other than the default (320x200). Perhaps SCI3 used
// the extra bytes, or there is some reason why they tried to align the header
// size with other headers like pic headers?
// uint32 bitmapHeaderSize;
// if (getSciVersion() >= SCI_VERSION_2_1_MIDDLE) {
// bitmapHeaderSize = 46;
// } else if (getSciVersion() == SCI_VERSION_2_1_EARLY) {
// bitmapHeaderSize = 40;
// } else {
// bitmapHeaderSize = 36;
// }
// return bitmapHeaderSize;
return 46;
}
/**
* Gets the byte size of a bitmap with the given width
* and height.
*/
static inline uint32 getBitmapSize(const uint16 width, const uint16 height) {
return width * height + getBitmapHeaderSize();
}
inline SciBitmap() : _data(nullptr), _dataSize(0), _gc(true) {}
inline SciBitmap(const SciBitmap &other) {
_dataSize = other._dataSize;
_data = (byte *)malloc(other._dataSize);
memcpy(_data, other._data, other._dataSize);
if (_dataSize) {
_buffer = Buffer(getWidth(), getHeight(), getPixels());
}
_gc = other._gc;
}
inline ~SciBitmap() {
free(_data);
_data = nullptr;
_dataSize = 0;
}
inline SciBitmap &operator=(const SciBitmap &other) {
if (this == &other) {
return *this;
}
free(_data);
_dataSize = other._dataSize;
_data = (byte *)malloc(other._dataSize);
memcpy(_data, other._data, _dataSize);
if (_dataSize) {
_buffer = Buffer(getWidth(), getHeight(), getPixels());
}
_gc = other._gc;
return *this;
}
/**
* Allocates and initialises a new bitmap.
*/
inline void create(const int16 width, const int16 height, const uint8 skipColor, const int16 originX, const int16 originY, const int16 xResolution, const int16 yResolution, const uint32 paletteSize, const bool remap, const bool gc) {
_dataSize = getBitmapSize(width, height) + paletteSize;
_data = (byte *)realloc(_data, _dataSize);
_gc = gc;
const uint16 bitmapHeaderSize = getBitmapHeaderSize();
setWidth(width);
setHeight(height);
setOrigin(Common::Point(originX, originY));
setSkipColor(skipColor);
_data[9] = 0;
WRITE_SCI11ENDIAN_UINT16(_data + 10, 0);
setRemap(remap);
setDataSize(width * height);
WRITE_SCI11ENDIAN_UINT32(_data + 16, 0);
setHunkPaletteOffset(paletteSize > 0 ? (bitmapHeaderSize + width * height) : 0);
setDataOffset(bitmapHeaderSize);
setUncompressedDataOffset(bitmapHeaderSize);
setControlOffset(0);
setXResolution(xResolution);
setYResolution(yResolution);
_buffer = Buffer(getWidth(), getHeight(), getPixels());
}
inline int getRawSize() const {
return _dataSize;
}
inline byte *getRawData() const {
return _data;
}
inline Buffer &getBuffer() {
return _buffer;
}
inline bool getShouldGC() const {
return _gc;
}
inline void enableGC() {
_gc = true;
}
inline void disableGC() {
_gc = false;
}
BITMAP_PROPERTY(16, Width, 0);
BITMAP_PROPERTY(16, Height, 2);
inline Common::Point getOrigin() const {
return Common::Point(
(int16)READ_SCI11ENDIAN_UINT16(_data + 4),
(int16)READ_SCI11ENDIAN_UINT16(_data + 6)
);
}
inline void setOrigin(const Common::Point &origin) {
WRITE_SCI11ENDIAN_UINT16(_data + 4, (uint16)origin.x);
WRITE_SCI11ENDIAN_UINT16(_data + 6, (uint16)origin.y);
}
inline uint8 getSkipColor() const {
return _data[8];
}
inline void setSkipColor(const uint8 skipColor) {
_data[8] = skipColor;
}
inline bool getRemap() const {
return READ_SCI11ENDIAN_UINT16(_data + 10) & kBitmapRemap;
}
inline void setRemap(const bool remap) {
uint16 flags = READ_SCI11ENDIAN_UINT16(_data + 10);
if (remap) {
flags |= kBitmapRemap;
} else {
flags &= ~kBitmapRemap;
}
WRITE_SCI11ENDIAN_UINT16(_data + 10, flags);
}
BITMAP_PROPERTY(32, DataSize, 12);
BITMAP_PROPERTY(32, HunkPaletteOffset, 20);
BITMAP_PROPERTY(32, DataOffset, 24);
// NOTE: This property is used as a "magic number" for
// validating that a block of memory is a valid bitmap,
// and so is always set to the size of the header.
BITMAP_PROPERTY(32, UncompressedDataOffset, 28);
// NOTE: This property always seems to be zero
BITMAP_PROPERTY(32, ControlOffset, 32);
inline uint16 getXResolution() const {
if (getDataOffset() >= 40) {
return READ_SCI11ENDIAN_UINT16(_data + 36);
}
// SCI2 bitmaps did not have scaling ability
return 320;
}
inline void setXResolution(uint16 xResolution) {
if (getDataOffset() >= 40) {
WRITE_SCI11ENDIAN_UINT16(_data + 36, xResolution);
}
}
inline uint16 getYResolution() const {
if (getDataOffset() >= 40) {
return READ_SCI11ENDIAN_UINT16(_data + 38);
}
// SCI2 bitmaps did not have scaling ability
return 200;
}
inline void setYResolution(uint16 yResolution) {
if (getDataOffset() >= 40) {
WRITE_SCI11ENDIAN_UINT16(_data + 38, yResolution);
}
}
inline byte *getPixels() {
return _data + getUncompressedDataOffset();
}
inline byte *getHunkPalette() {
if (getHunkPaletteOffset() == 0) {
return nullptr;
}
return _data + getHunkPaletteOffset();
}
inline void setPalette(const Palette &palette) {
byte *paletteData = getHunkPalette();
if (paletteData != nullptr) {
SciSpan<byte> paletteSpan(paletteData, getRawSize() - getHunkPaletteOffset());
HunkPalette::write(paletteSpan, palette);
}
}
virtual void saveLoadWithSerializer(Common::Serializer &ser);
void applyRemap(SciArray &clut) {
const int length = getWidth() * getHeight();
uint8 *pixel = getPixels();
for (int i = 0; i < length; ++i) {
const int16 color = clut.getAsInt16(*pixel);
assert(color >= 0 && color <= 255);
*pixel++ = (uint8)color;
}
}
Common::String toString() const {
return Common::String::format("%dx%d; res %dx%d; origin %dx%d; skip color %u; %s; %s)",
getWidth(), getHeight(),
getXResolution(), getYResolution(),
getOrigin().x, getOrigin().y,
getSkipColor(),
getRemap() ? "remap" : "no remap",
getShouldGC() ? "GC" : "no GC");
}
};
#undef BITMAP_PROPERTY
struct BitmapTable : public SegmentObjTable<SciBitmap> {
BitmapTable() : SegmentObjTable<SciBitmap>(SEG_TYPE_BITMAP) {}
SegmentRef dereference(reg_t pointer) {
SegmentRef ret;
ret.isRaw = true;
ret.maxSize = at(pointer.getOffset()).getRawSize();
ret.raw = at(pointer.getOffset()).getRawData();
return ret;
}
void saveLoadWithSerializer(Common::Serializer &ser);
};
#endif
} // End of namespace Sci
#endif // SCI_ENGINE_SEGMENT_H
|